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ABSTRACT
Introduction  This study aimed to identify serum 
metabolomic signatures associated with gestational 
diabetes mellitus (GDM), and to examine if ethnic-specific 
differences exist between South Asian and white European 
women.
Research design and methods  Prospective cohort study 
with a nested case–control analysis of 600 pregnant 
women from two Canadian birth cohorts; using an 
untargeted approach, 63 fasting serum metabolites were 
measured and analyzed using multisegment injection-
capillary electrophoresis-mass spectrometry. Multivariate 
logistic regression modeling was conducted overall and by 
cohort.
Results  The proportion of women with GDM was higher 
in South Asians (27.1%) compared with white Europeans 
(17.9%). Several amino acid, carbohydrate, and lipid 
pathways related to GDM were common to South 
Asian and white European women. Elevated circulating 
concentrations of glutamic acid, propionylcarnitine, 
tryptophan, arginine, 2-hydroxybutyric acid, 
3-hydroxybutyric acid, and 3-methyl-2-oxovaleric acid 
were associated with higher odds of GDM, while higher 
glutamine, ornithine, oxoproline, cystine, glycine with lower 
odds of GDM. Per SD increase in glucose concentration, 
the odds of GDM increased (OR=2.07, 95% CI 1.58 to 
2.71), similarly for metabolite ratios: glucose to glutamine 
(OR=2.15, 95% CI 1.65 to 2.80), glucose to creatinine 
(OR=1.79, 95% CI 1.39 to 2.32), and glutamic acid to 
glutamine (OR=1.46, 95% CI 1.16 to 1.83). South Asians 
had higher circulating ratios of glucose to glutamine, 
glucose to creatinine, arginine to ornithine, and citrulline to 
ornithine, compared with white Europeans.
Conclusions  We identified a panel of serum metabolites 
implicated in GDM pathophysiology, consistent in South 
Asian and white European women. The metabolic 
alterations leading to larger ratios of glucose to glutamine, 
glucose to creatinine, arginine to ornithine, and citrulline 
to ornithine in South Asians likely reflect the greater 
burden of GDM among South Asians compared with white 
Europeans.

INTRODUCTION
Gestational diabetes mellitus (GDM) is 
defined as hyperglycemia first recognized 

during pregnancy that is not attributable to 
previous diabetes.1 2 GDM can lead to several 
metabolic changes and clinical complications 
for pregnant women and their offspring, 
including stillbirth, preterm birth, neonatal 
macrosomia, and higher adiposity in 
offspring.1–3 Evidence is mounting of lasting 
intergenerational metabolic sequelae of GDM, 
where women and offspring have higher rates 
of incident type 2 diabetes, obesity, hyperten-
sion, dyslipidemia, and cardiovascular disease 
later in life.1 2 4 5 Globally, GDM rates are 
highest among South Asian (ie, people who 
originate from the Indian subcontinent), 

Significance of this study

What is already known about this subject?
	► Emerging epidemiological studies in pregnant wom-
en have identified metabolites associated with ges-
tational diabetes mellitus (GDM); however, few have 
examined the metabolome of South Asian women 
with GDM.

What are the new findings?
	► We identified a panel of serum metabolites involved 
in amino acid, carbohydrate, nitrogen, and lipid 
pathways that were altered in those with GDM, gen-
erally consistent in two ethnically distinct cohorts of 
South Asian and white European women.

	► The larger ratios of glucose to glutamine, glucose 
to creatinine, arginine to ornithine, and citrulline to 
ornithine in South Asian women may reflect early 
metabolic remodeling that contributes to the greater 
burden of GDM among South Asians compared with 
white Europeans.

How might these results change the focus of 
research or clinical practice?

	► Identification of metabolites implicated in GDM 
pathophysiology may help with targeted preven-
tion strategies and to identify populations at high 
risk of incident metabolic complications (eg, type 2 
diabetes).
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Latin American, Middle Eastern, and Indigenous popula-
tions.6 7 Specifically, the proportion of women with GDM 
is almost twofold higher among South Asians living in 
Canada compared with white Europeans.3 The reason for 
the increased risk of GDM among South Asian women is 
not well understood, but is hypothesized to be related to 
higher genetic risk, greater adiposity, and differences in 
dietary intake in pregnancy.3 6 8–10

The field of metabolomics is contributing to rapid 
improvements in our understanding of diseases of 
complex etiology at critical stages of development, 
such as GDM. This is because the human metabolome 
reflects the interplay of many of the complex factors that 
contribute to the disease phenotype, including gene 
expression, environmental exposures, and physiolog-
ical responses.11 12 To date, 61 metabolomic studies have 
investigated the pathophysiology of GDM, but most were 
small studies conducted primarily in either white Euro-
pean (42% of studies) or East Asian (30% of studies) 
populations (online supplemental tables S1 and S2). 
Despite being a high-risk population, only seven studies 
to date8 13–18 have examined the metabolome of South 
Asian women with GDM, of which most included fewer 
than 20 GDM cases (online supplemental table S1). Non-
targeted metabolomic profiling in a large population-
based sample may reveal new insights into why South 
Asian women are disproportionately impacted by GDM 
as compared with other populations.8 Thus, we sought 
to identify serum metabolites associated with GDM, to 
characterize metabolic pathways related to GDM, and 
to determine if these metabolites differ between South 
Asian and white European pregnant women.

RESEARCH DESIGN AND METHODS
Study participants
We compared GDM cases to non-cases from two prospec-
tive birth cohorts of pregnant women in Canada: the 
South Asian Birth Cohort (START) study and the Family 
Atherosclerosis Monitoring in Early Life (FAMILY) 
study.9 19 Each cohort enrolled pregnant women from 
Ontario, Canada, in their second or third trimester and 
followed the women and infants prospectively. Recruit-
ment for the START study began in July 2011, and 
enrolled 1012 women with 1002 newborns.9 Recruitment 
for the FAMILY study occurred between 2004 and 2009, 
and enrolled 857 women and 901 newborns.19 A sample 
of 600 women (300 from START and 300 from FAMILY), 
selected for a nutrition substudy to be balanced across 
low, intermediate, and high diet quality scores within 
each cohort, and who had prior non-targeted metabolo-
mics data, were eligible for this analysis.12

GDM classification
All women underwent a 75 g oral glucose tolerance test 
(OGTT) between 24 and 28 weeks of gestation to diag-
nose GDM. In START and FAMILY, GDM (ie, ‘case’ 
status) was diagnosed if any one of the following criteria 

was met: (1) The OGTT returned a result consistent 
with GDM based on the International Association of 
the Diabetes and Pregnancy Study Groups (IADPSG) 
definition: fasting glucose ≥5.1 mmol/L, 1-hour glucose 
≥10.0 mmol/L, and/or 2-hour glucose ≥8.5 mmol/L, (2) 
a woman self-reported GDM at baseline or post partum, 
(3) a review of a woman’s birth chart indicated positive 
GDM status, or (4) a woman reported taking insulin 
during pregnancy, without prior diabetes diagnosis. In 
START, we additionally assessed GDM using the South 
Asian-specific Born in Bradford (BiB) criteria: fasting 
glucose level ≥5.2 mmol/L, or a 2-hour postload level 
of ≥7.2 mmol/L. The BiB GDM criteria were developed 
and validated in 4821 South Asian women living in the 
UK and showed that lower glucose thresholds predicted 
adverse perinatal outcomes, including infant adiposity 
and high infant birth weight.20

Serum metabolomics analysis by multisegment injection-
capillary electrophoresis-mass spectrometry
Overnight fasted serum samples were collected from 
women and stored in liquid nitrogen at the Hamilton 
Clinical Research Laboratory. The workflow for the 
metabolomics analysis in START and FAMILY was the 
same and is described in detail elsewhere.21 In brief, 
multisegment injection-capillary electrophoresis-mass 
spectrometry (MSI-CE-MS) was used for the identifi-
cation and quantification of polar ionic metabolites 
measured consistently in serum filtrate samples with 
rigorous quality control (QC).21 Most serum metabolites 
were unambiguously identified by spiking authentic stan-
dards, and subsequently quantified (μM) using a calibra-
tion curve, where ion responses were normalized to a 
single internal standard (ie, relative peak area (RPA)).21 
Unknown serum metabolites were annotated based on 
their most likely molecular formula, relative migration 
time, and mode of detection with most compounds iden-
tified following acquisition of high-resolution tandem 
mass spectrometry (MS/MS) spectra at different colli-
sion energies (10, 20, 40 V).21 In START and FAMILY, 63 
and 62 serum metabolites, respectively, met the selection 
criteria using MSI-CE-MS, namely they were frequently 
measured (>75% of serum samples) with adequate tech-
nical precision (coefficient for variation for QC <30%). 
Maternal serum metabolome coverage was similar in both 
cohorts, except for an unknown cation (m/z: 334.689, 
identified as a doubly charged peptide) only detected in 
START (online supplemental table S3). Ratios of serum 
metabolites previously identified to be related to glucose 
homeostasis, type 2 diabetes, or GDM were also investi-
gated, including the ratios of glutamic acid to glutamine, 
isoleucine to glutamine, leucine to glutamine, valine to 
glutamine, glucose to creatinine, glucose to glutamine, 
arginine to ornithine, citrulline to ornithine, tyrosine to 
methionine, alanine to glycine, and Fischer’s ratio.22–27 
Fischer’s ratio is a ratio of branched-chain amino acids 
(BCAAs) leucine, valine, isoleucine to aromatic amino 
acids (AAs) phenylalanine and tyrosine.27 Ratios for 
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other serum metabolites with better discriminative ability 
for GDM as compared with glucose were also reported in 
our work.

Statistical analysis
Metabolites were autoscaled and natural logarithm trans-
formed to correct for skewness. Student’s two-tailed t-tests 
were performed to compare means and Mann-Whitney 
U tests for medians using QC-based batch-corrected 
metabolite concentrations (or RPA for metabolites with 
no authentic standards commercially available) between 
pregnant women with and without GDM, and between 
South Asian and white European women. Each natural 
log-transformed metabolite was tested independently 
for its association with GDM, and those with univar-
iate p<0.10 were candidates for subsequent multivari-
able logistic regression. There was no adjustment for 
multiple testing during this exploratory phase of anal-
ysis. Unknown serum metabolites significant at p<0.10 
were eligible for additional MS/MS experiments. In 
multivariable logistic regression, the association between 
metabolite and GDM was expressed per 1 SD increase of 
log-transformed metabolite RPA, adjusted for ethnicity, 
maternal age, maternal height, pre-pregnancy body 
mass index (BMI), gestational age at recruitment, family 
history of diabetes, smoking history, and a diet quality 
score.12 These covariates were selected as they were 
found to be associated with GDM and various metabolites 
in previous analyses.2 8 9 12 15 16 28 29 Standardized proto-
cols were used to measure anthropometrics (eg, weight, 
height). Participants self-reported ethnicity, with options 
of Hispanic, European, South Asian, Arab, East/South-
east Asia, African, First Nation, Mixed, and Other. Only 
participants of European and South Asian ethnicities 
were included for this study. Maternal age was calculated 
by subtracting the date of birth from the date of base-
line visit. Pre-pregnancy BMI was calculated at baseline, 
using measured height and self-reported or measured 
weight. Gestational age at recruitment was defined as 
the number of weeks the woman has been pregnant, as 
reported from her expected delivery date. Participants 
had a family history of diabetes if at least one of their 
immediate family members (parents and full-blooded 
siblings) was diagnosed with diabetes. Smoking history 
was self-reported, with options of never smoking, quitting 
before pregnancy, quitting during pregnancy, or currently 
smoking. The diet quality score was calculated as the 
sum of daily servings of ‘healthy’ foods (eg, fermented 
dairy, vegetables, fruits) less the sum of daily servings of 
‘unhealthy foods’ (eg, processed meats, refined grains), 
as previously described.12 To assess the robustness of 
regression models, we conducted a k-fold cross-validation 
(k=10). The associations between serum metabolites and 
GDM status were calculated overall, as well as stratified by 
cohort to examine any differences between South Asian 
and white European women. Multiplicative interactions 
between serum metabolites and ethnicity were tested. 
Analyses were conducted in SAS V.9.4 and R V.4.0.2.

Pathway analysis
Pathway analysis was performed using freely available 
online software, MetaboAnalyst V.5.0.30 Metabolites 
were generalized logarithm transformed, autoscaled, 
and then mapped into metabolic pathways using the 
Kyoto Encyclopedia of Genes and Genomes database. 
Pathway enrichment analysis compares the number of 
significant metabolites with an expected value within a 
specific pathway to determine the significant pathways 
(p<0.05) with false discovery rate correction. A pathway 
importance value was calculated for each metabolite 
based on its position relative to other molecules within 
the same pathway.30 Topology analysis calculates the 
pathway impact as the sum of the importance measures 
of the matched metabolites normalized by the sum of 
the importance measures of all the metabolites of each 
pathway. Pathways were retained if p<0.05 and impact was 
>0.10, thresholds consistent with prior MetaboAnalyst 
pathway analyses.31–33

Sensitivity analyses
The primary analysis was a complete-case analysis that 
assessed the associations of metabolites with GDM status, 
adjusted for ethnicity, maternal age, maternal height, 
pre-pregnancy BMI, gestational age at recruitment, 
family history of diabetes, smoking history, and diet 
quality. Sensitivity analyses compared this model with: 
(1) results of unadjusted models; (2) models using a 
different method of GDM diagnosis in START (IADPSG 
vs BiB); (3) using multiple imputation (m=10) because 
7.7% of women (n=46) had missing data on at least one 
covariate; and (4) models additionally adjusting for total 
plant protein intake (% of total energy). To assess the 
consistency of our results, we also conducted partial least-
squares discriminant analysis (PLS-DA), a supervised 
multivariate data analysis method for ranking serum 
metabolites of significance based on their variable impor-
tance in projection (VIP >1.5) score.

RESULTS
Participant characteristics
Women with GDM were older, shorter, had higher pre-
pregnancy BMI, and more likely to have a family history 
of diabetes than women without GDM (table 1). Despite 
lower pre-pregnancy BMI, South Asian women were 
more likely to have GDM (27.1%) than white European 
women (17.9%) (p=0.008; table 1). South Asian women 
were almost twice as likely to report a family history of 
diabetes (58.0%), compared with white European women 
(32.7%) with GDM (p<0.001). While both cohorts had 
similar total protein intakes, South Asian women with 
GDM consumed more plant protein (7.2% vs 4.8% of 
total energy, p<0.001) and less animal protein (8.7% vs 
11.4% of total energy, p<0.001), respectively, compared 
with white European women with GDM.
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Table 1  Participant characteristics for nested case–control metabolite analysis, IADPSG criteria for GDM diagnosis

Overall, START and FAMILY 
(n=590)

START, South Asian 
mothers (n=299)

FAMILY, white European 
mothers (n=291)

GDM (n=133, 
22.5%)

No GDM 
(n=457)

GDM (n=81,
27.1%)

No GDM 
(n=218)

GDM (n=52, 
17.9%)

No GDM 
(n=239)

Age, mean (SD) 32.2 (4.9) 30.9 (4.4) 31.1 (4.2) 29.6 (3.5) 33.9 (5.4) 32.0 (4.8)

Gestational age at recruitment, mean (SD) 27.6 (3.1) 28.2 (3.3) 26.4 (2.1) 26.7 (1.6) 29.4 (3.6) 29.6 (3.8)

Pre-pregnancy BMI, mean (SD) 27.3 (6.6) 24.7 (5.1) 25.3 (5.2) 24.5 (3.8) 30.5 (7.3) 25.8 (5.8)

Mean height, cm (SD) 162.1 (6.2) 164.0 (6.7) 161.2 (6.0) 162.3 (6.5) 163.6 (6.4) 165.6 (6.5)

Gravida, mean (SD) 2.6 (1.6) 2.3 (1.3) 2.5 (1.3) 2.3 (1.1) 2.7 (1.9) 2.3 (1.5)

Family history of diabetes, n (%) 64 (48.1) 134 (29.3) 47 (58.0) 90 (41.3) 17 (32.7) 44 (18.4)

 � Unknown 7 (5.3) 20 (4.4) 2 (2.5%) 2 (0.9) 5 (9.6) 18 (7.5)

Parity, n (%)

 � Primiparous 49 (36.8) 196 (42.9) 27 (33.3) 79 (36.2) 22 (42.3) 117 (49.0)

 � Multiparous 84 (63.2) 260 (56.9) 54 (66.7) 139 (63.8) 30 (57.7) 121 (50.6)

 � Unknown 0 (0) 1 (0.2) 0 (0) 0 (0) 0 (0) 1 (0.4)

Glucose, mean (SD), mmol/L

 � Fasting, plasma 5.0 (0.8) 4.3 (0.3) 5.0 (0.8) 4.3 (0.3) 5.1 (0.7) 4.3 (0.3)

 � 1-hour GTT 10.0 (1.9) 7.2 (1.4) 10.2 (2.0) 7.3 (1.4) 9.7 (1.8) 7.1 (1.4)

 � 2-hour GTT 8.0 (2.0) 5.9 (1.2) 8.5 (2.1) 6.0 (1.2) 7.3 (1.6) 5.9 (1.2)

Maternal ethnicity, n (%)

 � South Asian 81 (60.9) 218 (47.7) 81 (100) 218 (100) 0 (0) 0 (0)

 � White European 52 (39.1) 239 (52.3) 0 (0) 0 (0) 52 (100) 239 (100)

Physical activity during pregnancy, n (%)

 � Sedentary 24 (18.0) 79 (17.3) 17 (21.0) 49 (22.5) 7 (13.5) 30 (12.6)

 � Mild 79 (59.4) 266 (58.2) 46 (56.8) 127 (58.3) 33 (63.5) 139 (58.2)

 � Moderate 29 (21.8) 108 (23.6) 18 (22.2) 41 (18.8) 11 (21.2) 67 (28.0)

 � Strenuous 1 (0.8) 4 (0.9) 0 (0) 1 (0.5) 1 (1.9) 3 (1.3)

Social disadvantage index, n (%)*

 � High 11 (8.3) 36 (7.9) 8 (9.9) 31 (14.2) 3 (5.8) 5 (2.1)

 � Moderate 34 (25.6) 89 (19.5) 24 (29.6) 65 (29.8) 10 (19.2) 24 (10.0)

 � Low 68 (51.1) 270 (59.1) 33 (40.7) 96 (44.0) 35 (67.3) 174 (72.8)

 � Unknown 20 (15.0) 62 (13.6) 16 (19.8) 26 (11.9) 4 (7.7) 36 (15.1)

Smoking history, n (%)

 � Never smoked 107 (80.5) 376 (82.3) 81 (100) 218 (100) 26 (50.0) 158 (66.1)

 � Quit before pregnancy 11 (8.3) 35 (7.7) 0 (0.0) 0 (0.0) 11 (21.2) 35 (14.6)

 � Quit during pregnancy 11 (8.3) 32 (7.0) 0 (0.0) 0 (0.0) 11 (21.2) 32 (13.4)

 � Current smoker 3 (2.3) 10 (2.2) 0 (0.0) 0 (0.0) 3 (5.8) 10 (4.2)

 � Unknown 1 (0.8) 4 (0.9) 0 (0.0) 0 (0.0) 1 (1.9) 4 (1.7)

Diet quality index, mean (SD) 5.4 (7.2) 4.1 (8.0) 7.8 (6.9) 6.9 (8.5) 1.7 (6.2) 1.5 (6.6)

Protein, mean (SD), % of total energy 16.4 (2.8) 16.1 (2.6) 16.1 (2.7) 15.7 (2.4) 16.9 (2.8) 16.5 (2.6)

Plant protein, mean (SD), % of energy 6.3 (1.8) 5.9 (1.7) 7.2 (1.5) 7.1 (1.4) 4.8 (1.2) 4.9 (1.2)

Animal protein, mean (SD), % of energy 9.7 (3.3) 9.8 (3.1) 8.7 (3.2) 8.4 (2.9) 11.4 (2.8) 11.1 (2.7)

*The social disadvantage index was constructed based on the sum of scores from household income, marital status, and employment 
status, and was previously validated.41 For income: 2 points were given if household income was <$30 000, 1 point if between $30 000 
and $50 000, and 0 point if >$50 000. If married or common law 0 point was given, while 1 point was given if widowed, separated, 
divorced, or never married. If unemployed or retired 2 points were given, if employed 0 point was given. If the sum of points from 
household income, marital status, and employment status was 0–1 point participants were considered to have low disadvantage index, 
if 2–3 points moderate disadvantage index, and 4–5 points as high disadvantage index.
BMI, body mass index; FAMILY, Family Atherosclerosis Monitoring in Early Life; GDM, gestational diabetes mellitus; GTT, glucose 
tolerance test; IADPSG, International Association of the Diabetes and Pregnancy Study Groups; START, South Asian Birth Cohort.
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Association between serum metabolites and GDM
Twenty-eight candidate serum metabolites were associ-
ated with GDM at the initial statistical threshold of p<0.10 
(online supplemental tables S4 and S5; figure S1). Nine 
serum metabolites were associated with GDM in multivari-
able logistic regression models (figure 1). Higher levels 
of glucose, glutamic acid, propionylcarnitine, pyruvic 
acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, and 
3-methyl-2-oxovaleric acid were associated with higher 
odds of GDM (figure  1). Greater ratios of glucose to 
glutamine, glucose to creatinine, glutamic acid to gluta-
mine, and arginine to ornithine also corresponded with 
higher odds of GDM (figure 1). In contrast, higher levels 
of unknown m/z 129.066 (C5H8N2O2) were associated with 
lower odds of GDM (figure 1). With additional MS/MS 
experiments, this cation was tentatively classified as an 
AA analog, which was correlated with serum creatinine 
(r=0.44) and glutamine (r=0.32)31 (online supplemental 
figure S2). Our 10-fold cross-validation of multivariable 
logistic regression models demonstrated good predictive 
performance (area under the curve ranging from 0.69 to 
0.76, sensitivity 0.94–0.97, online supplemental table S6), 
but the PLS-DA model was not robust (average Q2=0.05, 
R2=0.18).

Pathway analysis
Seventeen pathways were associated with GDM, including 
several AA metabolism pathways, as well as carbohydrate 
metabolism, nitrogen metabolism, and lipid metabolism 
pathways (table 2; figure 2; online supplemental figure 
S3).

Ethnic-specific differences
Comparing the two groups, the ratios of glucose to gluta-
mine, glucose to creatinine, citrulline to ornithine, and 
arginine to ornithine were 0.4–1.0 SD higher in South 
Asians compared with white European women (online 
supplemental figure S4). Among women with GDM, 
there were significant differences in the adjusted metab-
olite concentrations between South Asians (n=81) and 
white Europeans (n=52) (online supplemental figures S5 
and S6). Concentrations of several AAs, carboxylic acids, 
and hydroxy acids were higher among white European 
women with GDM, except for 2-aminooctanoic acid, tryp-
tophan betaine, arginine, glucose to creatinine, and argi-
nine to ornithine ratios (online supplemental figure S6). 
Despite ethnic differences in the distribution of many 
serum metabolites, ORs associating metabolites with 
GDM were of similar magnitude and direction in both 
groups (table 2; online supplemental tables S7 and S8).

Figure 1  Associations between serum metabolites and odds of gestational diabetes mellitus (GDM) (IADPSG diagnosed), 
per 1 SD increase in metabolite concentration, START and FAMILY (n=590 women). *Reported as most likely molecular formula 
(m/z). Adjusted for ethnicity, maternal age, maternal height, pre-pregnancy BMI, gestational age at recruitment, family history 
of diabetes, smoking history, and diet quality score. †Identified as a cation amino acid analog.21 ‡Identified as doubly charge 
peptide, containing alanine, glutamic acid, and histidine. BMI, body mass index; FAMILY, Family Atherosclerosis Monitoring in 
Early Life; IADPSG, International Association of the Diabetes and Pregnancy Study Groups; RPA, relative peak area; START, 
South Asian Birth Cohort.
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Sensitivity analysis
Multiple imputation, compared with complete case, or 
further adjusting for plant protein intake, did not mean-
ingfully change the results (online supplemental table S9). 
For most serum metabolites, adjusted models, compared 
with unadjusted, slightly attenuated the relationship 

between metabolites and GDM (online supplemental 
table S9). Multivariate-adjusted models using BiB-defined 
GDM in START and IADPSG in FAMILY resulted in the 
same nine serum metabolites associated with IADPSG-
defined GDM, plus an additional five metabolites: tryp-
tophan, ornithine, alanine to glycine ratio, and citrulline 

Table 2  Metabolic pathways significantly impacted by GDM, with p<0.05 and impact >0.10, sorted by impact, KEGG 
database*

Pathway name†

Significant 
metabolites 
(univariate
p<0.10)

Measured 
metabolites

Total 
metabolites Metabolites involved P value FDR Impact

Valine, isoleucine, 
and leucine (BCAAs) 
biosynthesis

1 6 8 Valine, leucine, 3-methyl-2-oxovaleric 
acid, α-ketoisovaleric acid, isoleucine, 
threonine

0.040 0.073 1.00

Alanine, aspartic acid, 
and glutamic acid 
metabolism

4 7 28 Aspartic acid, asparagine, alanine, 
glutamic acid, glutamine, citric acid, 
pyruvic acid

0.006 0.021 0.53

Glutamine and 
glutamic acid 
metabolism

2 2 6 Glutamic acid, glutamine <0.001 0.004 0.50

Arginine biosynthesis 4 6 14 Glutamic acid, arginine, citrulline, 
aspartic acid, ornithine, glutamine

0.001 0.005 0.48

Arginine and proline 
metabolism

4 7 38 Arginine, creatine, glutamic acid, 
ornithine, pyruvic acid, proline, 
guanidinoacetic acid

0.001 0.005 0.37

Nitrogen metabolism 2 2 6 Glutamic acid, glutamine <0.001 0.004 0.25

Histidine metabolism 1 4 16 Glutamic acid, histidine, methyl-l-
histidine, aspartic acid

0.026 0.059 0.22

Pyruvic acid 
metabolism

2 2 22 Pyruvic acid, lactic acid 0.039 0.073 0.21

Glyoxylic acid and 
dicarboxylic acid 
metabolism

4 6 32 Citric acid, serine, glycine, glutamic 
acid, pyruvic acid, glutamine

0.004 0.016 0.18

Tryptophan 
metabolism

1 1 41 Tryptophan 0.027 0.059 0.14

Synthesis and 
degradation of ketone 
bodies

1 1 5 3-Hydroxybutyric acid 0.002 0.01 0.14

Tyrosine metabolism 1 2 42 Tyrosine, pyruvic acid 0.026 0.059 0.14

Citric acid cycle 
(tricarboxylic acid 
cycle)

2 2 20 Citric acid, pyruvic acid 0.028 0.059 0.14

Butyric acid 
metabolism

2 2 15 3-Hydroxybutyric acid, glutamic acid <0.001 0.003 0.13

Cysteine and 
methionine 
metabolism

2 4 33 Serine, methionine, cystine, pyruvic 
acid

0.01 0.029 0.13

Glutathione 
metabolism

4 4 28 Glycine, glutamic acid, oxoproline, 
ornithine

0.001 0.006 0.12

Glycolysis/ 
gluconeogenesis

3 3 26 Glucose, pyruvic acid, lactic acid <0.001 <0.001 0.10

*Adapted from MetaboAnalyst results (https://www.metaboanalyst.ca/).
†There were four additional pathways with p<0.05, where pathway impact was <0.10: valine, leucine and isoleucine degradation, 
porphyrin and chlorophyll metabolism, propanoate metabolism, and pyrimidine metabolism.
BCAA, branched-chain amino acid; FDR, false discovery rate; GDM, gestational diabetes mellitus; KEGG, Kyoto Encyclopedia of Genes 
and Genomes.
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to ornithine ratio (online supplemental table S9). Results 
from a PLS-DA model with VIP score ranking were also 
consistent with the main analysis results (online supple-
mental figure S7).

DISCUSSION
This metabolomics analysis in two ethnically distinct 
cohorts of women in pregnancy highlighted several 
pathways that were altered with GDM and common to 
both South Asian and white European women. These 
GDM-altered pathways included AA metabolism (eg, 
BCAA biosynthesis, tryptophan metabolism), carbo-
hydrate metabolism, and fatty acid metabolism (eg, 
ketone body production, butyric acid metabolism). 
Further, several pathways involving glutamic acid and 
glutamine were consistently associated with GDM, such 
as glutathione metabolism and nitrogen metabo-
lism. Within these pathways, higher concentrations of 
glutamic acid, propionylcarnitine, tryptophan, arginine, 
2-hydroxybutyric acid, 3-hydroxybutyric acid, pyruvic 
acid, and 3-methyl-2-oxovaleric acid were associated with 
higher odds of GDM. Higher circulating glutamine, orni-
thine, oxoproline, cystine, glycine, and unknown m/z 
129.066 (C5H8N2O2, identified as a cation AA derivative) 
were inversely related to GDM. This is the first study to 

consider serum metabolite ratios as predictors of GDM, 
discovering increased odds for GDM with increasing ratios 
of glucose to glutamine, glucose to creatinine, glutamic 
acid to glutamine, and arginine to ornithine. Increasing 
evidence suggests that GDM reflects an early stage of 
type 2 diabetes disease progression that manifests due 
to the metabolic stress caused by pregnancy.2 4 5 Overall, 
our study results support this hypothesis, as we identified 
GDM-altered pathways consistent with previous investiga-
tions in participants with GDM or type 2 diabetes2 15 16 34 35 
(online supplemental table S1).

We observed a positive association between the glutamic 
acid to glutamine ratio and GDM. This ratio is an estab-
lished type 2 diabetes risk marker, but ours is the first study 
to show that this ratio was also associated with GDM.22 34 
Glutamic acid and glutamine also play important roles in 
seven of the 17 pathways we identified to be associated 
with GDM, including AA metabolism (alanine, aspartic 
acid, histidine, arginine, proline), nitrogen metabolism, 
and glyoxylic and dicarboxylic acid metabolism. Gluta-
mine and glutamic acid provide carbon for glucose 
production in the kidney and liver, where glutamic acid 
promotes insulin secretion from pancreatic β-cells.22 
Abnormal glutamic acid homeostasis is associated with 
increased pancreatic β-cell damage, insulin secretion, 

Figure 2  Pathway impact by significance, metabolites significantly associated with gestational diabetes mellitus (GDM), 
South Asian Birth Cohort (START) and Family Atherosclerosis Monitoring in Early Life (FAMILY) (n=590 women). The size of 
pathway symbols represent the significance level, and the color is based on impact factor. (Adapted from MetaboAnalyst30 
results (https://www.metaboanalyst.ca/)).
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and gluconeogenesis, which can be mitigated, in part, by 
increased glutamine.22 36 In type 2 diabetes studies, even 
after adjusting for insulin resistance and BCAA levels, 
the glutamic acid to glutamine ratio remained a strong 
predictor of incident type 2 diabetes.22 In a systematic 
review of 19 clinical trials and animal studies, glutamine 
improved fasting plasma glucose, postprandial blood 
glucose, and increased insulin production in patients 
and animals with type 2 diabetes.36 Therefore, glutamine 
may be an important therapeutic target for GDM, as well 
as a marker of future metabolic risk; however, additional 
studies are warranted to investigate this hypothesis.36

While several studies identify elevated BCAAs as 
important risk markers for insulin resistance, pre-
diabetes, and type 2 diabetes, the relationship between 
circulating BCAAs and GDM is inconsistent34 35 (online 
supplemental table S1). Seven previous studies have iden-
tified positive relationships between BCAAs and GDM, 
while 12 studies found no difference (online supple-
mental table S1). We did not identify significant associa-
tions between either BCAAs or Fischer’s ratio and GDM. 
We did, however, find that the BCAA biosynthesis pathway 
was related to GDM, along with significant positive asso-
ciations of 3-methyl-2-oxovaleric acid and propionylcar-
nitine with GDM, two downstream leucine metabolism 
by-products, both previously linked to impaired fasting 
glucose and type 2 diabetes mellitus.34 35 We also iden-
tified that tryptophan metabolism was associated with 
GDM, consistent with prior investigations.15 16 35 Elevated 
tryptophan can result in higher production of the diabe-
togenic xanthurenic acid via the tryptophan-kynurenine 
pathway, which may explain why it was elevated in women 
with GDM.2

We observed that higher levels of 2-hydroxybutyric acid 
and 3-hydroxybutyric acid were associated with increased 
odds of GDM, consistent with previous studies (online 
supplemental table S1). It is postulated that the increased 
fatty acid catabolism, oxidative stress, and enhanced gluta-
thione synthesis observed in GDM are related to higher 
circulating concentrations of 2-hydroxybutyric acid.37 
This shift to fatty acid oxidation is further supported by 
increased 3-hydroxybutyric acid, which is a major ketone 
body in circulation in a fasted state.37 Elevated levels of 
2-hydroxybutyric acid and 3-hydroxybutyric acid have 
been implicated as predictive biomarkers several years 
prior to the onset of type 2 diabetes, highlighting the 
potential clinical utility of these compounds for early 
detection of glucose intolerance in women during preg-
nancy prior to onset of GDM.37

Ethnic-specific differences
Consistent with the BiB study of 4072 white European 
and 4702 South Asian women living in the UK, among 
all pregnant women, our study demonstrated that South 
Asian women had higher levels of glucose, while white 
Europeans had higher levels of histidine, creatinine, 
and pyruvic acid.8 Contrary to the BiB study, we did not 
observe higher levels of glutamine, alanine, BCAAs, or 

aromatic AAs in South Asian women.8 We did, however, 
observe higher levels of serine, arginine, tryptophan 
betaine, 3-methyl-2-oxovaleric acid, and acetylcarnitine. 
Variability between studies may reflect our lower sample 
size, or dietary pattern and socioeconomic status differ-
ences. In our study, the higher ratios of glucose to gluta-
mine, glucose to creatinine, arginine to ornithine, and 
citrulline to ornithine in South Asians compared with 
white Europeans are important ethnic-specific findings. 
These four ratios are strongly related to GDM and inci-
dent type 2 diabetes and could reflect early metabolic 
perturbations that contribute to the larger burden of 
GDM, incident type 2 diabetes, and other endocrine 
disorders in South Asians compared with white Euro-
peans.22–27 34 35 Elevated circulating arginine and larger 
ratios of arginine to ornithine, and citrulline to ornithine 
related to increased risk for GDM in South Asian women 
are signs of abnormal urea cycle metabolism.23 Increased 
arginine relative to ornithine levels can also indicate an 
impairment of nitric oxide synthesis and vasodilation 
properties, which has previously been documented in 
people with type 2 diabetes.23 Our study suggests that AAs 
in urea cycle may be candidate markers for predicting 
GDM, particularly among South Asian women.

Metabolite differences by ethnicity were robust after 
adjustments for age, height, pre-pregnancy BMI, gesta-
tional age at recruitment, family history of diabetes, 
smoking, and diet quality. However, differences in specific 
food groups may not have been fully captured in the diet 
quality score.12 For example, the higher amount of tryp-
tophan betaine in South Asian women may be explained 
by higher legume intake, while higher 3-methylhistidine 
in white Europeans by their larger protein and meat 
intake.12 38 However, ethnic-specific metabolite concen-
trations were robust to further adjustments for total 
intake of plant protein (online supplemental figure S6). 
There is a growing body of literature that physical activity 
and sedentary behavior are associated with various 
metabolite concentrations, including BCAAs, alanine, 
proline, and lactic acid.39 Nevertheless, further adjust-
ment for self-reported physical activity (data not shown) 
did not significantly change ethnic-specific metabolite 
concentrations in our study. Other lifestyle and genetic 
variations not explored herein may also contribute to 
observed differences.

Strengths and limitations
This study investigated the metabolic phenotype differ-
ences associated with GDM risk among South Asian 
women, an understudied population, as compared 
with white European women; an important strength 
compared with previous metabolomic studies (online 
supplemental tables S1 and S2). Both cohorts provided 
fasting measurements, used a validated and identical tech-
nical platform for metabolomic analyses with stringent 
QC and batch correction adjustment.21 We conducted 
internal cross-validation, and sensitivity analyses to 
demonstrate robustness and similar outcomes using 
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complementary univariate and multivariate statistical 
models. We adjusted our analyses for known important 
confounders; however, we cannot exclude the possibility 
of residual confounding from those that were unmea-
sured. Our study was limited as only polar ionic metab-
olites in serum filtrates were analyzed, but not fatty acids 
or lipids.40 Also, blood samples were collected at the same 
time as the OGTT was measured, and thus some degree 
of reverse causation is possible. Our analysis included 
62 serum metabolites measured in two birth cohorts; 
however, larger scale investigations may be needed to 
validate metabolic differences implicated in GDM risk in 
different ethnic populations.

CONCLUSION
In summary, we identified a panel of serum metabo-
lites involved in AA, carbohydrate, nitrogen, and lipid 
pathways that were altered with GDM. Although there 
was a large overlap in metabolites associated with GDM 
in South Asian and white European women, the larger 
ratios of glucose to glutamine, glucose to creatinine, argi-
nine to ornithine, and citrulline to ornithine in South 
Asians may reflect early metabolic remodeling that 
contributes to the greater burden of GDM among South 
Asians compared with white Europeans. Further work is 
necessary to understand if interventions to alter these 
metabolite ratios can help alleviate the burden of GDM. 
GDM research, prevention, diagnosis, and management 
predominately focus on glycemic control, but this may 
be an oversimplified framework in the era of precision 
medicine.

Author affiliations
1Department of Health Research Methods, Evidence, and Impact, McMaster 
University, Hamilton, Ontario, Canada
2Global and Population Health, Population Health Research Institute, Hamilton, 
Ontario, Canada
3Department of Medicine, McMaster University, Hamilton, Ontario, Canada
4Department of Chemistry and Chemical Biology, McMaster University, Hamilton, 
Ontario, Canada
5Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
6Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 
Hamilton, Ontario, Canada
7Canadian Collaborative Research Network, Brampton, Ontario, Canada

Acknowledgements  The authors thank the study participants who kindly donated 
their time, information, and serum samples.

Contributors  SSA, MG, RJdS (START study); SAA, KM, KT (FAMILY study) 
conceived and supervised the studies, including participant recruitment, data 
collection, and coordination of biospecimen collection. MS, SA and PB-M were 
involved in non-targeted metabolite profiling of plasma samples. CS conducted 
the statistical analysis and wrote the first draft of the manuscript, with data 
interpretation by CS, PB-M, MS, and SA. All authors edited the manuscript, 
reviewed the article, verified the underlying data, and approved the final version 
before submission. SSA is the guarantor of the work.

Funding  The South Asian Birth Cohort (START) study data were collected as part 
of a program funded by the Indian Council of Medical Research and in Canada by 
the Canadian Institutes of Health Research (grant INC-109205), and the Heart and 
Stroke Foundation (grant NA7283) with founding principal investigators: SSA, Anil 
Vasudevan, MG, KM, Anura Kurpad, KT, and Krishnamachari Srinivasan. The Family 
Atherosclerosis Monitoring in Early Life (FAMILY) study is funded by the Canadian 
Institutes of Health Research, the Population Health Research Institute, and the 

McMaster Children’s Hospital Foundation, with founding principal investigators: KM, 
SAA, Salim Yusuf, Jacqueline Bourgeois, Sarah McDonald, Matthew J McQueen, 
Richard Persadie, Barry Hunter, Janice Pogue, and KT. PB-M acknowledges the 
support from the Natural Sciences and Engineering Research Council of Canada 
and Genome Canada. SSA holds the Tier 1 Canada Research Chair in Ethnicity and 
Cardiovascular Disease (Canadian Institutes of Health Research) and the Michael G 
DeGroote Heart and Stroke Foundation Chair in Population Health (Heart and Stroke 
Foundation).

Disclaimer  The funders had no role in study design, data collection, analysis, 
decision to publish, or manuscript preparation.

Competing interests  None declared.

Patient consent for publication  Not required.

Ethics approval  This study involves human participants and was approved by 
the McMaster Hamilton Integrated Research Ethics Board for the South Asian Birth 
Cohort (START) study (HiREB 10-640) and the Family Atherosclerosis Monitoring in 
Early Life (FAMILY) study (HiREB 02-060). Participants gave informed consent to 
participate in the study before taking part.

Provenance and peer review  Not commissioned; externally peer reviewed.

Data availability statement  Data are available upon reasonable request.

Supplemental material  This content has been supplied by the author(s). It has 
not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been 
peer-reviewed. Any opinions or recommendations discussed are solely those 
of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and 
responsibility arising from any reliance placed on the content. Where the content 
includes any translated material, BMJ does not warrant the accuracy and reliability 
of the translations (including but not limited to local regulations, clinical guidelines, 
terminology, drug names and drug dosages), and is not responsible for any error 
and/or omissions arising from translation and adaptation or otherwise.

Open access  This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the 
use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Claudia Sikorski http://orcid.org/0000-0001-6228-7500
Katherine Morrison http://orcid.org/0000-0002-1737-256X
Sonia S Anand http://orcid.org/0000-0003-3692-7441

REFERENCES
	 1	 Plows JF, Stanley JL, Baker PN, et al. The pathophysiology of 

gestational diabetes mellitus. Int J Mol Sci 2018;19:3342–21.
	 2	 Law KP, Zhang H. The pathogenesis and pathophysiology of 

gestational diabetes mellitus: deductions from a three-part 
longitudinal metabolomics study in China. Clin Chim Acta 
2017;468:60–70.

	 3	 Anand SS, Gupta M, Teo KK, et al. Causes and consequences of 
gestational diabetes in South Asians living in Canada: results from a 
prospective cohort study. CMAJ Open 2017;5:E604–11.

	 4	 Lorenzo-Almorós A, Hang T, Peiró C, et al. Predictive and diagnostic 
biomarkers for gestational diabetes and its associated metabolic 
and cardiovascular diseases. Cardiovasc Diabetol 2019;18:140.

	 5	 Li Z, Cheng Y, Wang D, et al. Incidence rate of type 2 diabetes 
mellitus after gestational diabetes mellitus: a systematic 
review and meta-analysis of 170,139 women. J Diabetes Res 
2020;2020:3076463

	 6	 Khambule L, George JA. The role of inflammation in the 
development of GDM and the use of markers of inflammation in 
GDM screening. In: Guest P, ed. Reviews on biomarker studies of 
metabolic and metabolism-related disorders. Switzerland: Springer, 
2018: 217–42.

	 7	 Voaklander B, Rowe S, Sanni O, et al. Prevalence of diabetes in 
pregnancy among Indigenous women in Australia, Canada, New 
Zealand, and the USA: a systematic review and meta-analysis. 
Lancet Glob Health 2020;8:e681–98.

	 8	 Taylor K, Ferreira DLS, West J, et al. Differences in pregnancy 
metabolic profiles and their determinants between white European 
and South Asian women: findings from the born in Bradford cohort. 
Metabolites 2019;9:190.

http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0001-6228-7500
http://orcid.org/0000-0002-1737-256X
http://orcid.org/0000-0003-3692-7441
http://dx.doi.org/10.3390/ijms19113342
http://dx.doi.org/10.1016/j.cca.2017.02.008
http://dx.doi.org/10.9778/cmajo.20170027
http://dx.doi.org/10.1186/s12933-019-0935-9
http://dx.doi.org/10.1155/2020/3076463
http://dx.doi.org/10.1016/S2214-109X(20)30046-2
http://dx.doi.org/10.3390/metabo9090190


10 BMJ Open Diab Res Care 2022;10:e002733. doi:10.1136/bmjdrc-2021-002733

Epidemiology/Health services research

	 9	 Anand SS, Vasudevan A, Gupta M, et al. Rationale and design of 
South Asian birth cohort (START): a Canada-India collaborative 
study. BMC Public Health 2013;13:79.

	10	 Lamri A, Mao S, Desai D, et al. Fine-tuning of genome-wide 
polygenic risk scores and prediction of gestational diabetes in South 
Asian women. Sci Rep 2020;10:1–9.

	11	 Newgard CB. Metabolomics and metabolic diseases: where do we 
stand? Cell Metab 2017;25:43–56.

	12	 de Souza RJ, Shanmuganathan M, Lamri A, et al. Maternal 
diet and the serum metabolome in pregnancy: robust dietary 
biomarkers generalizable to a multiethnic birth cohort. Curr Dev Nutr 
2020;4:nzaa144.

	13	 Barzilay E, Moon A, Plumptre L, et al. Fetal one-carbon nutrient 
concentrations may be affected by gestational diabetes. Nutr Res 
2018;55:57–64.

	14	 Furse S, White SL, Meek CL, et al. Altered triglyceride and 
phospholipid metabolism predates the diagnosis of gestational 
diabetes in obese pregnancy. Mol Omics 2019;15:420–30.

	15	 Delplancke TDJ, de Seymour JV, Tong C, et al. Analysis of sequential 
hair segments reflects changes in the metabolome across the 
trimesters of pregnancy. Sci Rep 2018;8:1–2.

	16	 Walejko JM, Chelliah A, Keller-Wood M, et al. Diabetes leads to 
alterations in normal metabolic transitions of pregnancy as revealed 
by time-course metabolomics. Metabolites 2020;10:350.

	17	 Batchuluun B, Al Rijjal D, Prentice KJ, et al. Elevated medium-chain 
acylcarnitines are associated with gestational diabetes mellitus and 
early progression to type 2 diabetes and induce pancreatic β-cell 
dysfunction. Diabetes 2018;67:885–97.

	18	 Anderson SG, Dunn WB, Banerjee M, et al. Evidence that multiple 
defects in lipid regulation occur before hyperglycemia during the 
prodrome of type-2 diabetes. PLoS One 2014;9:e103217.

	19	 Morrison KM, Atkinson SA, Yusuf S, et al. The family atherosclerosis 
monitoring in earLY life (family) study: rationale, design, and baseline 
data of a study examining the earLY determinants of atherosclerosis. 
Am Heart J 2009;158:533–9.

	20	 Farrar D, Fairley L, Santorelli G, et al. Association between 
hyperglycaemia and adverse perinatal outcomes in South Asian 
and white British women: analysis of data from the born in Bradford 
cohort. Lancet Diabetes Endocrinol 2015;3:795–804.

	21	 Shanmuganathan M, Kroezen Z, Gill B. The maternal serum 
metabolome by multisegment injection-capillary electrophoresis-
mass spectrometry: a high-throughput platform and standardized 
data workflow for large-scale epidemiological studies. Nat Protoc 
2021;5:1–29.

	22	 Chen S, Akter S, Kuwahara K, et al. Serum amino acid profiles and 
risk of type 2 diabetes among Japanese adults in the Hitachi health 
study. Sci Rep 2019;9:1–9.

	23	 Cao Y-F, Li J, Zhang Z, et al. Plasma levels of amino acids related 
to urea cycle and risk of type 2 diabetes mellitus in Chinese adults. 
Front Endocrinol 2019;10:50.

	24	 Jäger S, Cuadrat R, Wittenbecher C, et al. Mendelian randomization 
study on amino acid metabolism suggests tyrosine as causal trait for 
type 2 diabetes. Nutrients 2020;12:3890.

	25	 Gunther SH, Khoo CM, Tai E-S, et al. Serum acylcarnitines and 
amino acids and risk of type 2 diabetes in a multiethnic Asian 
population. BMJ Open Diabetes Res Care 2020;8:e001315.

	26	 Kim SR, Lee YH, Lee SG, et al. Morning spot urine glucose-to-
creatinine ratios predict overnight urinary glucose excretion in 
patients with type 2 diabetes. Ann Lab Med 2017;37:9.

	27	 't Hart LM, Vogelzangs N, Mook-Kanamori DO, et al. Blood 
metabolomic measures associate with present and future 
glycemic control in type 2 diabetes. J Clin Endocrinol Metab 
2018;103:4569–79.

	28	 Kim MK, Han K, You SY, et al. Prepregnancy smoking and the risk of 
gestational diabetes requiring insulin therapy. Sci Rep 2020;10:1–8.

	29	 Hsu P-C, Lan RS, Brasky TM, et al. Metabolomic profiles of current 
cigarette smokers. Mol Carcinog 2017;56:594–606.

	30	 MetaboAnalyst 5.0. Available: https://www.metaboanalyst.ca/home.​
xhtml

	31	 Liu X, Gao J, Chen J, et al. Identification of metabolic biomarkers 
in patients with type 2 diabetic coronary heart diseases based on 
metabolomic approach. Sci Rep 2016;6:1–3.

	32	 Liu G, Lee DP, Schmidt E, et al. Pathway analysis of global 
metabolomic profiles identified enrichment of caffeine, energy, and 
arginine metabolism in smokers but not moist snuff consumers. 
Bioinform Biol Insights 2019;13:1177932219882961.

	33	 Xiao H-H, Sham T-T, Chan C-O, et al. A metabolomics study on 
the bone protective effects of a lignan-rich fraction from Sambucus 
williamsii Ramulus in aged rats. Front Pharmacol 2018;9:932.

	34	 Guasch-Ferré M, Hruby A, Toledo E, et al. Metabolomics in 
prediabetes and diabetes: a systematic review and meta-analysis. 
Diabetes Care 2016;39:833–46.

	35	 Long J, Yang Z, Wang L, et al. Metabolite biomarkers of type 2 
diabetes mellitus and pre-diabetes: a systematic review and meta-
analysis. BMC Endocr Disord 2020;20:1–7.

	36	 Jafari-Vayghan H, Varshosaz P, Hajizadeh-Sharafabad F, et al. A 
comprehensive insight into the effect of glutamine supplementation 
on metabolic variables in diabetes mellitus: a systematic review. Nutr 
Metab 2020;17:1–4.

	37	 Dudzik D, Zorawski M, Skotnicki M, et al. GC–MS based gestational 
diabetes mellitus longitudinal study: identification of 2-and 
3-hydroxybutyrate as potential prognostic biomarkers. J Pharm 
Biomed Anal 2017;144:90–8.

	38	 Wellington N, Shanmuganathan M, de Souza RJ, et al. Metabolic 
trajectories following contrasting prudent and Western diets from 
food provisions: identifying robust biomarkers of short-term changes 
in habitual diet. Nutrients 2019;11:2407.

	39	 Fukai K, Harada S, Iida M, et al. Metabolic profiling of total physical 
activity and sedentary behavior in community-dwelling men. PLoS 
One 2016;11:e0164877.

	40	 Azab SM, de Souza RJ, Teo KK, et al. Serum nonesterified fatty 
acids have utility as dietary biomarkers of fat intake from fish, fish 
oil, and dairy in women. J Lipid Res 2020;61:933–44.

	41	 Anand SS, Razak F, Davis AD, et al. Social disadvantage and 
cardiovascular disease: development of an index and analysis of 
age, sex, and ethnicity effects. Int J Epidemiol 2006;35:1239–45.

http://dx.doi.org/10.1186/1471-2458-13-79
http://dx.doi.org/10.1038/s41598-020-65360-y
http://dx.doi.org/10.1016/j.cmet.2016.09.018
http://dx.doi.org/10.1093/cdn/nzaa144
http://dx.doi.org/10.1016/j.nutres.2018.04.010
http://dx.doi.org/10.1039/c9mo00117d
http://dx.doi.org/10.1038/s41598-017-18317-7
http://dx.doi.org/10.3390/metabo10090350
http://dx.doi.org/10.2337/db17-1150
http://dx.doi.org/10.1371/journal.pone.0103217
http://dx.doi.org/10.1016/j.ahj.2009.07.005
http://dx.doi.org/10.1016/S2213-8587(15)00255-7
http://dx.doi.org/10.1038/s41598-019-43431-z
http://dx.doi.org/10.3389/fendo.2019.00050
http://dx.doi.org/10.3390/nu12123890
http://dx.doi.org/10.1136/bmjdrc-2020-001315
http://dx.doi.org/10.3343/alm.2017.37.1.9
http://dx.doi.org/10.1210/jc.2018-01165
http://dx.doi.org/10.1038/s41598-020-70873-7
http://dx.doi.org/10.1002/mc.22519
https://www.metaboanalyst.ca/home.xhtml
https://www.metaboanalyst.ca/home.xhtml
http://dx.doi.org/10.1038/srep30785
http://dx.doi.org/10.1177/1177932219882961
http://dx.doi.org/10.3389/fphar.2018.00932
http://dx.doi.org/10.2337/dc15-2251
http://dx.doi.org/10.1186/s12902-020-00653-x
http://dx.doi.org/10.1186/s12986-020-00503-6
http://dx.doi.org/10.1186/s12986-020-00503-6
http://dx.doi.org/10.1016/j.jpba.2017.02.056
http://dx.doi.org/10.1016/j.jpba.2017.02.056
http://dx.doi.org/10.3390/nu11102407
http://dx.doi.org/10.1371/journal.pone.0164877
http://dx.doi.org/10.1371/journal.pone.0164877
http://dx.doi.org/10.1194/jlr.D120000630
http://dx.doi.org/10.1093/ije/dyl163

	Serum metabolomic signatures of gestational diabetes in South Asian and white European women
	Abstract
	Introduction﻿﻿
	Research design and methods
	Study participants
	GDM classification
	Serum metabolomics analysis by ﻿multisegment injection-capillary electrophoresis-mass spectrometry﻿
	Statistical analysis
	Pathway analysis
	Sensitivity analyses

	Results
	Participant characteristics
	Association between serum metabolites and GDM
	Pathway analysis
	Ethnic-specific differences
	Sensitivity analysis

	Discussion
	Ethnic-specific differences
	Strengths and limitations

	Conclusion
	References


