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Simple Summary: Elucidating the role of extracellular vesicles (EVs) in the communication mecha-
nisms between cancer and endothelial cells (ECs) within the tumor microenvironment is an exciting
challenge. At the same time, due to their ability to convey bioactive molecules, EVs may be potentially
relevant from a therapeutic perspective for diverse vascular pathologies.

Abstract: Intercellular communication is a key biological mechanism that is fundamental to maintain
tissue homeostasis. Extracellular vesicles (EVs) have emerged as critical regulators of cell–cell
communication in both physiological and pathological conditions, due to their ability to shuttle
a variety of cell constituents, such as DNA, RNA, lipids, active metabolites, cytosolic, and cell
surface proteins. In particular, endothelial cells (ECs) are prominently regulated by EVs released
by neighboring cell types. The discovery that cancer cell-derived EVs can control the functions of
ECs has prompted the investigation of their roles in tumor angiogenesis and cancer progression. In
particular, here, we discuss evidence that supports the roles of exosomes in EC regulation within
the tumor microenvironment and in vascular dysfunction leading to atherosclerosis. Moreover, we
survey the molecular mechanisms and exosomal cargoes that have been implicated in explanations
of these regulatory effects.

Keywords: endothelial cells; exosomes; extracellular vesicles; miRNA; angiogenesis; cancer;
atherosclerosis; diabetes

1. Introduction

“The music that the nucleus hears” is how Pierre McCrea portrays cell–cell commu-
nication [1]. Indeed, the cellular transcriptomic profile, in any tissue context, is largely
the product of extracellular signals dispatched by neighboring cells. Thereby, various
mechanisms of cell–cell communication are key regulators of cell behavior and metabolism,
beginning at the stage of embryonic development to adult tissue homeostasis, and their
defects are accountable for human diseases [2].

It is pivotal to reckon the multi-factorial complexity of cell–cell signaling modes,
including factors that act at a short distance (paracrine and synaptic signaling), as op-
posed to long-range endocrine signaling. In addition, secreted ligands may self-regulate
signal-emanating cells, known as autocrine regulation [3], or deploy intracrine activity
independent of their extracellular release [4]. Cells can also communicate by contact, as
in the case of juxtacrine signaling between membrane-bound ligands and cognate recep-
tors on the surface of adjacent cells. Notably, transmembrane molecules can exert dual
functions, acting both as ligands and as receptors, with bi-directional signals exchanged
between neighboring cells, and therefore greatly increasing the plasticity of intercellular
communications. In particular, the term “reverse signaling” refers to the setting in which
a known membrane-bound ligand also functions as a receptor, triggering intracellular
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pathways in the expressing cell. Considerable evidence supports this kind of signaling
mechanism, especially mediated by semaphorin [5] and ephrin [6] family members.

More recently, extracellular vesicles (EVs) have emerged as novel major players in cell–
cell communication. They are released by almost all cell types, including endothelial and
epithelial cells, blood cells, tumor cells, dendritic cells, and neurons, in both physiological
and pathological conditions [7]. EVs have been isolated from diverse body fluids, for
example, blood, saliva, semen, seminal plasma, breast milk, synovial fluid, nasal secretion,
urine, amnion, ascites, and cerebrospinal fluids [8].

EV secretion plays an important role in cellular communication, thereby influencing
the behavior of the cells with which they interact, by conveying material and information
from donor cells. Here, we review the most recent evidence about communication pathways
mediated by exosomes between endothelial cells and the surrounding cell populations,
with a special focus on the tumor microenvironment, and on pathological conditions such
as diabetes and atherosclerosis.

2. Exosomes and Microvesicles

Based on the current knowledge about their biogenesis, EVs can be subdivided into
two main categories, i.e., exosomes and microvesicles, with the latter also including apop-
totic bodies and oncosomes that are the largest known extracellular vesicles [9]. The term
exosome was initially applied to vesicles of unknown origin released from a variety of
cultured cells [10]. Subsequently, this term has been adopted to define a population of
membrane vesicles with a typical cup-like shape [11], with size ranging between 30 and
150 nm in diameter, which are released by reticulocytes during differentiation [12]. It is
worthwhile to stress that cells release distinct subpopulations of exosomes with heteroge-
neous sizes and compositions [13]. Instead, microvesicles (MVs), formerly called ”platelet
dust”, were first described as subcellular material originating from platelets in normal
plasma and serum [14]. In contrast to exosomes, MVs represent a more heterogeneous
population with sizes ranging from 100 to 1000 nm in diameter, and up to 10 µm in the case
of oncosomes [12].

The aforementioned EVs have different modes of biogenesis. Exosomes are intralumi-
nal vesicles formed by the inward budding of endosomal membrane during maturation
of multivesicular bodies (MVBs) [12]. Intraluminal vesicle formation constitutes the start-
ing point of exosome biogenesis, and mostly requires the endosomal sorting complexes
required for transport (ESCRT) machinery [15]. Then, intraluminal vesicles (and thereby
exosomes) are released into the extracellular environment upon MVB fusion with the cell
surface, a mechanism that was first described in the 1980s [16,17] and has been speculated
to depend on SNARE proteins and synaptotagmin family members [18]. It is known that
MVBs are primarily destined to fuse with lysosomes for degradation; but in fact, this fate
can be skipped by mechanisms that control the balance between the degradative and secre-
tory capacity of MVBs. Although the molecular details have remained largely unknown,
the first level of regulation is thought to be exerted on the sorting machinery of MVBs. For
instance, while different components of the ESCRT complex are commonly associated with
the degradation of MVBs, the syndecan–syntenin–ALIX pathway seems to be restricted to
exosome secretion [13,19]. In addition, the ESCRT-independent mechanisms for sorting
exosomes from MVBs implicate tetraspanin microdomains and ceramide-enriched lipid
rafts [20,21].

As opposed to exosomes, MVs are usually generated by the outward budding and
fission of the plasma membrane, and the subsequent release of vesicles into the extracellular
space [22]. These processes seem to occur selectively in the lipid-rich microdomains of the
cell membrane, such as in lipid rafts or caveolae [23]. Moreover, an alternative mechanism of
MV production implicates the ESCRT complex, which is mostly associated with endosome
and exosomes biogenesis [24]. The varied mechanisms leading to the secretion of diverse
EVs, as suggested by Guillaume van Niel [12], impose a different timing between the
generation of exosomes and MVs. The release of MVs is probably faster because their
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release would directly follow generation and fission. By contrast, the release of exosomes
requires additional steps to sort cargoes to MVBs, and then to ILVs, and extra steps to target
MVBs to the plasma membrane and finally deploy their secretion [12].

Importantly, EV cargoes, which include proteins, lipids, and nucleic acids, broadly
reflect the nature and the status of the cells of origin and are, thereby, considered to be “cell
biopsies” [8,25]. In recent years, numerous have studies have focused on providing an ex-
haustive and comprehensive characterization of the content of EVs, but the scenario remains
largely unexplored. The lipids generally enriched in EVs are sphingomyelin, cholesterol,
phosphatidylserine, ceramide, and glycosphingolipids, which confer a bilayer structure
similar to that of membrane raft microdomains. Proteins commonly found in EVs include
molecules responsible for vesicle biogenesis and trafficking, such as tetraspanins (CD81,
CD9, and CD63), stress-response proteins (heat shock proteins and HSP90), members of
the ESCRT complex (Tsg101 ad Alix), and proteins involved in membrane fusion (Rabs and
ARF6) [25,26]. For years, these proteins were considered to be a prerogative of exosomes;
however, it is now generally agreed that they can also be found in larger vesicles, such as
MVs [25]. In addition, several reports have challenged the idea of a uniform representation
of these proteins in EVs across different conditions and cells of origin [15]. Importantly,
EVs also carry transmembrane signaling proteins (exposed on the surface with similar
topology as in producer cells), and membrane-tethered secreted signals, such as cytokines
and growth factors [27]. Much attention has focused on the ability of EVs to incorporate
and vehicle genetic material, such as small and long coding and noncoding RNA (mRNA,
miRNA, circRNA, and lncRNA) [28–30]. Certain studies have also reported about genomic
and mitochondrial DNA found in EVs [31], although mechanisms of DNA packaging into
these vesicles are still unclear. Interestingly, the lipid bilayer of EVs encapsulates these
genetic cargoes, protecting them from enzymatic digestion [32]. Thus, EVs represent a
new mechanism of genetic exchange between cells. Moreover, EVs purified from “liquid”
biopsies of patients’ biological fluids have provided biomarkers of clinical relevance [33].
In particular, circulating EVs purified from cancer patients offer a comprehensive represen-
tation of intra-tumor heterogeneity (including cells found in metastatic sites). At the same
time, the detection of EVs released by different cell types calls for methods that can sort
tumor-derived EV subpopulations on the base of specific markers [34].

3. The Role of EVs in Cell–Cell Communication

The important roles of EVs in cell communication have been extensively documented.
As mentioned above, EVs can convey different types of biological information to recipient
cells, as they carry a spectrum of constituents of the cell of origin, including DNA, RNA,
lipids, metabolites, cytosolic, and cell surface proteins. For EVs to act as signaling vehicles
that elicit functional responses and promote phenotypic changes, it is imperative that they
reach the recipient cells and deliver their contents; however, this process is complex, and
the underlying mechanisms remain largely unknown (Figure 1).

In principle, EVs elicit functional responses simply by engaging and activating sig-
naling receptors expressed on the surface of recipient cells, regardless of their intracellular
uptake [35]. EVs may be internalized by clathrin-mediated or clathrin-independent endo-
cytosis, such as macropinocytosis and phagocytosis [36,37], as well as through endocytosis
via caveolae and lipid rafts [12,35,38]. Although EVs generally reflect the content of the
releaser cell, proteomic studies have suggested that specific protein-sorting mechanisms
were associated with exosome biogenesis and cargo loading. Moreover, EV cargo hetero-
geneity can reflect the organ and tissue of origin, or their release from cancer cells [39],
giving EVs distinctive properties such as tropism to certain organs and favored uptake
by specific cell types. Cancer-derived exosomes often carry genetic variants, which may
also regulate their ontogeny. For example, it has been shown that oncogenic epidermal
growth factor receptor (EGFR) and EGFR variant III (EGFRvIII) were detectable in EVs
isolated from tumor cells both in vitro and in vivo. Moreover, the expression of consti-
tutively active EGFRvIII in glioblastoma (GBM) cells has been shown to have an impact
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on the spectrum of EV protein cargoes, leading to the enrichment of proteins putatively
supporting cancer invasion [40]. Surprisingly, upon treatment with inhibitors of EGFR
kinase, EVs were enriched in phosphorylated EGFR (in sharp contrast with the cytosolic
fraction), as well as in their content of genomic DNA. These findings support the analysis
of EV cargoes as potential biomarkers of the efficacy of targeted therapy [41]. Intriguingly,
exosomes derived from breast and prostate cancer cells have been found to instigate the
acquisition of neoplastic behavior in non-tumoral cells, through the transfer of miRNA
cargoes [42,43]. Other studies support the idea that cancer cell plasticity may be attributed,
in part, to EVs, for example, exosomal miR-200 from metastatic breast cancer cells fosters
epithelial-to-mesenchymal transition (EMT), tumor aggressiveness, and metastasis [44].
Moreover, miR-105 from breast cancer cell-derived exosomes suppresses endothelial tight
junction zonular occludens-1 expression, promoting metastasis by impairing the integrity
of blood vessels and enhancing vascular permeability [45]. Moreover, mRNAs transferred
by exosomes have been implicated in angiogenesis and extracellular matrix remodeling in
the tumor microenvironment. For example, matrix metalloproteinase (MMP) 1 mRNA of
ascites-derived ovarian cancer (OC) patients affected mesothelial barrier integrity and pro-
moted peritoneal metastatic dissemination [46]. Finally, proteins exposed on the surfaces of
EVs have been shown to trigger signaling cascades through receptor/ligand interactions,
independent of vesicle internalization [35,47]. For example, transforming growth factor-β
(TGFβ), expressed on the surface of cancer cell-derived exosomes, induced fibroblast acti-
vation [48]. Moreover, exosomes were found to carry semaphorins, a family of soluble and
membrane-bound proteins identified as potent chemorepulsive axon guidance cues during
development, playing a key role in neural network formation. Interestingly, SEMA7A, a
member of the semaphorin family of guidance cues [49], was found on the surface of GBM
stem cell-derived exosomes; notably, by interacting with integrin β1 receptor, this signal
activated focal adhesion kinase into glioblastoma stem cells, enhancing their motility and
tumor aggressiveness [50].

Cancers 2022, 14,  4 of 19 
 

 

 
Figure 1. Postulated mechanisms of exosome cell–cell communication. 

In principle, EVs elicit functional responses simply by engaging and activating sig-
naling receptors expressed on the surface of recipient cells, regardless of their intracel-
lular uptake [35]. EVs may be internalized by clathrin-mediated or clathrin-independent 
endocytosis, such as macropinocytosis and phagocytosis [36,37], as well as through en-
docytosis via caveolae and lipid rafts [12,35,38]. Although EVs generally reflect the con-
tent of the releaser cell, proteomic studies have suggested that specific protein-sorting 
mechanisms were associated with exosome biogenesis and cargo loading. Moreover, EV 
cargo heterogeneity can reflect the organ and tissue of origin, or their release from cancer 
cells [39], giving EVs distinctive properties such as tropism to certain organs and favored 
uptake by specific cell types. Cancer-derived exosomes often carry genetic variants, 
which may also regulate their ontogeny. For example, it has been shown that oncogenic 
epidermal growth factor receptor (EGFR) and EGFR variant III (EGFRvIII) were detecta-
ble in EVs isolated from tumor cells both in vitro and in vivo. Moreover, the expression of 
constitutively active EGFRvIII in glioblastoma (GBM) cells has been shown to have an 
impact on the spectrum of EV protein cargoes, leading to the enrichment of proteins pu-
tatively supporting cancer invasion [40]. Surprisingly, upon treatment with inhibitors of 
EGFR kinase, EVs were enriched in phosphorylated EGFR (in sharp contrast with the 
cytosolic fraction), as well as in their content of genomic DNA. These findings support 
the analysis of EV cargoes as potential biomarkers of the efficacy of targeted therapy [41]. 
Intriguingly, exosomes derived from breast and prostate cancer cells have been found to 
instigate the acquisition of neoplastic behavior in non-tumoral cells, through the transfer 
of miRNA cargoes [42,43]. Other studies support the idea that cancer cell plasticity may 
be attributed, in part, to EVs, for example, exosomal miR-200 from metastatic breast 
cancer cells fosters epithelial-to-mesenchymal transition (EMT), tumor aggressiveness, 
and metastasis [44]. Moreover, miR-105 from breast cancer cell-derived exosomes sup-
presses endothelial tight junction zonular occludens-1 expression, promoting metastasis 
by impairing the integrity of blood vessels and enhancing vascular permeability [45]. 
Moreover, mRNAs transferred by exosomes have been implicated in angiogenesis and 
extracellular matrix remodeling in the tumor microenvironment. For example, matrix 
metalloproteinase (MMP) 1 mRNA of ascites-derived ovarian cancer (OC) patients af-
fected mesothelial barrier integrity and promoted peritoneal metastatic dissemination 
[46]. Finally, proteins exposed on the surfaces of EVs have been shown to trigger signal-

Figure 1. Postulated mechanisms of exosome cell–cell communication.

4. Regulation of Endothelial Cells Functions by Tumor-Derived Exosomes

As mentioned above, EVs can either promote or inhibit new blood vessel formation,
depending on their cargo and the types of upstream stimuli acting on the releaser cell.
In the last decade, many studies have documented the role of EVs in angiogenesis and
emphasized their therapeutic potential [25]. Angiogenesis refers to the process by which
new blood vessels sprout from a pre-existing vascular network, and occurs throughout
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life in both health and disease [51]. In healthy tissues, angiogenesis is tightly regulated
by a precise balance between stimulatory and inhibitory signals [52]. From a mechanistic
viewpoint, abundant pro- and anti-angiogenic factors, extracellular matrix components,
and intracellular signaling cascades control this process. In particular, the EC-specific
mitogen vascular endothelial growth factor (VEGF) is a major inducer of vascular growth
during development and tissue repair as well as a key regulator of physiological and
pathological angiogenesis [53]. Notably, angiogenesis is frequently hijacked to support
tumor growth and metastatic progression [54]. In this regard, a key role in the formation
of aberrant vessels is played by an imbalance between pro- and anti-angiogenic factors,
particularly seen in hypoxic tissues [55], in tumors, and in other pathological contexts,
such as atherosclerosis, corneal neovascularization, rheumatoid arthritis, or ischemic dis-
eases [23,56]. As previously observed by Judah Folkman, neovascularization is necessary
to allow the expansion of a primary tumor mass and metastasis [57,58]. In addition, cancer
cells have the singular ability to form vascular-like structures that can support the nutri-
tional needs of a tumor independently of neoangiogenesis or ECs, a phenomenon known
as vasculogenic mimicry [56]. Indeed, cancer cell behavior largely depends on signals from
the microenvironment, as well as on the continuous supply of oxygen and nutrients [59].
In fact, while, initially, blood vessels in the tumor microenvironment are scarce, ECs are
induced to exit their quiescent condition in response to cancer-derived cues, a mechanism
known as “angiogenic switch”, which enables vessel sprouting to form a new capillary
network [60]. Exosomes have been gaining increasing importance in this regard, as po-
tential systems regulating cell–cell communication within the tumor microenvironment.
In fact, though most types of cells release exosomes, tumor cells are a particularly active
source of these EVs, especially in hypoxic conditions [61]. Interestingly, it has been shown
that the plasma of cancer patients, particularly in the presence of metastases, carry higher
amounts of exosomes as compared with that of healthy donors [8,62], suggesting that EVs
retrieved from biological fluids (liquid biopsies) may have a prospective application in
cancer management [63].

Tumor-derived exosomes (TEXs) might be decisive to understand the mechanisms
regulating tumor angiogenesis, as suggested by studies showing their capacity to mod-
ulate ECs’ phenotype, proliferation, migration, and tubulogenesis, both in vitro and
in vivo [64–68] (Figure 2). Moreover, Mao et al. [64] intriguingly reported that exosomes
derived from esophageal squamous cell carcinoma cultured under hypoxic conditions
were potent stimulators of ECs proliferation, migration, invasion, tube formation, and
significantly enhanced tumor growth and lung metastasis in nude mice tumor models,
with respect to exosomes harvested under normoxic conditions [64].

Although our understanding of the molecular mechanisms underlying angiogenesis
regulation by exosomes is still limited, “omic” studies have highlighted some of the pivotal
protein and RNA mediators of this activity [69,70]. The angiogenic potential of tumor-
derived exosomes towards ECs has been associated with exosome-carried pro-angiogenic
proteins (Table 1). For example, VEGF, TGFbeta, bFGF, IL-6, IL-8, as well as tissue inhibitor
matrix metalloproteinase (TIMP)-1 and -2 have been found to be enriched in exosomes
derived from GBM cells, and were reported to affect angiogenesis and to increase tumor
malignancy [66,71]. Angiogenesis is also promoted by TEXs carrying matrix metallo-
proteinases exposed on their surface, especially MMP-2, MMP-9, and MMP-13, which
can reshape the extracellular matrix, promoting angiogenesis and metastatic dissemina-
tion [66,71–73]. In particular, MMP-13, which is abundant in nasopharyngeal carcinoma
exosomes, actively promotes proliferation and tube formation in human umbilical vein
endothelial cells (HUVECs) [73]. Semaphorin 3A (SEMA3A), a known EC-regulatory fac-
tor [74], was found on the surface of GBM-derived EVs, and associated with enhanced
vessel permeability in the brain [27]. Furthermore, exosomes derived from head and neck
squamous cell carcinoma cells, enriched in the proangiogenic urokinase-type plasminogen
activator (uPA), coagulation factor III, and MMP-9, promoted HUVEC proliferation in vitro
and the formation of vascular structures in vivo [75].
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Figure 2. Exosome-mediated regulation of the vasculature in cancer and in other pathologies.
Tumor-derived exosomes may induce EC proliferation and migration, promoting the angiogenic
process and have been shown to elicit leakiness of endothelial barriers and vascular permeability,
thus, fostering cancer cell ingress into the bloodstream for metastatic dissemination. Furthermore,
exosomes are released by ECs to self-regulate the same or neighboring cell population, including in
the tumor microenvironment.

It has also been found that tumor-derived exosomes borne from ascites of colorectal
carcinoma patients were enriched in tetraspanin-8 and plexin B2, which have been im-
plicated in angiogenesis [76]. Interestingly, it has been shown that TEX release by lung
adenocarcinoma cells depends on the transmembrane protein sortilin; this mechanism me-
diates the transfer of EGFR into ECs, resulting in a subsequent upregulation of angiogenic
proteins [77]. Biagioni et al. [78] further showed that exosomes released from both A375
and M6 melanoma cells induced the upregulation of VE-cadherin, uPAR, and EGFR levels
in both mature ECs and endothelial progenitor cells, along with an increase in ERK1,2
phosphorylation [78]. It was thereby supposed that EGFR expression in ECs of tumor
vessels [79] could derive from exosomes released by malignant cells. Annexin II carried by
TEXs was found by Maji et al. [80] to act as an angiogenesis-promoting protein in breast
cancer in a tPA-dependent manner, although the underlying mechanisms have been not
fully elucidated [80]. Interestingly, it has been reported that the enzyme heparanase is
a strong promoter of TEX release; furthermore, heparanase impacts on exosome protein
cargo, fostering higher levels of angiogenic factors (syndecan-1, VEGF, and hepatocyte
growth factor), as well as increased induction of EC tube formation [81].
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Table 1. Angiogenic proteins carried by tumor-derived exosomes and their functional roles in
cancer progression.

Cellular Origin of Exosomes Angiogenic Proteins Functional Role REFs

Glioblastoma

↑ VEGF, TGFβ, βFGF
↑ IL-6, IL-8

↑ TIMP-1, TIMP-2
↑ Sema3A

↑ Angiogenesis
↑ Malignancy [66,71]

Nasopharyngeal carcinoma
↑ MMP-13
↑ MMP-2
↑ MMP-9

Metastasis promotion
↑ Proliferation and

tube formation in vitro
[73]

Head and neck squamous
cell carcinoma

uPA
coagulation factorIII

MMP-9

↑ Formation of vascular
structures

↑ Proliferation of the cells
[75]

Colorectal carcinoma Tetraspanin-8
Plexin B2 ↑ Angiogenesis [76]

Lung adenocarcinoma Sortilin ↑ Angiogenic protein [77]

Melanoma
VE-Cadherin

uPAR
EGFR

↑ Angiogenesis in vitro
and in vivo [78,79]

Breast cancer Annexin II Metastasis and
Angiogenesis promotion [80]

Myeloma, lymphoblastoid
and breast cancer Heparanase ↑ Angiogenic factors and

tube formation [81]

Symbols Legend: ↑ increase.

As indicated by several studies, mRNAs, miRNAs, and other non-coding RNAs
transferred by TEXs are responsible for reprogramming recipient cells, including ECs [82]
focused on in this article (Table 2). For example, miR-25-3p, which has been associated
with poor prognosis and metastatic dissemination in colorectal cancer (CRC) patients [82],
can be transferred to ECs by means of exosomes, and can contribute to the disruption
of the endothelial barriers and angiogenesis. Exosomal miR-25-3p acts by regulating
the expression of VEGFR2, ZO-1, occluding, and claudin-5 in ECs, through targeting
Krüppel-like factor 2 (KLF2) and KLF4, and consequently promoting vascular permeability.
Moreover, it enhanced liver and lung metastasis in CRC murine models [83]. In addition,
miR-25-3p contained in CRC-secreted exosomes has been reported to induce the formation
of pre-metastatic niches at distant sites, by promoting angiogenesis and disrupting tight
junctions of vein ECs.

Moreover, exosomal miR-105 and miR-181c, released from breast cancer cells, can
disrupt endothelial and blood–brain barriers during the early pre-metastatic stage, re-
sulting in increased vascular permeability and metastasis formation [84]. Actually, the
identification of biomarkers involved in pre-metastatic niche formation is of potential
value for diagnosis, prognosis, and prevention of metastasis [37]; exosomes are considered
to be a key cancer-derived structure priming pre-metastatic niche formation in distant
organs [85]. Additionally, miR-130a has been found to be significantly upregulated in
gastric cancer (GC) and in the derived exosomes [86]; notably, exosome-borne miR-130a
promoted angiogenesis and tumor growth by targeting c-MYB, both in vivo and in vitro,
supporting its relevance as a potential biomarker for monitoring GC progression [87]. In
addition, miR-155 and miR-135b, found in TEXs derived from GC, have been positively
implicated in angiogenesis. In particular, exosome-borne miR-155 enhances new vessels
formation in vitro through inhibition of Forkhead box O3 (FOXO3a) expression, which is
also known to sustain tumor progression. Exosomal miR-135b exerts the same function
by suppressing FOXO1 levels [88,89]. Recent data unveiled that OC cells released, into
the microenvironment, EVs that contained miR-205, which has been previously found to
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promote invasion and metastasis in many human cancers [90]. The authors found that
exosome-borne miR-205 also acted in a paracrine manner to promote angiogenesis and
tumor growth in a mouse model. Moreover, miR-205 was enriched in the ECs of tumor
vessels, and its levels correlated positively with microvessel density in OC samples. It has
also been shown that miR-205 induces angiogenesis by regulating the PTEN-AKT path-
way [91]. Another study revealed the communication between hypoxic papillary thyroid
cancer cells and ECs. It was shown that miR-21-5p packaged in exosomes released by
hypoxic papillary thyroid cancer cells directly targeted and suppressed TGFBI and COL4A1
expression in ECs, thereby increasing endothelial tube formation and angiogenesis in vitro
and in vivo [92].

Beyond miRNAs, small circular RNAs (circRNAs) have been implicated in multiple
cancer-related biological processes, including cell growth [93], metastasis [94], and apopto-
sis [95]. Likewise, miRNAs and circRNAs are carried by exosomes and can be detected in
patients’ blood and urine samples, suggesting that they may represent additional noninva-
sive markers for human cancer diagnosis [96]. Recently, the exosome-mediated transfer of
circRNAs was highlighted as a novel mechanism of cancer progression [97]. In particular,
Huang and colleagues found that the exosomal circRNA-100338 was expressed in highly
metastatic as compared with low-metastatic hepatocellular carcinoma cells (HCCs). They
showed that circRNA-100338 induced HUVEC proliferation, vessel formation in vitro, and
increased permeability. Moreover, exosomal circRNA-100338 enhanced the metastatic
ability of HCC cells in vivo [98]. It was also reported that circ-IARS expression was upregu-
lated in pancreatic cancer tissues and in circulating exosomes in patients with a metastatic
disease. Li et al. [99] found that circ-IARS entered HUVECs through exosomes, and thereby
promoted tumor invasion and metastasis. In particular, circ-IARS expression has been posi-
tively correlated with vascular invasion, as well as lymph node and liver metastasis; at the
same time, it was inversely associated with patient survival after surgery. Indeed circ-IARS
induced significant downregulation of miR-122 and ZO-1 expression, while it upregulated
RhoA and RhoA-GTP levels, increased F-actin expression, focal adhesion formation, and
enhanced endothelial permeability; thus, promoting tumor invasion and metastasis [99].
The wide spectrum of EC-regulating small RNA species found in the exosomes released
by different tumor cells might reflect tissue-specificity. However, this research field needs
further development, and future studies should address the consistency of these findings
across human cancers, potentially identifying common biomarkers and the most significant
miRNAs regulating tumor vasculature.

Intriguingly, multiple studies support the idea that tumor-derived exosomes can
“educate” additional neighboring cells beyond ECs, such as mesenchymal stem cells [100],
monocytes [101], and dendritic cells [102]; notably, these TME components are well known
to have a role in angiogenesis regulation [103]. Moreover, in a mouse xenograft model,
it was found that exosomes released by adipocytes in HCC promoted, in turn, tumor
growth and angiogenesis [104]. Experiments in HUVECs indicated that these exosomes
upregulated the expression of pro-angiogenic molecules ANG1 and FLK1/VEGFR2, while
downregulating anti-angiogenic VASH1 and TSP1. In addition, tube formation in vitro
was significantly increased in the presence of exosomes found in adipocyte-conditioned
medium [104]. However, the underlying molecular mechanisms have not been addressed.

In addition to responding to exosome-borne signals, ECs release exosomes themselves,
which can mediate the communication with other cells, and can act in an autocrine manner,
to modify the microenvironment. For instance, van Balkom and colleagues employed
an endothelial cell line releasing protein- and RNA-containing exosomes to investigate
the activity of EC exosomes [105]. They found that miR-214 was enriched in these EVs,
especially in response to cellular stress such as hypoxia or inflammatory cytokines, and that
it played a crucial role in paracrine signaling between ECs. In fact, EC-derived exosomes
stimulated migration and angiogenesis of recipient endothelial cells, whereas exosomes
derived from miR-214-depleted ECs failed to stimulate these processes [105]. Moreover, it
has been found that Yes-associated protein 1 (YAP1), which is a major regulator of cancer
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cell proliferation, was also implicated in sustaining EC growth and tube formation, and
controlled EC exosomes release [106]. In fact, YAP1 depletion (or functional inhibition)
in ECs led to a rebound increase in released exosomes carrying the long non-coding
RNA (lncRNA) MALAT1. Notably, a direct exosomal-mediated transfer of MALAT1 to
hepatocarcinoma cells induced matrix invasion via ERK1/2 signaling. These findings
underscore a potential key role of EC exosomes accounting for the increased invasiveness
observed in response to therapies targeting the tumor vasculature [106].

Table 2. Exosomes-borne small RNAs and their functional roles in EC dysregulation.

Cellular Origin of Exosomes Small-RNA Functions REFs

Colorectal carcinoma miR-25-3p

Disrupts endothelial barrier
↑ Angiogenesis

↑ Metastasis dissemination
Induces the formation of pre-metastatic niches

[82,83]

Breast cancer miR-105 and
181c Promote vascular permeability and metastasis [84]

Gastric cancer
miR-130a
miR-155

miR-135b

Promote angiogenesis and tumour growth
↑ Generation of new vessels in vitro

Inhibit FOXO3a
↑ Growth of blood vessels

↓ FOXO1

[86–89]

Ovarian cancer miR-205 Induces angiogenesis via PTEN-AKT
↑ Metastasis [91]

Papillary thyroid cancer miR-21-5p ↓ TGFBI and COL4A1
↑ Endothelial tube formation [92]

Hepatocellular carcinoma circRNA-100,338

↑ Metastatic ability
↑ Angiogenesis

↑ Cell proliferation
↑ Permeability and vascular mimicry

[98]

Pancreatic cancer circ-IARS Promote tumour invasion and metastasis [99]

Symbols Legend: ↑ increase; ↓ decrease.

Finally, a key role during metastatic dissemination is mediated by the lymphatic sys-
tem [107,108], which is a mechanism also favored by the higher permeability of lymphatic
vessels as compared with blood vessels. Several secreted factors released by lymphatic ECs
(LECs) have been suggested to regulate cancer cells and LEC crosstalk [109,110]. It has been
reported that the transcriptional regulator ELK3 found in LECs promoted the expression
of pro-oncogenic miRNAs and suppressed anti-oncogenic miRNAs, thereby controlling
the signaling cargo transferred to tumor cells through exosomes. In fact, LEC-derived
exosomes significantly increased the migration and invasion of MDA-MB-231 cells in vitro,
and this was dependent on ELK3 expression in LECs, featuring a major mechanism of
communication between the TME and cancer cells promoting metastasis [111]. Moreover,
suppression of ELK3 in LECs diminished the ability of LECs to promote tumor growth and
metastasis, in vivo.

5. Endothelial Regulation by Exosomes in Atherosclerosis

Due to their pivotal role in the regulation of vascular homeostasis, EV-mediated
functions have been implicated in other major endothelial dysfunctions [112]. In particular,
here, we focus on the pathogenesis of atherosclerotic cardiovascular disease [113,114]. As
reported above for tumor angiogenesis, most studies have aimed at the identification of
exosome-mediated regulatory mechanisms and potential therapeutic targets. Moreover,
circulating exosomes may carry biomarkers valuable for monitoring disease progression at
a systemic level.
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Briefly, atherosclerosis (AS) is a chronic inflammatory disease caused by lipid accu-
mulation, endothelial damage, inflammatory cell infiltration, and plaque formation in the
arterial wall [115,116]. In view of the critical role played by ECs in the regulation of the
inflammatory response, in blood fluidity, and in vascular tone and permeability, endothe-
lial dysfunction represents an early step in the onset of AS [117,118]. Although the exact
cause of AS is unknown, elevated levels of cholesterol and apolipoprotein B, excessive
vascular smooth muscle cell (VSMC) proliferation, platelet activation, and inflammatory
macrophage recruitment represent major factors impacting on AS progression.

In the context of the vessel wall, exosomes have been shown to modulate crucial
processes involved in AS development, mainly related to endothelial functions, prolifer-
ation and differentiation of VSMCs, and activation of platelets and macrophages [10]. In
addition, it has been shown that exosomes released by macrophages, VSMCs, and platelets,
carry miRNAs (such as miR-155 and miR-223) which trigger the activation of the NF-κB
inflammatory pathway, enhancing the expression of cell-surface VCAM-1, ICAM-1, and
endothelial-leukocyte adhesion molecules; in fact, the consequent EC activation and local
inflammation results in exacerbation of AS progression [119,120] (see Table 3). Exosomes
can also cause AS progression by fostering immune cell infiltration across the endothelial
lining [121–123]. In addition, while, at an early stage of AS, cholesterol-enriched exosomes
released by macrophages function as protective “scavengers” that allow cholesterol dump-
ing [121], instead, T cell-secreted exosomes promote atherogenesis by increasing cholesterol
accumulation in monocytes, as well as by eliciting the release of TNF-alpha and other proin-
flammatory cytokines controlling vascular cells [124–126]. Furthermore, the amount of
miR-30e and miR-92a in circulating exosomes is upregulated in AS patients, and negatively
correlated with plasmatic cholesterol levels. At the molecular level, these miRNAs have
been suggested to act by suppressing the expression of the transporter ATP-binding cassette
A1 (ABCA1), a major regulator of cellular cholesterol and phospholipid homeostasis [127],
which suggests an interesting role for miR-30e/miR-92a as potential biomarkers for clinical
diagnosis and possible targets for the treatment of coronary AS. Interestingly, it has been
shown that oxidized LDL, a potent pro-atherosclerotic factor, induces the upregulation
of miR-155 expression in VSMCs and its transfer through exosomes to neighboring ECs,
hindering their proliferation and migration. Moreover, miR-155 uptake by ECs disrupts
vascular endothelial barrier function by suppressing tight junction proteins, thereby facili-
tating macrophages infiltration and AS [128]. In addition, miR-155 appears to contribute
to AS development due to its ability to target the expression of endothelial nitric oxide
synthase, which results in altered VSMC activity [129]. In the development of AS, it has also
been shown that the activation of CD137 signaling in ECs led to a decreased expression of
exosomal TET2, a DNA methylase regarded as regulator of VSMC phenotype. This mech-
anism enhances the proliferative and migratory phenotype of VSMCs, thus, promoting
plaque formation [130].

Inflammatory cells have a pivotal role in AS progression, which also depends on the
release of exosome-derived signals in the microenvironment. For instance, metastasis asso-
ciated in lung adenocarcinoma transcript (MALTA)-11, carried by EC-derived exosomes,
promotes the formation of neutrophil extracellular traps (NETs) and M2 macrophage po-
larization, known to promote AS [131,132]. In turn, exosomal miR-21-3p derived from
macrophages inhibits phosphatase and tensin homolog (PTEN) expression and further
promotes VSMC migration/proliferation, enhancing AS development [119]. In contrast,
several circulating exosome-borne miRNAs, such as miR-126 and miR-199a, appear to
be protective against AS [133]. For instance, in a study of 176 patients with stable CAD,
elevated levels of miR-126 and miR-199a carried by circulating MVs resulted in a reduced
risk of developing unfavorable cardiovascular events, indicating the prognostic relevance
of these non-coding RNAs in AS. Moreover, numerous miRNAs carried by EC exosomes
have been suggested to reduce AS plaque formation, protecting vascular endothelium
from VSMC-derived pathological signals. Studies by Ong [134] and Zernecke [135] demon-
strated that hypoxia induced ECs to release exosomes enriched in miRNA-126, miRNA-210,
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and miR-216, which resulted in inhibition of macrophage infiltration and AS progression.
In particular, miR-126 appears to contribute to the stabilization of hardened plaques by
unleashing the CXCR4/CXCL12 signaling cascade [135]. Moreover, Hergenreider and
colleagues found that the transcription factor KLF2, which is known to mediate an athero-
protective endothelial phenotype induced by the shear stress, regulated the expression of
several miRNAs and led ECs to release exosomes enriched in miRNA-143/145. Then, these
vesicles were transferred to SMCs, in which their RNA-interfering activity suppressed
proliferation and migration. In vivo experiments in ApoE-/- AS mice fed on a high-fat
diet further revealed a reduction of atherosclerotic lesions in an miR-143/145-dependent
manner [136].

It has been reported that exosomes derived from mesenchymal stem cells may be
protective with respect to AS development by inhibiting the expression of miR-342-5p, and
upregulating protein phosphatase 1 regulatory subunit 12B (PPP1R12B) [137]. Interestingly,
platelet-derived exosomes are enriched in miR-223, miR-339, and miR-21, which have been
implicated in the regulation of vascular functions both in vitro and in vivo. In particular,
exosomal miR-223 has been shown to inhibit TNF-induced ICAM-1 expression in HUVEC
via regulation of the MAPK and NF-κB pathways, indicating its potential role in the
regulation of endothelial inflammation and AS development [138].

Table 3. Exosomal cargoes involved in vascular-protective and atherosclerotic mechanisms.

Cellular Origin of Exosomes Cargo Functions REFs

Macrophages
Vascular smooth muscle cells

Platelets

miR-155
miR-223

NF-κB pathway activation
↑ VCAM-1, ICAM-1 [119,121,138]

Vascular smooth muscle cells miR-155
↓ EC proliferation and

migration
Tight junction proteins suppression

[128]

Endothelial cells

TET2
MALTA11

miRNA-126
miRNA-210

miR-216
miRNA-143/145

↑ VSMCs proliferation and migration
↑ Plaque formation

NETs formation
M2 macrophage polarization
↓ Macrophage infiltration

↓ AS progression
↓ SMCs proliferation and migration

↓ Atherosclerotic lesions

[130–132,134–136]

Macrophages miR-21-3p
Inhibits PTEN expression

↑ VSMC proliferation and migration
↑ AS development

[119]

Symbols Legend: ↑ increase; ↓ decrease.

It is well accepted that certain pathological conditions, such as diabetes, may in-
crease the risk of developing AS, which represents the main cause of death in diabetic
patients [139]. This is due to an imbalance between vasoconstriction and vasodilation [140],
and to increased levels of pro-atherogenic reactive oxygen species generated by ECs [141].
Notably, exosomes circulating in the serum of diabetic patients (and db/db mice) contain
elevated levels of arginase 1, reducing NO bioavailability in ECs, which suggests a potential
role of exosomes in this endothelial dysfunction [142].

Despite the variety of medications available to treat AS, a definite cure for this condi-
tion is not available. Notably, the key roles played by exosomes in cell–cell communication
and their ability to shuttle molecular cargoes may be of interest to develop alternative
approaches for drug delivery [119,143]. Moreover, exosomes released by endothelial pro-
genitor cells (EPCs) have been shown to exert cell protective mechanisms [144,145], and
applications of EPC-derived exosomes have been proposed for the treatment of vascular
diseases [146]. For example, in an animal model of atherosclerotic diabetes, Bai and col-
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laborators reported that EPC-derived exosomes significantly reduced AS plaques, with
a concurrent decrease in inflammatory factors ICAM-1, interleukin-8 (IL-8), C-reactive
protein (CRP), as well as oxidative stress factors such as malondialdehyde (MDA) and
superoxide dismutase (SOD), which resulted in the amelioration of vascular function [147].
Although such findings support the idea of exosome-based treatment of advanced AS,
further studies are required to consolidate this therapeutic perspective.

6. Conclusions

The discovery that distant cells can communicate by means of soluble extracellular
vesicles, carrying bioactive molecules of different chemical nature, represents a novel stand-
point in the study of tissue and organ functions, both in health and in human disease.
Accumulating evidence indicates that EVs mediate endothelial cell communication in
the microenvironment, although the molecular mechanisms underlying this function in
vascular homeostasis and in human disease await elucidation. For example, additional
studies are needed to characterize the biological role of exosomes in the regulation of the
EC metabolic switch during tumor angiogenesis, and to determine their clinical relevance
as pro- or anti-angiogenic mediators. Notably, EVs of different cellular origin are consid-
ered to be a valuable source of biomarkers, potentially relevant in the management of
diverse pathological conditions, including cancer and atherosclerosis. In addition, a better
understanding of the signaling mechanisms mediated by their cargoes may lead to the
identification of novel therapeutic targets for the treatment of vascular dysfunction.
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