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Abstract: Background: In recent decades, the application of machine learning technologies to med-
ical imaging has opened up new perspectives in neuro-oncology, in the so-called radiomics field.
Radiomics offer new insight into glioma, aiding in clinical decision-making and patients’ prognosis
evaluation. Although meningiomas represent the most common primary CNS tumor and the ma-
jority of them are benign and slow-growing tumors, a minor part of them show a more aggressive
behavior with an increased proliferation rate and a tendency to recur. Therefore, their treatment
may represent a challenge. Methods: According to PRISMA guidelines, a systematic literature
review was performed. We included selected articles (meta-analysis, review, retrospective study,
and case–control study) concerning the application of radiomics method in the preoperative diag-
nostic and prognostic algorithm, and planning for intracranial meningiomas. We also analyzed
the contribution of radiomics in differentiating meningiomas from other CNS tumors with similar
radiological features. Results: In the first research stage, 273 papers were identified. After a careful
screening according to inclusion/exclusion criteria, 39 articles were included in this systematic review.
Conclusions: Several preoperative features have been identified to increase preoperative intracranial
meningioma assessment for guiding decision-making processes. The development of valid and
reliable non-invasive diagnostic and prognostic modalities could have a significant clinical impact on
meningioma treatment.

Keywords: radiomics; machine learning; deep learning; meningioma; medical imaging; neuro-oncology

1. Introduction

In recent years, thanks to the ability of computers to mimic problem-solving capabili-
ties of the human mind, a rise in the number of studies concerning the efficacy of artificial
intelligence (AI) as an aid tool throughout the diagnostic pathway in neuro-oncology has
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been recorded [1–3]. Machine learning (ML) and deep learning (DL) represent two sub-
fields of AI, and brain radiomic analysis represents one of their applications to traditional
medical imaging. Radiomics allows extraction of quantitative - and ideally reproducible -
information called radiomic features about tissue and lesion characteristics from diagnostic
images. The peculiarity of this method is that medical images contain and reveal more
information of disease-specific processes than the human eye can see, thus “unveiling
the invisible” [4,5]. Radiomics exploits mathematical extraction of the spatial distribution
of signal intensities and pixel inter-relationships to quantify disease-specific information,
exceeding the human subjective interpretation of radiological imaging. Some examples
of these features are related to heterogeneity and shape, and to their potential changes
over time on serial imaging, and several studies demonstrated how the degree of tumor
heterogeneity could represent an additional prognostic element determinant on treatment
choice or survival [6]. Radiomic features could, alone or in combination with other tumor
developing extrapolated data (genomic, transcriptomic, or proteomic data) or with demo-
graphic and histologic data, help in the diagnostic and treatment tumor challenges, and in
patient stratification [7,8].

Meningiomas are the most common primary tumors of the central nervous system
(CNS), showing an increasing incidence over the past decade owing to population aging
and improvements in the diagnostic capacity [9–11]. Histological criteria still guide in-
tracranial meningioma treatment and, together with surgical resection, influence patients’
prognosis, even with the latest revised WHO classification (fifth edition, 2021) [12]. The
majority of diagnosed meningiomas are benign, slow-growing tumors that can be effec-
tively treated by complete surgical excision. Atypical or anaplastic meningiomas (grade II
and III, respectively, according to the previous WHO 2016 grade) account for, respectively,
<15% and <5% of them, and show more aggressive biological behavior, growth, recurrence
tendency, and mortality rates. Early diagnosis and accurate recognition of higher malig-
nancy meningiomas are crucially important to evaluate prognostic outcomes and guide
treatment; this is the basis on which more advanced non-invasive MRI techniques (such as
diffusion or perfusion sequences) have been previously employed [13], and where currently
ML algorithms can show their promising potential to extract fundamental information on
grading or on the risk of recurrence [14]. The applications of radiomics and radiogenomics
(the study derived from the integration of radiographical and genomic data) have already
achieved important proven results in glioma tumors, and some studies indicate increasing
diagnostic, grading, and prognostic capabilities [15,16], corroborating its potential role in
improving the diagnosis and patients’ prognosis.

The aim of this paper is to provide a perspective of the current data pertaining to the
evolving progress of the radiomics method in meningioma tumors for both diagnosis and
prognosis, and to identify potential tumor features which may affect medical and surgical
decision-making, and treatment outcomes. We give a panoramic view of meningioma
radiomic features, and their impact on medical daily life identifying limitations and gaps,
as well as their accuracy, and promising future directions in radiomics endpoints and
radiologically challenging aspects of meningioma interpretation. Lastly, our review tries to
expand on the search parameters in distinguishing differential diagnosis.

2. Methods
2.1. Study Design

According to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) guidelines, an extensive systematic literature review was manually performed
on PubMed, MEDLINE, and Scopus databases by two independent authors (S.M., and
L.B.). A combination of the following medical subject headings (MeSH) and free text
terms were used: “radiomics”, “machine learning”, “deep learning”, “artificial intelligence”
AND “meningioma”, and “intracranial meningioma”, with no limits in terms of date of
publication until January 2022. Details of the search strategy are shown in Figure 1.
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Figure 1. Flow-diagram of the results of this systematic review according to PRISMA statement.

2.2. Eligibility Criteria

Meta-analyses, retrospective studies, and review were included. Non-English works,
studies regarding CNS tumors other than meningioma, and studies lacking full text were
excluded. Each article was screened according to the topic of this review and only those
discussing the application of radiomics in brain meningiomas were selected.

2.3. Data Extraction

Among the selected articles, we included those concerning meningioma and other
CNS tumors which share several radiological features, and those describing how radiomics
could help in the differential diagnosis between radiological features. The available data
are shown in Supplementary Materials Table S1, and included authors, year, study design,
study objective, MRI and radiomics acquisition features, and some relevant additional
notes.

3. Results

Through a careful analysis of the literature, 273 papers were identified. These records
were screened according to the aforementioned inclusion/exclusion criteria. Thus, 103 du-
plicates were removed and 113 were later excluded because they were not consistent with
the topic of this review and our inclusion criteria. From the 57 full-text articles assessed
for eligibility, 16 further articles were excluded because of 1) the lack of relevance about
radiomics in meningioma tumors, and 2) the lack of full text. As a result, 39 articles
were included in this systematic review. Interobserver agreement was calculated by Co-
hen’s Kappa Statistic, and κ was 0.89. In Supplementary Materials Tables S1 and S2, and
Figures 2 and 3, the main characteristics of the included studies are summarized; 2 of them
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are meta-analysis, 2 review, 1 case–control study, 34 retrospective study (and 1 of them
in a multicenter evaluation). The journal type consisted of 21 clinical journals (53.8%),
17 imaging journals (43.6%), and 1 informatic journal (2.6%).
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4. Discussion

The current limitations in medical imaging techniques provide an opportunity for
developing more advanced sub-visual feature analysis, and to handle demanding expecta-
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tions in tumor treatment. In this context, AI methodologies have been exponentially used
and radiomics represents a promising approach in individualized oncological management
as a new low-cost tool [17]. One of the most relevant advantages is that radiomics analysis
can reveal the heterogeneity within a region through identifying different sub-regions,
thus representing the spatial complexity of a disease [8,17]; in fact, while biopsies repre-
sent only a small portion of a tumor, and usually at just a single anatomic site, radiomics
can capture heterogeneity across the entire tumor volume [18]. The key element in the
radiomics process is to define the region in which radiomic features are studied, called
the region of interest (ROI) in two-dimensional (2D) or the volume of interest (VOI) in
three-dimensional (3D). Image segmentation is the first step in the radiomics process, and
can be performed manually, semi-automatically, or fully automatically, the latter using
DL algorithms. DL-based image segmentation reduces some of the considerable intra-
and interobserver variability of the manual and semi-automated processes, as well as
procedure time; nonetheless, this method is inferior in terms of accuracy compared to the
others. Next steps in radiomic process are image processing, feature extraction, and feature
selection/dimension reduction [4,17,19]. Image processing is the phase where images from
which radiomics features will be extracted are homogenized (with respect to pixel spacing,
grey-level intensities, and bins of the grey-level histogram); several studies have shown
that different imaging acquisition parameters can influence the nature of derived radiomics
features [7,8]. The dimension reduction is a multi-step process that works, through the
application of filters, to exclude non-reproducible, redundant, and non-relevant features
from the dataset; as a consequence, this step is essential for generating valid and reliable
results, for building statistical and ML models, and for enhancing the prediction accuracy
of the method. Over the past decade, there was a substantial growth in radiomics research
for brain tumors, and the following text is a window into the most pertinent literature
about the application of radiomics models in meningiomas.

4.1. Preoperative Meningioma Grading

Most studies about radiomics focused on the possibility of applying ML approaches to
the preoperative prediction of meningiomas grading, with important repercussions on the
choice of therapeutic strategy. Preoperative imaging has a central role for the assessment
of CNS tumors, and MRI is the gold standard for its high soft-tissue resolution and no
radiation; however, it is not straightforward enough to distinguish different meningioma
subtypes from conventional MRI sequences, even the most advanced ones, and DL analysis
has gradually achieved excellent results. Previous studies illustrated that conventional
MRI images, especially including contrast-enhanced (CE)-T1 and FLAIR, were capable
of differentiating between high- and low-grade meningiomas, through the analysis of
shape, size, location, tumor-brain interface, necrosis, and heterogeneous tumor enhance-
ment [20]. The observers’ knowledge and experience influenced the evaluation of most of
the radiomics features, and this may have limited consequent clinical benefit. Functional
MRI techniques, such as diffusion weighted imaging (DWI) and susceptibility weighted
imaging (SWI), have also been reported to facilitate tumor grade stratification. Several
studies based on DWI demonstrated that high-grade meningiomas tend to present with
lower apparent diffusion coefficient (ADC) values than low-grade entities, but the results
remained controversial. By providing information on tumor vasculature, intra-tumoral
calcification, and microhemorrhages, SWI contributes to distinguishing the histological
grade of glioma tumors; however, only a few studies have explored the potential value of
SWI in predicting the histological grade of meningiomas [20].

CE may influence radiomics acquisition regarding the true grayscale, uniformity,
texture depth, and depth thickness, and non-enhanced MRI sequences usually provide a
better reflection of the pathological changes [21].

The working group of Han et al. [21] demonstrated that radiomics features extracted
from FLAIR MRI sequences and analyzed with an SVM classifier provide the best results
in predicting the histopathological grade of meningiomas, and were superior to the well-
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established DWI analyses. The use of other MRI sequences in radiomics process has been
explored by other authors. Balzano et al. [22] showed that the application of DL on ADC
maps contributes to a high diagnostic accuracy in discriminating between benign and
atypical/anaplastic meningiomas (according to the old WHO 2016 CNS tumors classifica-
tion), whereas the same application on CE-T1WI gives inaccurate results, consistent with
what was previously reported. In the authors’ opinion, a heterogeneous enhancement is
generally associated with grade II or III meningiomas but not exclusively, because several
grade I lesions may show a cystic and heterogeneous appearance (the grade is referred to in
the old WHO 2016 classification); thus, the wide variability in CE-T1WI features could limit
the classification performance of DL analysis. The use of ADC and SWI radiomics models
was still demonstrated by other studies [20,22–24]. Focusing on the characteristic of grade
II meningiomas (according to the old WHO 2016 CNS tumors classification), Kalasauskas
et al. [25] underlined that the presence of a majority cystic component and the presence
of high cluster prominence are the semantic and radiomic characteristics most associated
with a high relapse rate [26].

Interestingly, in some recent works the possibility of using radiomics to differentiate
meningiomas of specific histotypes was explored. Park et al. [23] showed how, using
various texture parameters extracted from T1, CE-T1, and DTI MRI sequences, it is possible
to preoperatively determine various histotypes related to meningiomas, in particular by
differentiating fibroblastic from non-fibroblastic forms. Fibroblastic meningioma subtypes
have been discovered to show a firmer mass consistency, thus requiring hard-working
dissection, and influencing preoperative treatment strategy and presumptive surgical out-
come. Niu’s working group [27] demonstrated how, based on radiomic features extracted
from CE-T1WI, it is possible to differentiate various histological subtypes among menin-
giomas (in particular between three histotypes: meningothelial, fibrous, and transitional)
with excellent sensitivity and specificity, stressing how imaging-based radiomics could
significantly improve diagnostic performance and provide new therapeutic strategies in
highly selected patients.

In a recent systematic review and meta-analysis by Ugga et al. [28], the authors
addressed the problem of methodological quality of retrospective studies published about
radiomic analyses in meningiomas. Radiomics demonstrated great results in representing a
promising valid option in the preoperative evaluation of tumor grading and improvement
of management of meningiomas. Nonetheless, the authors especially emphasize the current
limitations linked to the applicability of these methods in a clinical setting, due to low
average radiomics quality score (RQS—6.96, 19%) of the articles included in their systematic
review, updated to 2021, and reflecting a lacking overall methodological quality and high-
quality results among the large number of publications in this field.

4.2. Preoperative Prediction of Ki-67 in Benign Meningioma

Another interesting field of application of radiomics in meningioma is related to the
preoperative ability to correlate the expression of Ki-67 to Grade I meningiomas (according
to the old WHO 2016 CNS tumors classification). Meningioma grade I is the most diag-
nosed in clinical practice, and this histological grade is characterized by a heterogeneous
clinical presentation, rate of growth, and risk of recurrence. Several studies showed that
higher Ki-67 in tumor biopsy analysis correlates with increased risk of recurrence, and acts
as a predictor of recurrence. The working group of Khanna [29] described that their model
combining sequences from DWI and CE-T1WI and morphologic features (increased peritu-
moral edema shape eccentricity and enhancing tumor extent) can be used to differentiate
WHO grade I meningiomas based on Ki-67 expression with good accuracy. A recent study,
in fact, outlined that the extent of resection is an independent risk of recurrence in grade I
meningiomas when Ki-67 expression is more than 4.5%. In fact, gross total resection (GTR)
and supra-total resection (STR) show similar risk of recurrence [30]. This reinforces the
concept that the ability to preoperatively presume meningiomas behavior could guide the
best tailored therapeutic strategy and also the time frame for imaging follow-up.
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4.3. Prediction of Brain Invasion as an Indirect Tool for Recurrence and Poor Prognosis

Meningioma brain invasion was documented to be independently associated with
risks of tumor progression, recurrence, and a poor prognosis, and it became a stand-alone
criterion for differentiation of grade II in the old 2016 WHO classification of CNS tumors,
apart from the presence of histopathologic criteria of atypia, with consequent prognostic
implications. Thus, it was assumed that the use of brain invasion as a non-invasive
imaging biomarker for predicting meningiomas with higher grades of malignancy could
be employed for enhancing clinical decision-making. Previous studies investigated brain
invasion through a qualitative radiological approach, considering loss of the CSF cleft
sign, cortical penetration, irregular shape, and presence/absence of edema. Otherwise,
radiomics permits a quantitative and objective approach of tumor infiltration using the
brain-to-tumor interface and the analysis of intensity distributions, spatial relationships,
and texture heterogeneity, and provides information on the disruption of the pial surface.
Joo et al. [31] constructed a combined model of the top six radiomics features from the brain-
to-tumor interface on T2WI and CE-T1WI plus the volume of peritumoral edema which
showed better prediction of brain invasion, and marked improved diagnostic value over the
volume-only edema model. Similar results were shared by other working groups [32–35],
underlining the great potential of radiomics in this particular subfield and the treatment
strategy implication that all this entails. The invasion of bone adjacent to the meningioma
represents another crucial preoperative aspect that can be evaluated using a radiomics
approach and can contribute to devising surgical strategies. It has been shown that using
features selected from CE-T1 and T2 MRI images it was possible to predict the risk of bone
invasion with good accuracy [36].

4.4. Prediction of Meningioma Mass Consistency

The possibility of predicting the consistency of the meningioma mass from preop-
erative MRI is another important key-point on which the authors focused [37]. Tumor
consistency represents one of the factors (together with tumor size, the presence/absence
of an arachnoid plane of separation between tumor and adjacent structures, and tumor
vascularization) that could influence surgical removal difficulty, length of operation time,
degree of resection, postoperative complications, and tumor recurrence [38]. In fact, the re-
moval of soft tumors can result easier with shorter surgical time, greater extent of resection,
and less bleeding, while firm consistency meningioma are more challenge, particularly
at the skull base. In this context, an approach based on the analysis of radiomic features
could give key information and guide the most advantageous individualized operation
schemes, as demonstrated by some recent studies [39,40]. Cepeda et al. [39] analyzed the
consistency of meningiomas by combining the intraoperative elasticity measured through
the ultrasound elastography (IOUS-E) as a reference parameter with the analysis of the
preoperative radiomic features from MRIs. The best radiomic features selected were the
conventional kurtosis in CE-T1, the gray-level zone length matrix of the ADC, and the
conventional first-quartile of T2WI. Magnetic resonance elastography (MRE) is an available
non-invasive technique to quantitatively and preoperatively determine tumor stiffness, but
the lack of availability in most centers together with insufficient spatial resolution, and the
difficulty in evaluating highly vascular tumors, still limit its use [40,41].

4.5. Differential Diagnosis between Meningioma and Other CNS Tumors

Noteworthy is the possibility of using quantitative data extracted from MRI to make a
differential diagnosis between meningiomas and other tumor histotypes who shared some
MRI characteristics. Maki et al. [42], demonstrated how, using an algorithm of DL based
on convolutional neural networks (CNNs) and radiomic features extracted first from T2
WI and CE-T1WI, it is possible to differentiate a spinal meningioma from a schwannoma
with excellent specificity and sensitivity. In the past, it was assumed that intracranial
solitary fibrous tumor was a subtype of meningioma. While angiomatous meningioma
is a rare WHO 2016 grade I histological subtype of meningioma with a good prognosis
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that can be effectively cured through resection, solitary fibrous tumor is a more aggressive
type of neoplasm, which can relapse and metastasize to extracranial tissues. Therefore,
preoperative identification of both is essential. Dong et al. [43] and Li et al. [44] both
showed how it was possible to differentiate a solitary fibrous tumor from an angiomatous
meningioma with high accuracy, and excellent sensitivity and specificity based on data
extracted from T1WI, CE-T1WI, and T2WI. Similar results, although exploiting different
sequences including CE-T1WI, FLAIR, and DWI, were also obtained by Wei’s working
group [45].

4.6. Prognostic Implications

If applied to a clinical setting, radiomics could represent a key tool paving the way
for ultra-personalized medicine. The ability to evaluate tumor characteristics, otherwise
met only after tissue biopsy, could revolutionize the management of meningioma patients
leading to the creation of increasingly accurate and reliable prognostic models. As a matter
of fact, many efforts were made to create prognostic models based on radiomics, clinical
and demographic characteristics that were able to predict outcomes, local failure (LF), and
overall survival (OS) [46]. Based on supervised learning models associated with algorithms
for regression and classification, the possibility of predicting both the LF and the OS with
good accuracy has been demonstrated [47]. Zhang et al. [48], demonstrated how, using
images extracted from T1-C, T2, and DWI sequences, it is possible to predict with high
accuracy (overall prediction accuracy 90%) the risk of tumor recurrence and/or progression.
In this context, a fundamental role is played by the implementation of the extraction,
segmentation, and processing systems, as well as by the ML algorithms. Many studies
have shown how the use of various radiomic features and different types of data analysis
algorithms are associated with quite heterogeneous results in accuracy, with potential
consequences on the development of reliable diagnostic and prognostic systems [49–51].

4.7. Limitations and Future Perspectives

Radiomics is certainly an evolving procedure that is rapidly showing promising results
in neuro-oncology for its diagnostic and prognostic implications, as assessed for gliomas.
Nevertheless, it faces several difficulties and currently remains confined to the scientific
literature for meningiomas management. What appears immediately clear to readers is
data sparsity. While scarcity can be otherwise predictable for its recent spread (Figure 3),
sparsity becomes a relevant feeling in the readers’ mind when they face the multitude of
variations in acquisition, interpretation, software and MRI application, and more (Sup-
plementary Materials Table S1), and try to understand what the technique itself is. Due
to the lack of standardization methods, of sufficient reports, and of limited open-source
data available, the reproducibility of radiomic results is faulty, and the risk of false-positive
results prevent its use in routine clinical practice [52]. Alongside this, the interpretability of
radiomics features is also questionable, and the lack of comparison with well-established
prognostic and predictive factors can mislead (e.g., causation vs. correlation) in routine
clinical decision process. Patients’ characteristics, tumor geometry, and quality of imaging
acquisition can also influence the levels of noise and the presence of artifacts. Classifi-
cation accuracy in meningiomas can be challenging due to the surrounding edema, the
hyperintensity deriving from dural attachment or vascular branches, which can modify
tumor boundaries and influence detection and segmentation processes [53]. Radiomics
studies found in this systematic review are mainly retrospective without standardized
guidelines or control of imaging protocols, and with low levels of evidence; thus, further
prospective studies are needed to corroborate the value of radiomics in meningiomas.
Compared to gliomas, these studies are fewer, making it difficult to perform an accurate
comparative study. Three different radiomics guidelines were defined addressing critical
aspects and quality of radiomics studies, trying to reduce or prevent all the previously
mentioned issues [54]: the Radiomics Quality Score (RQS), the Transparent Reporting of a
multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) [55], and
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the Image Biomarker Standardization Initiative (IBSI). This further check can aid in achiev-
ing reproducibility of radiomic studies, allowing easier clinical translation and comparison
of radiomics features for meningioma patients at different institutions [56], and should
be implemented and spread in ongoing and prospective meningioma radiomics studies.
At present, fully automated extraction of radiomic features is supposedly the direction of
pertinent future research. Taking this route, radiomics could also represent a weapon in
incidental meningioma management without histological diagnosis, helping in easier and
more individualized clinical decision-making [22,54]. Finally, considering all the issues
discussed above, radiomics is actually of restricted use in routine clinical practice. Protocols
of MRI acquisition and elaboration, and software algorithm use need to be established, and
to allow for comparison and to homogenize the results interpretation everywhere. Signifi-
cant advances in glioma characterization and classification are now following the path of
radiogenomics; in a future workflow, considering the spreading literature research about
immunological environments in meningiomas and the aforementioned relevant acquisition
in glioma management with the introduction of radiogenomics, could radiomics’ features
shift together with other biological, genetical, and immunological aspects to create a more
integrated approach to meningioma, such as radioimmunogenomics?

5. Conclusions

Radiomics could represent not just an additional supportive tool and an automation
of the diagnostic process, but a source of key tumor information that, overcoming conven-
tional imaging parameters and together with additional biological data (clinical, genetic,
molecular, histopathological, etc.), could have a great potential in the clinical and surgical
decision-making process. It would be advisable for the future of neuro-oncology to employ
advanced resources, such as radiomics and radiogenomics, in meningioma management in
order to provide less invasive and tumor-specific diagnosis, characterization, and subse-
quently more personalized treatment strategies with greater precision, and to ultimately
optimize prognosis and patient care. No conclusive results are yet known about how these
preoperative radiomics analyses may impact patients’ outcomes; thus, more standardized
and reproducible methods of data interpretation, available databases, and prospective
large-scale multi-institutional clinical trials are needed.
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