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ABSTRACT: Traditional methods for cell cycle stage classification rely heavily on fluorescence microscopy to monitor nuclear
dynamics. These methods inevitably face the typical phototoxicity and photobleaching limitations of fluorescence imaging. Here, we
present a cell cycle detection workflow using the principle of phase imaging with computational specificity (PICS). The proposed
method uses neural networks to extract cell cycle-dependent features from quantitative phase imaging (QPI) measurements directly.
Our results indicate that this approach attains very good accuracy in classifying live cells into G1, S, and G2/M stages, respectively.
We also demonstrate that the proposed method can be applied to study single-cell dynamics within the cell cycle as well as cell
population distribution across different stages of the cell cycle. We envision that the proposed method can become a nondestructive
tool to analyze cell cycle progression in fields ranging from cell biology to biopharma applications.
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The cell cycle1 is an orchestrated process that leads to
genetic replication and cellular division. This precise,

periodic progression is crucial to a variety of processes, such as
cell differentiation, organogenesis, senescence, and disease.
Significantly, DNA damage can lead to cell cycle alteration and
serious afflictions, including cancer.2 Conversely, understand-
ing the cell cycle progression as part of the cellular response to
DNA damage has emerged as an active field in cancer biology.3

Morphologically, the cell cycle can be divided into
interphase and mitosis. The interphase1 can further be divided
into three stages: G1, S, and G2. Since the cells are preparing
for DNA synthesis and mitosis during G1 and G2 respectively,
these two stages are also referred to as the “gaps” of the cell
cycle.4 During the S stage, the cells are synthesizing DNA, with
the chromosome count increasing from 2N to 4N.
Traditional approaches for distinguishing different stages

within the cell cycle rely on fluorescence microscopy5 to
monitor the activity of proteins that are involved in DNA
replication and repair, e.g., proliferating cell nuclear antigen
(PCNA).6 A variety of signal processing techniques, including
support vector machine (SVM),7 intensity histogram and

intensity surface curvature,8 level-set segmentation,9 and k-
nearest neighbor,10 have been applied to fluorescence intensity
images to perform classification. In recent years, with the rapid
development of parallel-computing capability11 and deep
learning algorithms,12 convolutional neural networks have
also been applied to fluorescence images of single cells for cell
cycle tracking.13,14 Since all these methods are based on
fluorescence microscopy, they inevitably face the associated
limitations, including photobleaching, chemical, and photo-
toxicity, weak fluorescent signals that require large exposures,
as well as nonspecific binding. These constraints limit the
applicability of fluorescence imaging to studying live cell
cultures over large temporal scales.15
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Quantitative phase imaging (QPI)16 is a family of label-free
imaging methods that has gained significant interest in recent
years due to its applicability to both basic and clinical
science.17 Since the QPI methods utilize the optical path
length as intrinsic contrast, the imaging is noninvasive and,
thus, allows for monitoring live samples over several days
without concerns of degraded viability.17 As the refractive
index is linearly proportional to the cell density,18 independent
of the composition, QPI methods can be used to measure the
nonaqueous content (dry mass) of the cellular culture.19 In the
past two decades, QPI has also been implemented as a label-
free tomography approach for measuring 3D cells and
tissues.20−27 These QPI measurements directly yield bio-
physical parameters of interest in studying neuronal activity,28

quantifying subcellular contents,29 as well as monitoring cell
growth along the cell cycle.30−32 Recently, with the parallel
advancement in deep learning, convolutional neural networks
were applied to QPI data as universal function approximators33

for various applications.34 It has been shown that deep learning
can help computationally substitute chemical stains for cells35

and tissues,36 extract biomarkers of interest,37 enhance imaging
quality,38 as well as solve inverse problems.39

In this article, we present a new methodology for cell cycle
detection that utilizes the principle of phase imaging with
computational specificity (PICS).37,40 Our approach combines
spatial light interference microscopy (SLIM),41 a highly
sensitive QPI method, with recently developed deep learning
network architecture E-U-Net.42 We demonstrate on live HeLa
cell cultures that the proposed method classifies cell cycle
stages solely using SLIM images as input. The signals from the
fluorescent ubiquitination-based cell cycle indicator
(FUCCI)43 were only used to generate ground truth
annotations during the deep learning training stage. Unlike
previous methods that perform single-cell classification based
on bright-field and dark-field images from flow cytometry44 or

phase images from ptychography,45 our method can classify all
adherent cells in the field of view and perform longitudinal
studies over many cell cycles. Evaluated on a test set consisting
of 408 unseen SLIM images (over 10 000 cells), our method
achieves F-1 scores over 0.75 for both the G1 and S stage. For
the G2/M stage, we obtained a lower score of 0.6, likely due to
the round cells going out of focus in the M-stage. Using the
classification data outputted by our method, we created binary
maps that were used back into the QPI (input) images to
measure single cell area, dry mass, and dry mass density for
large cell populations in the three cell cycle stages. Because our
SLIM imaging is nondestructive, all individual cells can be
monitored over many cell cycles without loss of viability. We
envision that our proposed method can be extended to other
QPI imaging modalities and different cell lines, even those of
different morphology, after proper network retraining for high
throughput and nondestructive cell cycle analysis, thus
eliminating the need for cell synchronization.

■ RESULTS
The experiment setup is illustrated in Figure 1. We utilized
spatial light interference microscopy (SLIM)41 to acquire the
quantitative phase map of live HeLa cells prepared in six-well
plates. By adding a QPI module to an existing phase contrast
microscope, SLIM modulates the phase delay between the
incident field and the scattered field, and an optical path length
map is then extracted from four intensity images via phase-
shifting interferometry.16 Due to the common-path design of
the optical system, we were able to acquire both the SLIM
signals and epi-fluorescence signals of the same field of view
(FOV) using a shared camera. Figure 1B shows the
quantitative phase map of live HeLa cell cultures using SLIM.
To obtain an accurate classification between the three stages

within one cell cycle interphase (G1, S, and G2), we used
HeLa cells that were encoded with fluorescent ubiquitination-

Figure 1. Schematic of the imaging system. (A) The SLIM module was connected to the side port of an existing phase contrast microscope. This
setup allows us to take colocalized SLIM images and fluorescence images by switching between transmission and reflection illumination. (B)
Measurements of HeLa cells. (C) mCherry fluorescence signals. (D) mVenus fluorescence signals. (E) Cell cycle stage masks generated by using
adaptive thresholding to combine information from all three channels. Scale bar is 100 μm.
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based cell cycle indicator (FUCCI).43 FUCCI employs
mCherry, an hCdt1-based probe, and mVenus, an hGem-
based probe, to monitor proteins associated with the
interphase. FUCCI transfected cells produce a sharp triple
color-distinct separation of G1, S, and G2/M. Figure 1C and
1D demonstrate the acquired mCherry signal and mVenus
signal, respectively. We combined the information from all
three channels via adaptive thresholding to generate a cell cycle
stage mask (Figure 1E). The procedure of sample preparation
and mask generation is presented in detail in the Materials and
Methods section and Figure S1.
Deep Learning. With the SLIM images as input and the

FUCCI cell masks as ground truth, we formulated the cell
cycle detection problem as a semantic segmentation task and
trained a deep neural network to infer each pixel’s category as
one of the “G1”, “S”, “G2/M”, or background labels. Inspired
by the high accuracy reported in previous works,42 we used the
E-U-Net (Figure 2A) as our network architecture. The E-U-
Net architecture upgraded the classic U-Net46 by swapping its
original encoder layers with a pretrained EfficientNet.47 Since
the EfficientNet was already trained on the massive ImageNet
data set, it provided more sophisticated initial weights than the
randomly initialized layers from the scratch U-Net as in
previous approaches.37 This transfer learning strategy enables
the model to utilize “knowledge” of feature extraction learned
from the ImageNet data set, achieving faster convergence and
better performance.42 Since EfficientNet was designed using a
compound scaling coefficient, it is still relatively small in size.
Our trained network used EfficientNet-B4 as the encoder and
contained 25 million trainable parameters in total.
We trained our E-U-Net with 2046 pairs of SLIM images

and ground truth masks for 120 epochs. The network was
optimized by an Adam optimizer48 against the sum of the
DICE loss49 and the categorical focal loss.50 After each epoch,

we computed the model’s loss and overall F1-score on both the
training set and the validation set, which consists of 408
different image pairs (Figure 2B,C). The weights of parameters
that make the model achieve the lowest validation loss were
selected and used for all verification and analysis. The training
procedure is described in the Materials and Methods.

PICS Performance. After training the model, we evaluated
its performance on 408 unseen SLIM images from the test data
set. The test data set was selected from wells that are different
from the ones used for network training and validation during
the experiment. Figure 3A shows randomly selected images
from the test data set. Figure 3B and 3C show the
corresponding ground truth cell cycle masks and the PICS
cell cycle masks, respectively. It can be seen that the trained
model was able to identify the cell body accurately.
We reported the raw performance of our PICS methods in

Figure S2, with pixel-wise precision, recall, and F1-score for
each class. However, we noticed that these metrics did not
reflect the performance in terms of the number of cells. Thus,
we performed a postprocessing step on the inferred masks to
enforce particle-wise consistency, as detailed in the Materials
and Methods and Figure S3. After this postprocessing step, we
evaluated the model’s performance on the cellular level and
produced the cell count-based results shown in Figure 4.
Figure 4A shows the histogram of cell body area for cells in
different stages, derived from both the ground truth masks and
the prediction masks. Figure 4B and 4C show similar
histograms of cellular dry mass and dry mass density,
respectively. The histograms indicated that there is a close
overlap between the quantities derived from the ground truth
masks and the prediction masks. The cell-wise precision, recall,
and F-1 score for all three stages are shown in Figure 4D. Each
entry is normalized with respect to the ground truth number of
cells in that stage. Our deep learning model achieved over 0.75

Figure 2. PICS training procedure. (A) We used a network architecture called the E-U-Net that replaces the encoder part of a standard U-Net with
the pretrained EfficientNet-B4. Within the encoder path, the input images were downsampled 5 times through 7 blocks of encoder operations. Each
encoder operation consists of multiple MBConvX modules that consist of convolutional layers, squeeze and excitation, and residual connections.
The decoder path consists of concatenation, convolution and upsampling operations. (B) The model loss values on the training data set and the
validation data set after each epoch. We picked the model checkpoint with the lowest validation loss as our final model and used it for all analysis.
(C) The model’s average F-1 score on the training data set and the validation data set after each epoch.
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F-1 scores for both the G1 stage and the S stage, and a 0.6 F-1
score for the G2/M stage. The lower performance for the G2/
M stage is likely due to the round cells going out of focus
during mitosis. To better compare the performance of our
PICS method with the previously reported works, we produced
two more confusion matrices (Figure S4) by merging labels to
quantify the accuracy of our method in classifying cells into
[“G1/S”, “G2/M”] and [“G1”, “S/G2/M”]. For all the
classification formulations, we also computed the overall
accuracy. Compared to the overall accuracy of 0.9113 from a
method that used convolutional neural networks on

fluorescence image pairs to classify single cells into “G1/S”
or “G2”, our method achieved a comparable overall accuracy of
0.89 (Figure S4A). Compared to the F1-score of 0.94 and 0.88
for “G1” and “S/G2” respectively from a method14 that used
convolution neural networks on fluorescence images, our
method achieved a lower F-1 score for “G1” and a comparable
F-1 score for “S/G2/M” (Figure.S4B). Compared to the
method44 that classifies single-cell images from flow cytometry,
our method achieved a lower F-1 score for “G1” and “G2/M”
and a higher F-1 score for “S”.
We calculated the means and standard deviations of the best

fit Gaussian for the area, dry mass, and dry mass density
distributions for populations of cells in each of the three stages:
G1 (N = 4430 cells), S (N = 6726 cells), and G2/M (N = 1865
cells). The standard deviation divided by the mean, σ/μ, is a
measure of the distribution spread. These values are indicated
in each panel of Figures 4A−C and summarized in Figure 4E
(the top parameter was from the ground truth population and
the bottom parameter was from the PICS prediction
population). We note that the G1 phase is associated with
distributions that are most similar to a Gaussian. It is
interesting that the S-phase exhibits a bimodal distribution in
both area and dry mass, indicating the presence of a
subpopulation of smaller cells at the end of G1 phase.
However, the dry mass density even for this bimodal
population becomes monomodal, suggesting that the dry
mass density is a more uniformly distributed parameter,
independent of cell size and weight. Similarly, the G2/M area
and dry mass distributions are skewed toward the origin, while
the dry mass density appears to have a minimum value of
∼0.0375 pg/μm2 (within the orange rectangles). Interestingly,
early studies of fibroblast spreading also found that there is a
minimum value for the dry mass density that cells seem to
exhibit.51

PICS Application. The PICS method can be applied to
track the cell cycle transition of single cells, nondestructively.

Figure 3. PICS results on the test data set. (A) SLIM images of HeLa
cells from the test data set. (B) Ground truth cell cycle phase masks.
(C) PICS-generated cell cycle phase masks. Scale bar is 100 μm.

Figure 4. PICS performance on the test data set. (A−C) Histograms of cell area, dry mass and dry mass density for cells in G1, S, and G2/M,
generated by the ground truth mask (in blue) and by PICS (in green). A Gaussian distribution (in blue) was fitted to the ground truth data and
another Gaussian distribution (in red) was fitted to the PICS results. (D) Confusion matrix for PICS inference on the test data set. (E) Mean,
standard deviation and their ratio (underlined for visibility) of cell area, dry mass and dry mass density obtained from the fitted Gaussian
distributions. The top number is the fitted parameter on the ground truth population, while the bottom number is fitted on the PICS prediction
population.
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Figure 5A shows the time-lapse SLIM measurements and PICS
inference of HeLa cells. The time increment was roughly 2 h
between two measurements and the images at t = 2, 6, 10, and
14 h were displayed in Figure 5A. Our deep learning model has
not seen any of these SLIM images during training. The
comparison between the SLIM images and the PICS inference
showed that the deep learning model produced accurate cell
body masks and assigned viable cell cycle stages. We showed in
Figure 5B,C the results of manually tracking two cells in this
field of view across 16 h and using the PICS cell cycle masks to
compute their cellular area and dry mass. Figure 5B
demonstrates the cellular area and dry mass change for the

cell marked by the red rectangle. We observed an abrupt drop
in both the area and dry mass around t = 8 h, at which point
the mother cell divides into two daughter cells. The PICS cell
cycle mask also captured this mitosis event as it progressed
from the “G2/M” label to the “G1” label. We observed a
similar drop in Figure 5C after 14 h due to mitosis of the cell
marked by the orange rectangle. Figure 5C also shows that the
cell continues growing before t = 14 h and the PICS cell cycle
mask progressed from the “S” label to the “G2/M” label
correspondingly. Note that this long-term imaging is only
possible due to the nondestructive imaging allowed by SLIM.
It is possible that the PICS inference will produce inaccurate

Figure 5. PICS on time lapse of FUCCI-HeLa cells. (A) SLIM images and PICS inference of cells measured at 2, 6, 10, and 14 h. The time interval
between imaging is roughly 2 h. We manually tracked two cells (marked in red and orange). (B) Cell area and dry mass change of the cell in the red
rectangle, across 16 h. These values were obtained via PICS inferred masks. We can observe an abrupt drop in cell dry mass and area as the cell
divides after around 8 h. (C) Cell area and dry mass change of the cell in orange rectangle, across 16 h. We can observe that the cell continues
growing in the first 14 h as it goes through G1, S, and G2 phase. It divides between hour 14 and hour 16, with an abrupt drop in its dry mass and
cell area. Scale bar is 100 μm.

Figure 6. Statistical analysis from PICS inference on the test data set. (A) Histogram and box plot of cell area. The p-value returned from Welch’s t
test indicated statistical significance. (B) Histogram and box plot of cell dry mass. The p-value returned from Welch’s t test indicated statistical
significance. (C) Histogram and box plot of cell dry mass density. The p-value returned from Welch’s t test indicated statistical significance
comparing cells in G1 and S. The box plot and Welch’s t test are computed on 20% of all data points in G1, S, and G2/M, randomly sampled. The
sample size is 884 for G1, 1345 for S, and 373 for G2/M. Outliers are omitted from the box plot. (***p < 0.001).
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stage label for some frames. For instance, PICS inferred label
“G2/M” for the cell marked by the blue rectangle at t = 2, 10 h,
but inferred label “S” for the same cell at t = 6 h. Such
inconsistency can be manually corrected when the user made
use of the time-lapse progression of the measurement as well as
the cell morphology measurements from the SLIM image.
We also demonstrated that the PICS method can be used to

study the statistical distribution of cells across different stages
within the interphase. The PICS inferred cell area distribution
across G1, S, and G2/M is plotted in Figure 6A, whereby a
clear shift between cellular area in these stages can be
observed. We performed Welch’s t test on these three groups
of data points. To avoid the impact on p-value due to the large
sample size, we randomly sampled 20% of all data points from
each group and performed the t test on these subsets instead.
After sampling, we have 884 cells in G1, 1345 cells in S, and
373 cells in G2/M. The p-values are less than 10−3, indicating
statistical significance. The same analysis was performed on the
cell dry mass and cell dry mass density, as shown in Figures
6B,C. We observed a clear distinction between cell dry mass in
S and G2/M as well as between cell dry mass density in G1
and S. These results agree with the general expectation that
cells are metabolically active and grow during G1 and G2.
During S, the cells remain metabolically inactive and replicate
their DNA. Since the DNA dry mass only accounts for a very
small factor of the total cell dry mass,32 the distinction between
G1 cell dry mass and S cell dry mass is less obvious than the
distinction between S cell dry mass and G2/M cell dry mass.
We also noted that our observation on the cell dry mass
density distribution agrees with previous findings.31

■ DISCUSSION
We proposed a PICS-based cell cycle stage classification
workflow for fast, label-free cell cycle analysis on adherent cell
cultures and demonstrated it on the HeLa cell line. Our new
method utilizes trained deep neural networks to infer an
accurate cell cycle mask from a single SLIM image. The
method can be applied to study single-cell growth within the
cell cycle as well as to compare the cellular parameter
distributions between cells in different cell cycle phases.
Compared to many existing methods of cell cycle

detection,7−10,13,14,44,45,52 our method yielded comparable
accuracy for at least one stage in the cell cycle interphase.
The errors in our PICS inference can be corrected when the
time-lapse progression and QPI measurements of cell
morphology were taken into consideration. Due to the
difference in the underlying imaging modality and data analysis
techniques, we believe that our method has three main
advantages. First, our method uses a SLIM module, which can
be installed as an add-on component to a conventional phase
contrast microscope. The user experience remains the same as
using a commercial microscope. Significantly, due to the
seamless integration with the fluorescence channel on the same
field of view, the instrument can collect the ground truth data
very easily, while the annotation is automatically performed via
thresholding, rather than manually. Second, our method does
not rely on fluorescence signals as input. On the contrary, our
method is built upon the capability of neural networks to
extract label-free cell cycle markers from the quantitative phase
map. Thus, the method can be applied to live cell samples over
long periods of time without concerns of photobleaching or
degraded cell viability due to chemical toxicity, opening up
new opportunities for longitudinal investigations. Third, our

approach can be applied to large sample sizes consisting of
entire fields of views and hundreds of cells. Since we
formulated the task as semantic segmentation and trained
our model on a data set containing images with various cell
counts, our method worked with FOVs containing up to
hundreds of cells. Also, since the U-Net46 style neural network
is fully convolutional, our trained model can be applied to
images with arbitrary size. Consequently, the method can
directly extend to other cell data sets or experiments with
different cell confluences, as long as the magnification and
numerical aperture stay the same. Since the input imaging data
is nondestructive, we can image large cell populations over
many cell cycles and study cell cycle phase-specific parameters
at the single cell scale. As an illustration of this capability, we
measured distributions of cell area, dry mass and dry mass
density for populations of thousands of cells in various stages
of the cell cycle. We found that the dry mass density
distribution drops abruptly under a certain value for all cells,
which indicates that live cells require a minimum dry mass
density.
During the development of our method, we followed

standard protocols in the community,53 such as preparing a
diverse enough training data set, properly splitting the training,
validation and test data set, and closely monitoring the model
loss convergence to ensure that our model can generalize. Our
previous studies showed that, with high-quality ground truth
data, the deep learning-based methods applied to quantitative
phase images are generalizable to predict cell viability54 and
nuclear cytoplasmic ratio37 on multiple cell lines. Thus,
although we only demonstrated our method on HeLa cells
due to the limited availability of cell lines engineered with
FUCCI(CA)2, we believe PICS-based instruments are well-
suited for extending our method to different cell lines and
imaging conditions with minimal effort to perform extra
training. Our typical training takes approximately 20 h, while
the inference is performed within 65 ms per frame.37 Thus, we
envision that our proposed workflow is a valuable alternative to
the existing methods for cell cycle stage classification and
eliminates the need for cell synchronization.

■ MATERIALS AND METHODS
FUCCI Cell and HeLa Cell Preparation. HeLa/FUCCI-

(CA)243 cells were acquired from the RIKEN cell bank and
kept frozen in a liquid nitrogen tank. Prior to the experiments,
we thawed and cultured cells into T75 flasks in Dulbecco’s
Modified Eagle Medium (DMEM with low glucose)
containing 10% fetal bovine serum (FBS) and incubated in
37 °C with 5% CO2. When the cells reached 70% confluency,
the flask was washed with phosphate-buffered saline (PBS) and
trypsinized with 4 mL of 0.25% (w/v) Trypsin EDTA for 4
min. When the cells started to detach, they were suspended in
4 mL of DMEM and passaged onto a glass-bottom six-well
plate. HeLa cells were then imaged after 2 days of growth.

SLIM Imaging. The SLIM system architecture is shown in
Figure 1A. We attached a SLIM module (CellVista SLIM Pro;
Phi Optics) to the output port of a phase contrast microscope.
Inside the SLIM module, the spatial light modulator matched
to the back focal plane of the objective controlled the phase
delay between the incident field and the reference field. We
recorded four intensity images at phase shifts of 0, π/2, π, and
3π/2 and reconstructed the quantitative phase map of the
sample. We measured both the SLIM signal and the
fluorescence signal with a 10×/0.3 NA objective. The camera
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we used was Andor Zyla with a pixel size of 6.5 μm. The
exposure time for SLIM channel and fluorescence channel was
set to 25 and 500 ms, respectively. The scanning of the
multiwell plate was performed automatically via a control
software developed in-house.37,55 For each well, we scanned an
area of 7.5 × 7.5 mm2, which took approximately 16 min for
the SLIM and the fluorescence channels. The data set we used
in this study were collected over 20 h, with approximately 30
min interval between each round of scanning.
Cellular Dry Mass Computation. We recovered the dry

mass as

λ
πγ

ϕ=m x y x y( , )
2

( , )
(1)

using the same procedure outlined in previous works.18,19 λ =
550 nm is the central wavelength; γ = 0.2 mL/g is the specific
refraction increment, corresponding to the average of reported
values;18,56 and ϕ(x,y) is the measured phase. Eq 1 provides
the dry mass density at each pixel, and we integrated over the
region of interest to get the cellular dry mass.
Ground Truth Cell Cycle Mask Generation. To prepare

the ground truth cell cycle masks for training the deep learning
models, we combined information from the SLIM channel and
the fluorescence channels (Figure S1A) by applying adaptive
thresholding (Figure S1B). All the code was implemented in
Python, using the scikit-image library. We first applied the
adaptive thresholding algorithm on the SLIM images to
generate accurate cell body masks. Then we applied the
algorithm on the mCherry fluorescence images and mVenus
fluorescence images to get the nuclei masks that indicate the
presence of the fluorescence signals. To ensure the quality of
the generated masks, we first applied the adaptive thresholding
algorithm on a small subset of images with a range of possible
window sizes. Then we manually inspected the quality of the
generated masks and selected the best window size to apply to
the entire data set. After getting these three masks (cell body
mask, mCherry FL mask, and mVenus FL mask), we took the
intersection among them. Following the FUCCI color readout
detailed in ref 43, a presence of mCherry signal alone indicates
the cell is in G1 stage and a presence of mVenus signal alone
indicates the cell is in S stage. The overlapping of both signals
indicates the cell is in G2 or M stage. Since the cell mask is
always larger than the nuclei mask, we filled in the entire cell
area with the corresponding label. To do so, we performed
connected component analysis on the cell body mask and
counted the number of pixels marked by each fluorescence
signal in each cell body and took the majority label. We
handled the case of no fluorescence signal by automatically
labeling them as S because both fluorescence channels yield
low-intensity signals only at the start of the S phase.43 Before
using the mask for analysis, we also performed traditional
computer vision operations, e.g., hole filling. on the generated
masks to ensure the accuracy of computed dry mass and cell
area (Figure S1C).
Deep Learning Model Development. We used the E-U-

Net architecture42 to develop the deep learning model that can
assign a cell cycle phase label to each pixel. The E-U-Net
upgraded the classic U-Net46 architecture by swapping its
encoder component with a pretrained EfficientNet.47 Com-
pared to previously reported transfer-learning strategies, e.g.,
utilizing a pretrained ResNet57 for the encoder part, we believe
the E-U-Net architecture is superior since the pretrained
EfficientNet attains higher performance on the benchmark data

set while remaining compact due to the compound scaling
strategy.47

The EfficientNet backbone we ended up using for this
project was EfficientNet-B4 (Figure 2A). The entire E-U-Net-
B4 model contains around 25 million trainable parameters,
which is smaller compared to the number of parameters from
the stock U-Net46 and other variations.58 We trained the
network with 2046 image pairs in the training data set and 408
image pairs in the validation data set. Each image contains 736
× 736 pixels. The model was optimized using an Adam
optimizer48 with default parameters against the sum of the
DICE loss49 and the categorical focal loss.50 The DICE loss
was designed to maximize the dice coefficient D (eq 2)
between the ground truth label (gi) and prediction label (pi) at
each pixel. It has been shown in previous works that DICE loss
can help tackle class imbalance in the data set.59 Besides DICE
loss, we also utilized the categorical focal loss FL(pt) (eq 3).
The categorical focal loss extended the cross entropy loss by
adding a modulating factor (1 − pt)

γ. It helped the model to
focus more on wrong inferences by preventing easily classified
pixels dominating the gradient. We tuned the ratio between
these two loss values and launched multiple training sessions.
In the end we found the model trained against an equally
weighted DICE loss and categorical focal loss gave the best
results.

=
∑

∑ + ∑( )
D

pg

p g

2 i
N

i i

i
N

i i
N

i
2 2

(2)

= − − γp p pFL( ) (1 ) log( )t t t (3)

The model was trained for 120 epochs, taking over 18 h on an
Nvidia V-100 GPU. For learning rate scheduling, we followed
previous works60 and implemented learning rate warm-up and
cosine learning rate decay. During the first five epochs of
training, the learning rate will increase linearly from 0 to 4 ×
10−3. After that, we decreased the learning rate at each epoch
following the cosine function. On the basis of our experiments,
we ended up relaxing the learning rate decay such that the
learning rate in the final epoch will be half of the initial learning
rate instead of zero.60 We plotted the model’s loss value on
both the training data set and the validation data set after each
epoch (Figure 2B) and picked the model checkpoint with the
lowest validation loss as our final model to avoid overfitting. All
the deep learning code was implemented using Python 3.8 and
TensorFlow 2.3.

Postprocessing. We evaluated the performance of our
trained E-U-Net on an unseen test data set and reported the
precision, recall, and F-1 score for each category: G1, S, G2/M,
and background, respectively (Figure S2). The pixel-wise
confusion matrix indicated our model achieved high perform-
ance in segmenting the cell bodies from the background.
However, since this pixel-wise evaluation overlooked the
biologically relevant instance, i.e., the number of cells in each
cell cycle stage, we performed an extra step of postprocessing
to evaluate that.
We first performed connected-component analysis on the

raw model predictions. Within each connected component, we
applied a simple voting strategy where the majority label will
take over the entire cell. Figure S3A,B illustrate this process.
We believe enforcing particle-wise consistency, in this case, is
justified because it is impossible for a single cell to have two
cell cycle stages at the same time and that our model is highly
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accurate in segmenting cell bodies, with over 0.96 precision
and recall (Figure S2). We then computed the precision, recall,
and F-1 score for each category on the cellular-level. For each
particle in the ground truth, we used its centroid (or the
median coordinates if the centroid falls out of the cell body) to
determine if the predicted label matches the ground truth. The
cellular-wise metrics were reported in Figure 4B.
Before using the postprocessed prediction masks to compute

the area and dry mass of each cell, we also performed hole-
filling as we did for the ground truth masks to ensure the values
are accurate (Figure S3C).
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