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ABSTRACT

The use of PARP inhibitors (PARPi) in patients with epithelial ovarian cancer is expanding, 
with the transition from use in recurrent disease to the first-line setting. This is accompanied 
with an increasing population of patients who develop acquired PARPi resistance. Coupled 
with those patients with primary PARPi resistance, there is an urgent need to better 
understand mechanisms of resistance and identify means to overcome this resistance. 
Combination therapy offers the potential to overcome innate and acquired resistance, 
by either working synergistically with PARPi or by restoring homologous recombination 
deficiency, targeting the homologous recombination repair pathway through an alternate 
strategy. We discuss mechanisms of PARPi resistance and data on novel combinations which 
may restore PARPi sensitivity.
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INTRODUCTION

The introduction of PARP inhibitors (PARPi) has transformed the management of patients 
with high-grade serous/endometroid (HGS) ovarian, primary peritoneal or fallopian-
tube cancer (subsequently referred to as high-grade serous/endometroid ovarian cancer 
[HGSC]), in both relapsed and first-line settings (Table 1) [1-8]. Initially, approved for the 
maintenance treatment of recurrent platinum sensitive BRCA1 or BRCA2 (BRCA1/2) mutant 
epithelial ovarian cancer (EOC), subsequent data demonstrated a benefit beyond those with 
a BRCA1/2 mutation. The key to this sensitivity is believed to be homologous recombination 
deficiency (HRD), which is present in up to 50% of all HGSC [9,10]. Most commonly, this 
is characterized by the lack of a functional copy of either BRCA1 or BRCA2. However, BRCA1/2 
genes can be inactivated by non-mutational process and there are other proteins involved in 
homologous recombination repair (HRR), whose loss can also confer an HRD phenotype [11]. 
HRD cancers exhibit genomic instability manifested by abnormal copy-number profiles and 
thousands of somatic mutations. Whilst many diverse HRD assays have been proposed, the 
only HRD assays that have been validated in clinical trials to date are based on next-generation 
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sequencing of DNA from tumor tissue. These assays detect genomic ‘scars’ and measure levels 
of loss of heterozygosity, telomeric allelic imbalance and large scale transition [11].

Many of the pivotal PARPi studies incorporated HRD testing, albeit often performed 
retrospectively, and a common theme emerges with an incremental reduction in benefit 
observed, from BRCA1/2 mutant tumors to BRCA1/2 wild-type/HRD to homologous 
recombination proficient (HRP) tumors [11]. Indeed, the most recent PARPi approval for 
olaparib in combination with bevacizumab was only granted for HRD cancers (defined by the 
presence of a BRCA1/2 mutation and/or a high genomic instability score; GIS) [12,13]. This is 
based on results from the results of the PAOLA1 trial where no benefit was observed from the 
addition of olaparib to bevacizumab in HRP tumors, as defined by a low GIS score [2,12,13]. 
In addition to tumors classified as HRP, not all patients with BRCA1/2 mutant or HRD tumors 
respond to treatment and in most patients, resistance eventually develops. There is a need to 
overcome both innate and acquired PARPi resistance to optimize clinical benefit from these 
drugs. Combination strategies is one means to overcome resistance. This review will discuss 
mechanism of PARPi resistance and data on the most promising combination strategies.

PARPi RESISTANCE

The use of PARPi in patients with EOC is increasing, particularly as approvals move into the 
first line setting. Despite unprecedented benefit observed in some groups, not all patients 
benefit, and treatment failure is common due to either de novo or acquired resistance. As the 
population of PARPi resistant patients increases there is an urgent need to better understand 
and clinically validate proposed acquired resistance mechanisms. This will determine the 
most rational PARPi combinations and post progression strategies. These strategies may also 
be applicable to HRP cancers, where only minimal benefit is seen with single agent PARPi. 
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Table 1. Pivotal trials leading to PARPi approval
Trial name (NCT number) Patient 

population
PARPi Number Primary outcomes PFS PARPi vs. placebo (mo) HR (95% CI)

First-line maintenance therapy
SOLO1 (NCT01844986) [1] BRCA1/2mut Olaparib 391 PFS in ITT population BRCA1/2mut: NR vs. 13.8 0.30 (0.23–0.41)
PAOLA-1 (NCT02477644) [2] All comers Olaparib plus 

bevacizumab
806 PFS in ITT population All patients: 22.1 vs. 16.6 0.59 (0.49–0.72)

HRD: 37.2 vs. 17.7 0.33 (0.25–0.45)
PRIMA (NCT02655016) [3] All comers Niraparib 733 PFS in ITT and HRD All patients: 13.8 vs. 8.2 0.62 (0.50–0.76)

HRD: 21.9 vs. 10.4 0.43 (0.31–0.59)
VELIA (NCT0247058) [4] All comers Veliparib in 

combination with 
chemotherapy and as 
maintenance therapy

1,140 PFS in veliparib 
throughout group vs. 
control group in ITT, 

BRCA1/2mut and HRD

All patients: 23.5 vs. 17.3 0.68 (0.56–0.83)
BRCA1/2mut: 34.7 vs. 22 0.44 (0.28–0.68)

HRD: 31.9 vs. 20.5 0.57 (0.43–0.76)

Maintenance therapy in platinum sensitive recurrent HGOC
Study19 (NCT00753545) [5] All comers Olaparib 265 PFS in ITT and BRCA1/2 

status
All patients: 10.8 vs. 5.4 0.35 (0.25–0.49)

BRCA1/2mut: 11.2 vs. 4.3 0.18 (0.34–0.85)
BRCA1/2wt 7.4 vs. 5.5 0.54 (0.34–0.85)

NOVA (NCT01847274) [6] All comers Niraparib 553 PFS according to 
BRCA1/2 and HRD 

status

gBRCA1/2mut: 21 vs. 5.5 0.27 (0.17–0.41)
gBRCA1/2wt: 9.3 vs. 3.9 0.45 (0.34–0.61)
HRD & BRCA1/2wt: 12.9 

vs. 3.8
0.38 (0.24–0.59)

SOLO2 (NCT01874353) [7] BRCA1/2mut Olaparib 295 PFS BRCA1/2mut: 19.1 vs. 5.5 0.33 (0.24–0.44)
ARIEL3 (NCT01968213) [8] All comers Rucaparib 564 PFS in ITT, HRD and 

BRCA1/2mut group
All patients: 10.8 vs. 5.4 0.36 (0.30–0.45)

BRCA1/2mut: 16.6 vs. 5.4 0.23 (0.16–0.34)
HRD: 13.6 vs. 5.4 0.32 (0.24–0.42)

CI, confidence interval; gBRCA1/2, germline BRCA1/2; HR, hazard ratio; HRD, homologous recombination deficient; ITT, intention to treat; mut, mutant; NR, not 
reached; PARPi, PARP inhibitor; PFS, progression free survival; wt, wild-type.

http://clinicaltrials.gov/ct2/show/NCT01844986
http://clinicaltrials.gov/ct2/show/NCT02477644
http://clinicaltrials.gov/ct2/show/NCT02655016
http://clinicaltrials.gov/ct2/show/NCT0247058
http://clinicaltrials.gov/ct2/show/NCT00753545
http://clinicaltrials.gov/ct2/show/NCT01847274
http://clinicaltrials.gov/ct2/show/NCT01874353
http://clinicaltrials.gov/ct2/show/NCT01968213
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Numerous mechanisms of acquired resistance to PARPi have been described and these can 
broadly be separated into 2 main groups. The first involves changes that restore HRR, either 
through re-expression of a gene that was mutationally or epigenetically silenced, or through 
rewiring of the DNA damage response. The second group of resistance mechanisms do not 
result in restoration of HRR and includes processes such as reduction in PARP trapping, 
[14,15] replication fork protection [16,17] and increased drug efflux (Fig. 1) [18].
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Fig. 1. Mechanisms of PARPi resistance. 
PARPi, PARP inhibitor.
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RESTORATION OF HRR FUNCTION

1. Reversion mutations
A common mechanism of resistance to PARPi is the restoration of at least partial homologous 
recombination (HR) capabilities. This is through either restoration of a HR protein or 
alteration of an inhibitory process facilitating double stranded DNA (dsDNA) repair breaks, 
decreasing genomic instability and replication stress. Perhaps the best described example is 
restoration of HR function through somatic reversion mutations. Here, secondary mutations 
restore the open reading frame of HR repair genes (BRCA1/2, PALB2, RAD51C/D) in tumors with 
frameshift or nonsense mutations, resulting in a functional HR protein [19-22]. Following 
PARPi treatment, multiple parallel reversion mutations may develop, representing multiple 
subclones and may promote clinically heterogenous intra-patient progression of disease [20-
24]. The presence of HR reversion mutations in either pre-treatment cell-free DNA (cfDNA) or 
tumor biopsies is associated with reduced response to PARPi in clinical studies [25,26]. These 
reversion mutations are identified in only a small subset (up to 25%) of patients with PARPi 
resistance [27]. Prospective studies which incorporate liquid or tumor biopsy sampling before 
and during treatment, and at the time of disease progression, are needed to better understand 
the prevalence and influence of these reversion mutations in the context of PARPi resistance.

2. HR gene promotor alterations
While epigenetic silencing of BRCA1 and RAD51C by promoter region hypermethylation 
results in sensitivity to PARPi, demethylation is associated with mRNA re-expression and 
development of resistance [28-30]. For example, demethylation of BRCA1 has been shown to 
restore BRCA1 expression, reinstate HR machinery, and result in PARPi resistance in BRCA1-
mutated and BRCA1-methylated patient-derived xenograft (PDX) models [29]. Similarly, in the 
phase 2 study of rucaparib treatment for platinum sensitive, relapsed EOC, analysis of pre- 
and post-treatment biopsy samples demonstrated that heterozygous demethylation of BRCA1 
resulted in PARPi resistance [30]. The zygosity of BRCA1 methylation appears important for 
PARPi sensitivity or resistance, with heterozygous methylation or expression of functional 
hypomorphic variants correlating with PARPi resistance in PDX [30-33].

3. 53BP1 regulation
In the absence of HR gene reversion, hyperactivation of non-homologous end-joining (NHEJ) 
may contributor to PARPi resistance. Unlike HR, NHEJ involves only minor resection of DNA 
ends at sites of dsDNA breaks and is typically error-prone [34]. Normally regulated by BRCA1, 
the TP53 binding protein 1 (53BP1) maintains the balance between HR and NHEJ, which 
shifts to NHEJ in BRCA1-mutated and HRD tumors [35]. 53BP1 promotes NHEJ by inhibiting 
the extensive DNA end-resection required for HR repair, therefore loss of 53BP1 function 
(by mutation or downregulation) facilitates BRCA1-independent end-resection and conveys 
PARPi resistance [36]. In vitro studies demonstrated that loss of 53BP1 partially restores HR 
function in BRCA1 deficient cancers, reversing PARPi sensitivity [35]. The restoration of HR 
due to the loss of 53BP1 appears specific to BRCA1 but not BRCA2 deficiency, with the type of 
BRCA1 mutation dictating the extent to which HR is restored [37].

REPLICATION FORK PROTECTION

In addition to their role in HRR, BRCA1 and BRCA2 function to protect replication forks under 
replication stress conditions by stabilizing RAD51 nucleofilaments and preventing excessive 
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processing of forks by nucleases. As such, one mechanism of PARPi mediated cytotoxicity 
is via dysregulation of replication fork reversal and/or restart. Therefore, stabilisation of 
replication forks may result in PARPi resistance [38]. Fork remodelling is controlled by 
several chromatin remodelling proteins, which when depleted increase fork stability and 
reduce replication stress-induced DNA damage and chromosomal instability, ultimately 
leading to olaparib resistance in BRCA1/2 deficient cells [17].

PARP EXPRESSION

Preclinical data suggests that mutations in PARP1 which alter PARP trapping, or allow PARP1 to 
maintain endogenous functions, may result in PARPi resistance. For example, in vitro studies 
with Crispr-cas9 mutagenesis screen identified in-frame mutations within the DNA-binding 
zinc-finger domain of PARP1, impacting the ability of PARP1 to bind sites of DNA damage 
and leading to PARPi resistance [15]. There have been anecdotal case reports supporting this 
hypothesis; a patient with EOC and primary resistance to olaparib was found to have a PARP1 
mutation, affecting a critical region for communication between DNA-binding and catalytic 
domains. Whilst the resultant PARP1 protein retained DNA-binding capacity, it was unable to 
become trapped in response to PARPi [15]. The frequency of PARP modulation as a mechanism 
of PARPi resistance in not yet established in large clinical datasets.

PARPi EFFLUX

Upregulation of drug efflux pumps is a well described mechanism of resistance to PARPi, 
as well as other chemotherapeutic and targeted drugs. Mutations in the ABCB1 gene, which 
encodes the multi-drug efflux pump MDR1 (also known as also known as p-glycoprotein), 
leads to increased expression of ABCB1 [10,39]. In Brca1-null and p53-null mouse mammary 
gland tumors, several p-glycoproteins (Abcb1a, Abcb1b, Abcc1, Abcg2) were upregulated 
in response to both treatment and maintenance dosing of olaparib [40]. Approximately 
8% of HGSC specimens, taken at the time of post-PARPi recurrence, were found to have 
upregulation of ABCB1 via fusions and translocations [10]. Whilst treatment with the p- 
glycoprotein inhibitor, tariquidar, re-sensitised olaparib resistant tumors to olaparib in vitro 
[40], clinical use of p-glycoprotein inhibitors is limited by toxicity and lack of specificity.

PARPi COMBINATION STRATEGIES

The use of combination strategies has the potential to overcome innate and acquired PARPi 
resistance. Several agents have shown promise in this area, either by working synergistically 
with PARPi or by targeting the HRR pathway through an alternate strategy. Treatment with 
agents that induce an HRD-like phenotype are proposed to re-sensitize resistant cells to 
PARPi, or to induce PARPi sensitivity in EOC that is HRP at baseline.

Although combining PARPi with DNA-damaging chemotherapy is appealing due to potential 
synergy, overlapping toxicity (especially myelosuppression) limits this combination [41,42]. 
More appealing is the combination of PARPi with inhibitors of angiogenesis, DNA damage 
repair (DDR), and the cell cycle, as well as immune checkpoint inhibitors (ICI) and tyrosine 
kinase inhibitors. These combinations have the potential to increase clinical synthetic 
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lethality, or alternatively act by independent mechanisms without overlapping toxicity. Except 
for PARPi with anti-angiogenesis, most combination strategies are only in the pre-clinical 
or early phase trial stage, and the lack of comparator arms limits the ability to fully evaluate 
these combinations at this stage.

MOLECULARLY TARGETED AGENTS

1. PARPi and anti-angiogenesis
PARPi with anti-angiogenic therapy is probably the most evaluated combination to date 
in EOC. Angiogenesis is a key hallmark of cancer and plays a critical role in ovarian cancer 
pathogenesis. Pre-clinical data supports synergy between PARPi and anti-angiogenics, 
although the underlying mechanism(s) of these combinations are still not fully understood, 
may vary with antiangiogenic agent, and have not yet been proven in clinical trials. The 
vascular endothelial growth factor (VEGF) protein family consist of growth factors that 
promote increased vascularity and angiogenesis, in response to hypoxic conditions. For 
example, the PARP-1 pathway regulates gene expression, controlling angiogenesis through 
hypoxia inducible factors leading to VEGF-A upregulation [43]. Induction of hypoxia 
with drugs such as cediranib modifies HRR through a variety of mechanisms including 
downregulation of BRCA1/2 and RAD51 [44,45] which has the potential to sensitise to 
PARPi, particularly in BRCA1/2 wild-type patients or those with HR reversion mutations. 
Two angiogenesis inhibitors, cediranib and bevacizumab, with distinct mechanisms of 
action, have demonstrated antitumor activity as single agents, with response rates of up to 
20% in patients with advanced EOC [46,47]. Bevacizumab has also been shown to improve 
progression-free survival (PFS) when combined with chemotherapy, and then as maintenance 
therapy, for both newly diagnosed and recurrent EOC [48-50].

Several studies have evaluated the combination of olaparib and cediranib in patients with 
recurrent EOC. In a randomized phase 2 trial comparing olaparib against olaparib/cediranib 
in platinum-sensitive recurrent HGSC patients (NCT01116648), an overall PFS of 17.7 months 
in the combination group and 9.0 months in the olaparib monotherapy group was observed 
[51]. Subsequent exploratory analysis by BRCA1/2 status demonstrated that the combination 
was active in both BRCA1/2 mutant and wild-type cohorts. A greater benefit from the addition 
of cediranib was observed in the BRCA1/2 wild-type cohort, increasing median PFS from 5.7 
months with olaparib monotherapy to 16.5 months (p=0.008) with combination therapy. In 
comparison, in the BRCA1/2 mutant cohort the median PFS was 16.5 months with olaparib vs. 
19.4 months (p=0.16) with the combination [51].

Although the recent GY004 phase III (NCT02446600) study demonstrated similar activity 
with cediranib plus olaparib compared to standard-of-care (SOC) chemotherapy in platinum 
sensitive recurrent EOC, the study did not meet the primary endpoint of improved PFS with 
median PFS of 10.3, 8.2 and 10.4 months for SOC chemotherapy, olaparib monotherapy and 
cediranib/olaparib combination respectively [52]. The combination of olaparib and cediranib 
has also been evaluated in platinum resistant disease in the BAROCCO (NCT03314740) and 
OCTOVA (NCT03117933) and AMBITION (NCT03699449) clinical trials [53-55]. Whilst 
no significant improvement in PFS was observed with either continuous or intermittent 
cediranib with olaparib compared with weekly paclitaxel within BAROCCO, continuous 
administration demonstrated a trend for improved PFS compared to chemotherapy (5.8 
months vs. 3.1 months, hazard ratio [HR]=0.76; 90% confidence interval [CI]=0.50–1.14) 
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[53]. In the OCTOVA trial, cediranib and olaparib treatment significantly increased PFS 
compared to olaparib monotherapy (median PFS 5.4 vs. 3.7 months, HR=0.70; 95% CI=0.57–
0.86) and was numerically superior to weekly paclitaxel (median PFS 3.9 months), although 
the trial was not designed to compare these treatment arms directly [55]. The improved PFS 
observed with the olaparib/cediranib combination compared to olaparib monotherapy was 
independent of BRCA1/2 status, or prior PARP or anti-angiogenic use [55]. In the AMBITION 
trial, cediranib and olaparib showed 50% (95% CI=24.7–75.4) overall response rate (ORR) in 
platinum resistant patients with HRR gene mutations [54].

The combination of cediranib plus olaparib following progression on prior PARPi 
monotherapy was evaluated in the EVOLVE study (NCT02681237). Clinical benefit was 
observed in a small number of patients [26]. Importantly, paired biopsies were obtained, 
and at the time of PARPi progression the following genomic alterations were observed; HR 
gene reversion mutations (BRCA1, BRCA2, or RAD51B) (19%); CCNE1 amplification (16%); 
ABCB1 upregulation (15%); and SLFN11 downregulation (7%). Interestingly, translational 
findings suggest that patients with HR gene reversion mutations, or upregulated ABCB1 at 
trial baseline, had poor outcomes and did not benefit from cediranib/olaparib combination 
[26]. This preliminary data highlights that different means of acquired PARPi resistance will 
require different treatment approaches and are likely to respond differently to both PARP 
rechallenge and combination therapy.

Bevacizumab, a monoclonal antibody that binds to circulating VEGF and prevents it binding 
to its receptors, has also been investigated in combination with PARPi. The combination 
of niraparib and bevacizumab as treatment (rather than maintenance therapy) significantly 
improved response rate compared to niraparib alone in the ANANOVA2 trial (NCT02354131, 
60% vs. 27%), regardless of HRD status [56].

These studies suggest as treatment, PARPi combination with antiangiogenic agents 
demonstrates efficacy based on objective response rates and PFS [53,55,56]. Whilst combination 
therapy has not been shown to be superior to SOC chemotherapy, based on toxicity and patient 
preferences it may provide a viable option as a chemotherapy sparing regime. Further biomarker 
analysis from these trials will hopefully help elucidate which patients benefit most from this 
combination and which group of PARPi resistant patients will benefit.

The phase III PAOLA-1 study (NCT02477644) first evaluated a PARPi and antiangiogenic 
combination as maintenance treatment in the first-line setting [2]. Patients with advanced 
EOC, regardless of BRCA1/2 status, who had a response following platinum-based 
chemotherapy and bevacizumab, received olaparib plus bevacizumab or placebo plus 
bevacizumab. A statistically significant improvement in median PFS for olaparib plus 
bevacizumab vs. bevacizumab alone (22.1 vs. 16.6 months, HR=0.59; 95% CI=0.49–0.72) 
was observed in the overall population. In the predefined subgroups, substantial PFS benefit 
was observed with the combination treatment vs. bevacizumab in the HRD population 
(including BRCA1/2 mutant; 37.2 vs. 17.7 months; HR=0.33; 95% CI=0.25–0.45) but not in the 
HRP population, leading to Food and Drug Administration (FDA) and European Medicines 
Agency (EMA) approval of the combination as maintenance therapy for HRD-positive 
patients only [2,13]. Due to the lack of an olaparib-only maintenance arm, it is not possible 
to determine whether olaparib alone is driving improved efficacy or whether the combination 
has synergistic effects.

https://doi.org/10.3802/jgo.2022.33.e44
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Whether the combination of anti-angiogenesis and PARPi is superior to PARP monotherapy 
as maintenance treatment in patients with platinum sensitive recurrent ovarian cancer will be 
addressed in the ongoing ICON9 trial, which is comparing olaparib/cediranib with olaparib 
monotherapy (NCT03278717) [57], and in the ongoing NIRVANA-1 trial, which is comparing 
niraparib/bevacizumab with niraparib monotherapy (NCT05183984). Overall, current data do 
not answer whether maintenance therapy with PARPi and angio-angiogenesis is superior to 
PARPi monotherapy and further data is warranted.

OReO/ENGOT Ov-38 (NCT03106987) is a randomized, double-blind phase III study to 
evaluate PARPi rechallenge in platinum sensitive relapsed ovarian cancer patients with one 
prior line of PARPi maintenance and were in response to their most recent platinum based 
chemotherapy [58]. PARPi rechallenge showed a significant improvement in PFS vs. placebo, 
irrespective of BRCA mutation status. Recently, NIRVANA-R (NCT04734665) is ongoing to 
determine the efficacy of niraparib with bevacizumab with platinum sensitive recurrent 
ovarian cancer patients previously treated with a PARPi [59].

2. PARPi and PI3K/AKT/mTOR signalling pathway
The phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway is frequently 
dysregulated in cancers, however, to date, limited activity has been observed with single 
agent PI3K/AKT inhibitors [60]. Pre-clinical data suggests synergism between PARPi and 
inhibitors of the PI3K pathway, via multi-mechanisms which centre on inducing an HRD 
phenotype. For example, PI3K inhibitors can downregulate BRCA1/2 and induce HRD [61] and 
mTOR inhibitors induce suppression of the DNA double strand break (DSB) repair protein 
SUV39H1, with suppression of HRR gene expression [62].

A phase I trial of buparlisib (pan-Pi3K inhibitor) with olaparib in patients with breast and 
ovarian cancer showed approximately 30% response rate for the combination, with responses 
observed regardless of BRCA1/2 status [63]. However due to poor tolerability of buparlisib. 
this combination has not been perused. The more specific PI3Kalpha inhibitor, alpelisib, 
was combined with olaparib in patients with recurrent and predominately platinum resistant 
HGSC. There was an ORR of 36%, independent of germline HRR gene mutation status [64]. 
These data, demonstrating response regardless of HR status, suggest that PI3K inhibitors 
may induce HRD in patients with baseline HRP and thereby sensitise to the effects of PARPi. 
EPIK-O/ENGOT-ov61 (NCT04729387) is ongoing to compare the efficacy and safety of alpelisib 
plus olaparib vs. single-agent chemotherapy in patients without a germline BRCA1/2 mutation, 
platinum-resistant/refractory HGSC. Two phase one studies have explored the combination 
of capivasertib, an AKT inhibitor, with olaparib. The ComPAKT trial (NCT02338622) 
evaluated the combination in patients with advanced solid tumors, of the evaluable patients, 
44.6% achieved clinical benefit (RECIST complete/partial response or stable disease ≥4 
months), including BRCA1/2 mutant cancers and BRCA1/2 wildtype cancers with or without 
DDR and PI3K/AKT pathway alterations [65]. A second study in patients with endometrial, 
ovarian, and triple-negative breast cancers demonstrated a similar clinical benefit rate of 
41% [66]. Provisional analysis of tumor samples from this study determined that markers 
of DNA damage checkpoint activation and decreased mTOR activity were associated with 
response, whereas resistance to the combination was associated with high receptor tyrosine 
kinase activity levels and mTOR activation [66]. The authors conclude that these putative 
biomarkers could improve patient selection for this combination, although it is unclear 
whether these markers of resistance were dependent on prior PARPi exposure or varied 
between malignancies. Nevertheless, these data provide a suggestion of a molecularly defined 

https://doi.org/10.3802/jgo.2022.33.e44

PARP inhibitor combination strategies



9/17https://ejgo.org

population who may be more likely to benefit, and provide greater insight to additional 
resistance mechanisms, although further randomised trials are warranted to confirm.

3. PARPi and RAS/RAF/MEK pathway
Data suggests that the MAPK pathway may be a relevant target for PARPi re-sensitisation, as 
PARPi resistance is associated with upregulation of the RAS/MAPK pathway [67]. In vitro and 
in vivo data suggests that combined MEK and PARP inhibition induces more DNA damage, 
has the potential to induce cell death and increase the magnitude, duration, and spectrum 
of PARPi activity [67,68]. Whether this combination is beneficial in patients is under 
investigation in the ongoing phase I/II trial of olaparib and selumetinib (MEK inhibitor, 
NCT03162627), which includes an expansion cohort of PARPi-resistant EOC.

4. PARPi and BET inhibitors
Bromodomain containing 4 is a member of the BET protein family with roles in epigenetic 
gene regulation, which promotes oncogene transcription. BET inhibitors have been shown 
to suppress DDR genes, induce an HRD phenotype in HRP cell lines, and re-sensitise to 
PARPi [69-71]. The combination of BET and PARPi showed increased tumor cytotoxicity 
compared to cells treated with either agent alone [69]. This combination was effective in a 
number of cell lines with varied genomic backgrounds, representing a number of established 
mechanisms of PARPi resistance including BRCA1/2 wild-type, 53BP1 deficient, and PARP1 
deficient [69]. Cumulatively, these findings suggest that BET inhibitors in combination with 
PARPi may have clinical application, particularly in HRP and PARPi resistant tumors; early 
phase trials are underway (e.g., NCT03205176 combination of olaparib and AZD5153 [BET 
inhibitor] in advanced solid tumors, including EOC, with prior PARPi exposure allowed).

PARPi AND ICI

The rationale for this combination is based on 2 hypotheses. Firstly, HRD cancers have a 
higher tumor mutational burden leading to elevated neo-antigen loads, which is thought to 
stimulate an increased anti-tumor immune response [72,73]. Secondly, treatment with PARPi 
upregulates PD-L1 expression in vivo and in vitro [74], and in the absence of a functional 
BRCA pathway there is activation of the innate immune response via the STING/TKB1/IRF3 
response [75], which may enhance the antitumor effect of the combination.

Preliminary results from early-phase single-arm trials demonstrate activity for the 
combination of PARPi with ICI, with an ORR in HGSC between 18%–72%, depending on the 
patient subgroup examined [76,77]. One of the largest studies to date in the recurrent setting, 
is the phase I/II TOPACIO (NCT02657889) trial which explored the combination of niraparib 
and the PD-1 inhibitor, pembrolizumab, in a predominately platinum-resistant (76%) 
population. The combination was tolerable with an ORR of 18% (90% CI=11%–29%), and a 
disease control rate (DCR) of 65% (90% CI=54%–75%), with similar ORR regardless of HRD 
or BRCA1/2 mutation status [77].

A second phase I/II ongoing trial MEDIOLA (NCT02734004) is evaluating olaparib and 
durvalumab (PD-L1 inhibitor), as a chemotherapy sparing regimen for platinum-sensitive 
recurrent disease in both BRCA1/2 mutant and wild-type populations. Within the BRCA1/2 
mutant cohort, interim results suggest an ORR of 71.9% (95% CI=53–86) [76]. In the 
germline BRCA1/2 wild-type group, patients were allocated in a non-randomized fashion 
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to receive either olaparib and durvalumab, or triplet therapy with olaparib, durvalumab, 
and bevacizumab [78]. This triplet combination was well tolerated with an ORR of 
77.4% (95% CI=59–90), compared with the doublet ORR of 31.3% (95% CI=16–50) [78]. 
OPEB-01 (NCT04361370) trial, is evaluating another triplet combination with olaparib, 
pembrolizumab, and bevacizumab as maintenance therapy in BRCA1/2 wild-type platinum-
sensitive recurrent ovarian cancer [79]. The results of interim analysis reported a DCR of 
86.4% from 22 patients [80]. None of these studies were randomised and the difference in 
ORR observed reflects the markedly different patient population with regards to established 
predictive factors such as platinum and HRD/BRCA1/2 status and number of lines of prior 
therapies, including prior PARP exposure. These factors, along with markers of PARPi 
resistance will need to be interrogated in ongoing combination studies with PARPi and 
ICI. Several larger randomised phase 3 trials with PARPi and ICI in the first line setting are 
underway (Table 2). To date, the addition of ICI to SOC chemotherapy +/− bevacizumab, 
and then as maintenance treatment in the first-line EOC setting, has been disappointing 
with negative results from both the JAVELIN Ovarian 200 (avelumab, NCT02580058) 
and IMagyn050 (atezolizumab, NCT03038100) studies. It is hoped that due to the 
aforementioned synergy observed in pre-clinical models, the combination of PARPi and ICI 
will yield greater patient benefit. Furthermore, translational work performed alongside these 
trials may allow better context specificity with regards to potential predictive biomarkers.

PARPi AND OTHER INHIBITORS OF DNA DAMAGE 
RESPONSE
To ensure cellular survival in the context of DNA damage, cells activate cell cycle checkpoints 
to halt the cell cycle and stimulate DDR mechanisms to repair single-strand DNA breaks, and 
accumulated DSBs through PARPi and replication fork collapse in S phase. As the S-phase 
checkpoint is reliant on p53, tumors with p53 mutations, which is almost ubiquitous in 
EOC, are more reliant on the G2 checkpoint for DDR [81,82]. Combining PARPi with other 
modulators of DDR maximises the accumulation of damage during G1 and S phases of the cell 
cycle, as well as inhibiting repair during G2 by minimizing the time to repair. Inhibition of the 
ATR/Chk1/Wee1 axis restores HR and replication fork stability, re-sensitising BRCA1/2 deficient 
tumors to PARPi [83]. Pre-clinical studies suggest synergistic anti-tumor effect of combination 
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Table 2. Ongoing first line PARPi and immune checkpoint inhibitor combination trials (first-line maintenance therapy)
Trial name (NCT number) PARPi Combination Comparator Indication Patient population
ATHENA (NCT03522246) Rucaparib Nivolumab Maintenance therapy: rucaparib/

nivolumab vs. rucaparib/placebo 
vs. placebo/nivolumab vs. placebo/

placebo

Maintenance following first line 
chemotherapy

Any BRCA mutation or 
HRD status

DUO-O (NCT03737643) Olaparib Durvalumab Maintenance therapy: bevacizumab/
placebo/placebo vs. bevacizumab/

durvalumab/placebo vs. 
bevacizumba/durvalumab/olaparib

Durvalumab/placebo with concurrent 
chemotherapy and bevacizumab 
followed by maintenance therapy 

first line

Any BRCA mutation or 
HRD status

FIRST (NCT03602859) Niraparib Dostarlimab Maintenance therapy: placebo/
placebo vs. niraparib/placebo 
vs. niraparib/dostarlimab +/− 

bevacizumab as SOC

Dostarlimab/placebo with concurrent 
chemotherapy followed by 

maintenance therapy first line

Any BRCA mutation or 
HRD status

KEYLYNK-001 (NCT03740165) Olaparib Pembrolizumab Maintenance therapy: bevacizumab/
placebo/placebo vs. bevacizumab/

pembrolizumab/placebo vs. 
bevacizumba/pembrolizumab//

olaparib

Pembrolizumab/placebo with 
concurrent chemotherapy followed 

by maintenance therapy first line

BRCA1/2 wild-type

HRD, homologous recombination deficient; PARPi, PARP inhibitor; SOC, standard-of-care.

http://clinicaltrials.gov/ct2/show/NCT03522246
http://clinicaltrials.gov/ct2/show/NCT03737643
http://clinicaltrials.gov/ct2/show/NCT03602859
http://clinicaltrials.gov/ct2/show/NCT03740165
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PARPi and ATR inhibitors [82], and early phase clinical trials are ongoing (Table 3). Similarly, 
several ongoing studies are evaluating the combination of PARPi with Wee1 inhibitors in 
ovarian cancer and PARPi resistance (Table 3). For example, the EFFORT study (NCT03579316) 
combining olaparib and the Wee1 inhibitor adavosertib have demonstrated benefit in PARPi 
resistant EOC, with an ORR for the combination of 29% compared to 23% for adavosertib 
monotherapy [84]. However, this combination was associated with high levels of grade 3 or 
4 toxicity (76%), particularly haematological, requiring dose interruptions and reductions 
[84]. Animal studies demonstrated that sequential administration of PARPi and adavosertib 
was as effective as a concurrent administration, but with fewer haematological effects [85], 
suggesting that this dosing schedule could be considered for future clinical studies. Prexasertib, 
a Chk1 inhibitor, induces HRD and synergises with olaparib in vitro [86]; early clinical trials 
have demonstrated evidence of clinical effectiveness in combination with olaparib, including 
patients with PARPi resistant, BRCA1 mutant HGSC [87]. Results from the completed phase 
2 study investigating prexasertib monotherapy in platinum and PARPi resistant patients are 
awaited (NCT03414047).

SUMMARY

Although the introduction of PARPi has transformed the outcomes for many patients with 
HGSC, the impressive gain in clinical benefit is mostly limited to the tumors characterized 
by BRCA1/2 mutations or HRD. Even in these subgroups, the development of resistance is 
common. Combination therapy offers a potential strategy to overcome acquired PARPi 
resistance and may also have a role for tumors with de novo resistance such as HRP tumors. 
Several classes of drugs have shown promise in this area by either targeting HRR and 
restoring HRD, or by working synergistically with PARPi to increase response rates. Whilst 
there is pre- clinical evidence to support numerous PARPi combination with other agents 
such as anti-angiogenics, immune-checkpoint inhibitors, DDR, PI3K/AKT, EGFR, and 
BET inhibitors, underlying mechanisms remain poorly understood and have not been 
well validated in clinical trial samples. Parallel translational research with collection of 
tumor biopsies and/or cfDNA are required with clinical studies to better define predictive 
biomarkers and facilitate patient stratification for combination therapy. An additional 
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Table 3. Ongoing PARPi and DDR combination trials
Trial name (NCT number) Phase Comparator PARPi DDR agent Patient cohorts
CAPRI (NCT03462342) II Single arm Olaparib Ceralasertib (ATRi) Platinum sensitive/recurrent

PARPi resistant
HRD/BRCA or regardless of biomarker

ATARI (NCT04065269) II AZD6738 monotherapy Olaparib AZD6738 (ATRi) ARID1A proficient gyncologic cancer
ARID1A deficient gynecologic cancer

NCT04267939 Ib Single arm Niraparib Bay 1895344 (ATRi) HRD solid tumors
Platinum-resistant, HRD, PARPi naïve HGSC

PARPi-resistant HGSC
EFFORT (NCT03579316) II Adavosertib monotherapy Olaparib Adavosertib (WEE1i) EOC who have progressed on prior PARPi
STAR (NCT04197713) I Sequential rather than 

combination treatment
Olaparib Adavosertib (WEE1i) BRCA1/2 mutant primary PARPi resistant solid tumors

Prior PARP with pre-defined DDR mutation solid tumors
OLAPCO (NCT02576444) II Olaparib monotherapy Olaparib Ceralasertib (ATRi) Solid tumors with mutation in HRR gene

Adavosertib (WEE1i) Solid tumors with TP53 or KRAS mutation
Capivasertib (AKTi) Solid tumors with mutations or other molecular 

aberrations leading to dysregulation of the PI3K/AKT 
pathway

ATRi, ATR inhibitor; AKTi, AKT inhibitor; DDR, DNA damage repair; EOC, epithelial ovarian cancer; HGSC, high-grade serous cancer; HRD, homologous 
recombination deficient; PARPi, PARP inhibitor; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; WEE1i, WEE1 inhibitor.

http://clinicaltrials.gov/ct2/show/NCT03462342
http://clinicaltrials.gov/ct2/show/NCT04065269
http://clinicaltrials.gov/ct2/show/NCT04267939
http://clinicaltrials.gov/ct2/show/NCT03579316
http://clinicaltrials.gov/ct2/show/NCT04197713
http://clinicaltrials.gov/ct2/show/NCT02576444
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consideration is the risk of adverse events with combination therapy, and treatment dose and 
scheduling needs to be optimized to maximize the overall risk-benefit ratio. As clinical data 
from combination studies matures, we will gain a better understanding of which patients 
derived the greatest benefit. This will allow us to increase the number of patients who benefit 
from PARPi, beyond the impressive gains observed to date with monotherapy in molecularly 
defined sub-groups.
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