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Abstract

Diabetic foot ulceration (DFU) is a serious complication of diabetes, and a major challenge for 

healthcare systems around the world. Further infection and ischemia in DFU can significantly 

prolong treatment and often result in limb amputation, with more severe cases resulting in terminal 

illness. Thus, early identification and regular monitoring is necessary to improve care, and reduce 

the burden on healthcare systems. With that in mind, this study attempts to address the problem 

of infection and ischemia classification in diabetic food ulcers, in four distinct classes. We 

have evaluated a series of VGG architectures with different layers, following numerous training 

strategies, including k-fold cross validation, data pre-processing options, augmentation techniques, 

and weighted loss calculations. In favor of transparency and reproducibility, we make all the 

implementations available through the Generally Nuanced Deep Learning Framework (GaNDLF, 

github.com/CBICA/GaNDLF. Our best model was evaluated during the DFU Challenge 2021, 

and was ranked 2nd, 5th, and 7th based on the macro-averaged AUC (area under the curve), macro-

averaged F1 score, and macro-averaged recall metrics, respectively. Our findings support that 

current state-of-the-art architectures provide good results for the DFU image classification task, 

and further experimentation is required to study the effects of pre-processing and augmentation 

strategies.
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1 Introduction

Diabetic foot ulcers (DFUs) are the most common complications of diabetes mellitus that 

usually take long time to heal and are among the leading causes of hospitalization and 

morbidity of patients with diabetes [1,2]. According to published estimates, DFU accounts 

for roughly 20% of hospital admissions of diabetic patients [3]. In addition, DFU leads to 

substantial emotional, physical, and financial distress that deteriorates the quality of life of 

patients and their caregivers [4]. If not managed properly, DFU combined with ischemia and 

infection can cause gangrene, lower limb amputation, and even death [1,2].

For healthcare systems with limited resources, DFU diagnosis can impose a substantial 

economic burden. As such, the clinical translation of computational methods for the 

automated assessment of DFU could be beneficial for all stakeholders in the healthcare 

system, namely, the clinical sites, patients, and caregivers. Such translation could 

specifically contribute in the early detection of DFU, as well as in the regular monitoring 

of patients’ condition by themselves or by their caregivers. For this purpose, several mobile 

device applications have been designed and developed for standardization and collection of 

DFU images, and for promoting self-care of DFU [5-8].

Recent advances in the fields of computer vision and machine learning have had a growing 

impact on medical imaging, including radiology, histopathology, and dermatology [9-25]. Of 

special note is the proliferation of several deep learning (DL) methods, which have shown 

superior performance in numerous computer vision and medical image computing tasks 

[26-31]. Lately, it is also shown that DL models succeed in classification, detection, and 

segmentation tasks on DFU images [32-38]. Specifically, previous work from Goyal et al. 

[33] focuses on the recognition of ischemia and infection on DFU images, but their work 

tries to solve binary classification problem of ischemia (ischemia vs. non-ischemia) and 

infection (infection vs. non-infection) separately.

This study aims to solve a multi-class (4-class) classification problem for Diabetic Foot 

Ulceration (DFU), by leveraging the GenerAlly Nuanced Deep Learning Framework 

(GaNDLF)1 [39]. The specific 4 classes considered are: i) infection, ii) ischemia, iii) 

both infection & ischemia, and iv) controls (i.e., neither infection, nor ischemia) (Fig. 

1), as defined by the DFU Challenge (DFUC) 2021 [40], conducted in conjunction with 

the Annual Scientific Meeting of Medical Image Computing and Computer Assisted 

Interventions (MICCAI) 2021. GaNDLF facilitated our work by providing simple 

application programming interfaces to rapidly and robustly incorporate techniques such as 

cross-validation [41], data pre-processing, data augmentation, and weighted loss calculation 

into our experimental design. Our best model, with which we participated at the DFUC 

2021, was compared to the baseline models provided by Yap et al. [40], and was ranked in 

the 2nd, 5th, and 7th place in the DFUC 2021, based on the macro-averaged AUC (area under 

the curve), macro-averaged F1 score, and macro-averaged recall metrics, respectively.

1https://github.com/CBICA/GaNDLF.
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2 Materials and Methods

In this section, we describe the provided dataset in detail, illustrate the examples of 

infection, ischemia, both infection & ischemia, and control cases from DFU patients with 

images. Additionally, we explain the methods used in the work, their configuration, the 

overall VGG architecture, and the various training strategies we followed.

2.1 DFU Dataset

The DFUC2021 dataset describes a multi-institutional collection for analysis of specific 

pathologies, focusing on infection and ischemia [40]. Specifically, Manchester Metropolitan 

University and Lancashire Teaching Hospitals established a repository that contains DFU 

images of infection and ischemia cases for the purpose of supporting research on more 

advanced methods of pathology detection and recognition of DFU. These DFU images are 

collected from Lancashire Teaching Hospitals, where photographs were taken from patients 

during their clinical visits. The three cameras used for capturing the foot images are Kodak 

DX4530, Nikon D3300 and Nikon COOLPIX P100. The images taken were close-ups of 

the whole foot from a distance of approximately 30–40 cm with parallel inclination to the 

ulcer plane. Thereafter, the DFU regions are cropped from the original images and natural 

data augmentation is performed by preserving the case ids and splitting them to train and test 

sets.

The complete DFUC2021 dataset comprises of a total of n = 15, 683 DFU images. The 

provided ground truth labels, defining the four classes considered by DFUC2021 are 

i) infection, ii) ischemia, iii) both infection & ischemia, and iv) controls (i.e., neither 

infection, nor ischemia). Representative example cases for each class are shown in Fig. 1. To 

quantitatively evaluate the performance of algorithms developed for this task, the complete 

set of n = 15, 863 images are partitioned into three distinct independent subsets. The training 

set includes n = 5, 955 images, provided with their ground truth labels dividing the training 

set in n = 2, 555 cases with only infection, n = 227 cases with only ischemia, n = 621 cases 

with both infection & ischemia, and n = 2, 552 control cases. For algorithmic evaluation 

on unseen data, the DFUC2021 dataset further provides n = 5, 734 cases for testing, and n 
= 3, 994 unlabeled cases. The utilization of unlabelled data for the ischemia and infection 

classification is left for future work.

2.2 DL Framework

We leveraged the GenerAlly Nuanced Deep Learning Framework (GaNDLF)2 [39] to 

conduct all experimentation and training for this study. GaNDLF has been developed 

in Python using the well-known DL library PyTorch [42]. It enables researchers to 

target various machine learning (ML) and artificial intelligent (AI) workloads (such as 

segmentation, regression, classification, and synthesis) using different types of imaging 

modalities (such as RGB, radiographic, and histopathologic imaging), by providing a 

complete end-to-end solution for training and deploying robust DL models [39]. GaNDLF 

makes DL accessible for researchers who do not have extensive experience in designing and 

2https://github.com/CBICA/GaNDLF.
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implementing DL pipelines, while making it straightforward for computational researchers 

to make their algorithms available for a wider array of applications. It also aims to deploy 

DL workflows in clinical environments with relative ease. With properties such as an end-to-

end application programming interface, ease of training robust and generalizable models 

with different configurations, robust data pre-processing & augmentation techniques, and 

nested k-fold cross validation, GaNDLF aims to fill gaps of other popular DL libraries. This 

allows a user to easily design different experiments by simply editing text parameter files 

without requiring any additional coding, and when combined with the rich metrics library 

for validating trained models, GaNDLF provides deeper insights into model robustness.

2.3 Architecture

We trained three versions of the VGG architecture [43] for the DFUC2021, namely the 

VGG11, VGG16, and VGG19 [43]. VGG architectures use very small convolutional filters, 

and apply spatial padding with the intention of preserving the original resolution of the 

input image. A total of 5 max-pooling operations are performed over a 2 × 2 window 

size, with a stride of 2, to ensure that each max-pooling operation reduces both the image 

height and width in half. The classifier component of our VGG variants use the ReLU 

activation function [44], along with a global average pooling [45], two drop-out layers, and 

a penultimate linear layer. To ensure that the network performs classification, a softmax 

layer is added as the final layer, which enables us to extract the likelihood for each class. 

Schematic representations for the overall architecture of VGG11, VGG16, and VGG19, can 

be found in Figs. 2, 3, and 4, respectively.

2.4 Training

We used two distinct approaches to train the model. First, we consider a more clinically 

oriented paradigm, and we split the training data into two equal halves, using one as 

a retrospective/discovery cohort (i.e., training) and the other as an unseen prospective/

replication cohort (i.e., blinded validation). For this partitioning, all subjects of each 

label/class were proportionally and randomly divided across the 2 halves (retrospective/

prospective). This approach was used to yield our baseline results and enabled us to tune the 

hyperparameters of the model for the task at hand.

Once we obtained these baseline results, we considered a more computationally oriented 

paradigm, to ensure generalizability of the trained model and prevent overfitting. We 

specifically employed a k-fold cross validation schema [41], which is a technique 

widely-used in ML to ensure reporting unbiased performance estimates, and help capture 

information from an entire dataset by training k different models on k corresponding non-

overlapping folds/subsets of the complete training data. Using k-fold cross-validation one 

can test the model’s ability to make accurate predictions on unseen data, detect problems 

like overfitting or selection bias [47], and provide an understanding on how well the model 

will generalize to the real distribution of data. For all experiments that used cross-validation, 

we set the number of folds as k = 5. We have performed an equal non-intersecting 5-way 

split of the training data, ensuring that the model trains on the full training data without 

overfitting.
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Based on the knowledge of the model hyperparameters obtained from our initial experiment 

using the labelled training data split in equal halves, we proceeded to split the training 

data into a set of n = 5 randomized splits. Each split was used to train the VGG11, 

VGG16, and VGG19 variants of the network architectures. During the training step, a 

single patch of 128 × 128 is extracted from a random location from each image and 

processed by the model for loss back-propagation. For the forward pass of the model (i.e., 

the validation/inference phases), enough patches of the specified size are generated from 

each image to ensure that every pixel is processed at least once by the model, and the 

final prediction is generated by averaging all the predictions from each patch. To generate 

the final predictions during the testing phase, we have averaged predictions from every 

fold. The batch size was chosen as b = 256 for VGG11 and VGG16 architectures, and b 
= 128 for VGG19 to ensure maximal utilization of the available hardware resources. For 

each model architecture, configurations with a standard set of data augmentations and data 

pre-processing techniques were also evaluated. For data augmentation, bias, blur, noise, and 

swapping techniques are used with a maximum probability p = 0.5. For data pre-processing, 

a z-scoring normalization mechanism was used. The choice of the loss function stayed the 

same across these experiments, as the original VGG architecture, which is softmax followed 

by categorical cross entropy loss, and has shown to work better for multi-class classification 

problems [48].

To increase the variability of our experiments, we further used weighted cross-entropy loss 

[49], which ensures that misclassifications of the class with the smallest number of labels 

generates the largest loss, and could thus be better suited for datasets with imbalanced 

classes. We used ADAM [50] as the optimizer with an initial learning rate of 0.001. For the 

half split configurations, the set the total number of epochs to n = 200 and set the patience 

value to n = 50. For the 5-fold cross validation configurations, we set the number of epochs 

to n = 300 and patience value to n = 50. All of the experimentation was performed on a high 

performance computing cluster with NVIDIA P100 GPU (which has 11 GB of dedicated 

video memory), using 32 GB RAM, and 10 CPU threads.

3 Results

In this section, we first analyze the validation performance of the models trained with the 

different training strategies. We perform our final model selection based on the performance 

of our partitioned validation set, and submit the inference results from the best model for the 

challenge evaluation and ranking. Thereafter, we analyze our best models’ performance in 

terms of macro-averaged F1 score, and Macro-AUC, macro-averaged recall and accuracy.

3.1 Training/Validation Dataset Performance

We conducted n = 12 different experiments with various training strategies and VGG 

architectures (Table 1). The models trained without any data augmentation and pre-

processing and without using the weighted cross entropy loss outperformed the rest. The 

overall best model, in terms of validation loss and validation accuracy, was the standard 

VGG11 architecture trained using 5-fold cross-validation. This model, trained without any 

data augmentation and pre-processing, was able to reach an average cross entropy loss of 
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0.24 after averaging over the outputs of all the folds. Table 1 includes a detailed overview of 

the training results.

3.2 Testing Dataset Performance

Once we obtained results for all our cross-validated experiments (Table 1), we measured 

the performance of our best 6 models with the DFUC2021 testing data, as provided by the 

challenge organizers. The best configuration, in terms of accuracy, macro-averaged F1 score, 

and Macro-AUC, was the standard VGG11 architecture with 5-fold cross validation. Our 

best configuration placed in the 5th place in the DFU Challenge 2021, where the participants 

were ranked according to macro-averaged F1 score. In addition, we analyzed our results 

according to macro-averaged AUC and macro-averaged recall metrics. Our model ranked in 

the 2nd and 7th place, respectively (for details, please see the official DFU leaderboard3). 

Considering that the DFUC2021 dataset is an imbalanced set (i.e., the number of samples 

for each of the classes are not similar), it was surprising to us that standard VGG11 

model trained without any pre-processing, data augmentation, and weighted cross-entropy 

outperformed the other configurations we tested during both validation and testing phases of 

the challenge. This may require some future meta-analysis to gain a deeper understanding on 

the exact driving factors. We conducted a visual demonstration of our model’s performance 

on the test set with example samples given by the providers. Samples with ground truth 

values and predictions can be found in Fig. 1. A detailed illustration of these results can be 

found at Table 2.

We also conducted an analysis based on the class-individual F1 scores. The standard VGG11 

model performed well based on the ischemia F1 score and control F1 score, achieving ranks 

of 3rd and 5th, respectively. On the other hand, the performance based on infection F1 score 

and both F1 score was relatively poor, with rank of 8th for both metrics. Additionally, we 

compared the VGG19 5-fold model’s performance with the other models in the challenge 

leaderboard and observe that it had the highest 2nd and 5th score based on the results on 

ischemia F1 score and both F1 score, respectively. Additional details can be found in Table 

3.

4 Discussion

In this study, we modified a well-known DL neural network architecture, namely VGG, to 

classify images containing diabetic foot ulcerations (DFUs), into infection, ischemia, both 

infection & ischemia, and control. Classification of ischemia and infection of DFU patients 

is an important task which would help early diagnosis and prevent serious illness in the 

future. Although 4 classes can be considered as small, the training dataset is not balanced, 

which makes it harder to learn for the classes with small number of samples. Our results 

indicate that the best approach, in the set of experiments we performed, was the one that did 

not rely upon weighted loss calculation or any pre-processing methods.

All architectures evaluated in this study were implemented in GaNDLF, which is a high 

level framework for training robust DL models. For training, we used n = 12 different 

3https://dfu-2021.grand-challenge.org/evaluation/challenge/leaderboard/.
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configurations of the general VGG architecture, with different number of weight layers and 

different training strategies. The number of weight layers were 11, 16 and 19. The two major 

training strategies we leveraged was 1) splitting the training data into retrospective/training 

and prospective/-validation datasets, as halves, and 2) following a 5-fold cross validation 

schema. Effect of data pre-processing and augmentation was explored and quantified in 

these experiments. It is observed that the 5-fold configuration of the VGG11 without 

any data augmentation or pre-processing performed the best out all experiments, with an 

average loss of 0.24 across 5 folds. We hypothesise that VGG16 and VGG19 architectures 

performed worse than VGG11 because they are simply too large for the given task, and 

addition of more data is required to properly optimize their weights. The best model in 

our experimentation was ranked as the 5th place in DFU Challenge 2021, in which the 

participants were ranked according to macro-averaged F1 score. In addition, our best model 

was ranked as 2nd and 7th place based on macro-averaged AUC and macro-averaged recall 

metrics, respectively. Additionally, we further analyzed the class-individual F1 scores and 

observe that even though our model has performed better on ischemia F1 score and both F1 

score, it has performed poorly on infection F1 score and both F1 score metrics.

We believe that there is plenty of room for improvement and further analysis in 

related future work. Especially, by taking RGB-specific augmentations [51] and pre-

processing methods [52] into account, we would expect to significantly improve the model 

performance. Considering DFU 2021 dataset is imbalanced, exploration of the reasons 

why weighted cross-entropy loss did not increase the performance would be insightful. 

Additionally, exploration of custom loss functions, which are specifically designed for 

optimizing the macro-averaged F1 score could improve the performance [53]. We would 

also like to see how other popular architectures would perform on this task. Experimentation 

with architectures like residual networks [54], Efficient-Net [55], Xception-Net [56], 

InceptionRes-Net [57] and vision transformers [58] would be insightful. Finally, the use 

of the unlabelled datasets (n = 3, 994) to augment the training using weakly supervised 

training [59] could also help the model performance.

5 Conclusions

DFU can cause critical health problems when it is combined with ischemia and infection. 

Thus, early diagnosis of potential severe can save lives, and contribute to improvement in 

the quality of life for all stakeholders in the healthcare system. Automated computational 

approaches targeting on providing classification suggestions could contribute in early 

disease detection and the management of DFU patients. Our proposed VGG11 model, 

trained using a 5-fold cross validation configuration, without any data augmentation or 

pre-processing, demonstrated superior performance when compared to the other evaluated 

models, and placed in the 5th place on DFU Challenge 2021, where the rankings were 

determined by the macro-averaged F1 score. Future work, towards further improving our 

obtained results, should explore custom loss functions, RGB-specific augmentations (for 

example, using contrast, brightness, and scale augmentations) along with RGB-specific 

pre-processing.
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A: Illustrations of Various VGG Variants

A.1 VGG16

Fig. 3. 
VGG16 architecture (Figure constructed using PlotNeuralNet [46])

A.2 VGG19

Fig. 4. 
VGG19 architecture (Figure constructed using PlotNeuralNet [46])
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Fig. 1. 
Examples from each class considered in the DFUC2021 challenge. GT: ground truth, pred: 

prediction of our best model VGG11 5-fold
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Fig. 2. 
VGG11 architecture (Figure constructed using PlotNeuralNet [46])
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Table 1.

Validation performance of VGG variations. DA: Data augmentation, DP: Data pre-processing, WCE: 

Weighted Cross-Entropy. Bold values imply the best performance and the underlined values imply the models 

that are selected for experimenting in real test set

Model architecture Training strategy Validation loss

VGG11 Half-Split 0.49

VGG16 Half-Split 0.51

VGG19 Half-Split 0.59

VGG11 5-fold (DA, DP) 0.52

VGG16 5-fold (DA, DP) 0.63

VGG19 5-fold (DA, DP) 0.72

VGG11 5-fold 0.24 

VGG16 5-fold 0.30

VGG19 5-fold 0.31

VGG11 5-fold (WCE) 0.27

VGG16 5-fold (WCE) 0.39

VGG19 5-fold (WCE) 0.52
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Table 2.

Test set performance of the 6 best models, selected according to the average performance of during cross 

validation training.

Model Accuracy Macro-AUC Macro-Recall Macro F1-Score

VGG11 5-fold 0.640 0.870 0.576 0.561 

VGG16 5-fold 0.617 0.869 0.575 0.543

VGG19 5-fold 0.615 0.870 0.572 0.551

VGG11 5-fold WCE 0.624 0.845 0.561 0.541

VGG16 5-fold WCE 0.601 0.858 0.583 0.534

VGG19 5-fold WCE 0.595 0.859 0.562 0.521
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Table 3.

Class-individual F1 scores of the selected models.

Model Infection
F1-Score

Ischemia
F1-Score

Both
F1-Score

None
F1-Score

VGG11 5-fold 0.547 0.522 0.440 0.736 

VGG16 5-fold 0.493 0.531 0.424 0.723

VGG19 5-fold 0.475 0.548 0.461 0.719

VGG11 5-fold WCE 0.521 0.488 0.428 0.726

VGG16 5-fold WCE 0.448 0.515 0.462 0.712

VGG19 5-fold WCE 0.417 0.502 0.450 0.716
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