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Abstract

Testing theories about human senescence and longevity demands accurate information on older 

adult mortality. With some exceptions, this is available for most countries in North America, 

Western Europe and some in Eastern Europe and Asia, but rare in low to middle income countries 

where the raw data are distorted by defective completeness and systematic age misreporting. 

For this reason these populations are frequently excluded from empirical tests of mortality and 

longevity theories thus limiting their reach as they only reflect a small and selected human 

mortality experience. In this paper we formulate an integrated method to compute estimates of 

older adult mortality when vital registration and population counts are defective due to inaccurate 

coverage and/or systematic age misreporting. The procedure is validated with a simulation study 

that identifies a strategy to compute adjustments that, under some assumptions, performs quite 

well. While the paper focuses on countries of Latin America and the Caribbean region (LAC), the 

method is quite general and, with additional information and some model reformulation, could be 

applied to other populations with similar problems.
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1 Background

Empirical testing of theories about the nature of human mortality, senescence and longevity 

requires accurate information on older adult mortality. This information is available for 

countries in North America, Western Europe and some in Eastern Europe and Asia, but is 

rare in low to middle income countries. As a result, empirical tests are incomplete as they 

reflect only a reduced and selected human mortality experience. Our goal is to describe 

and illustrate a method to compute adjusted estimates of older adult mortality when vital 

registration and population counts are subject to errors of completeness and systematic age 

misreporting. In this paper we use the term ‘adult’ to refer to the population aged 5 and 
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older, ‘older adult’ to populations older than 45, and ‘children’ to populations younger than 

age 5.

We emphasize at the outset that we are not advertising the proposed technique as a cure-all 

tool. It is designed to work under some conditions that may be satisfied by some, not 

all populations. As all techniques of this sort, it is vulnerable to violation of assumptions 

and should not be applied mechanically without an assessment of consistency between 

assumptions and observed data.

We assume the investigator has data consisting of yearly deaths and population census 

counts by sex and single year age groups. These data may be subject to two types of errors. 

First, death and population censuses counts are defective leading to estimates of mortality 

rates distorted by errors of ‘relative completeness’, e.g. the ratio of the observed to the 

true mortality rates. Second, age reporting of populations and deaths counts is deficient and 

may lead to inaccurate estimates of mortality rates. A well-known class of age reporting 

errors is age heaping (Myers 1940; Shryock et al. 1971; Gupta 1975). If left uncorrected, 

it can produce irregular life table functions but, in general, will not lead to systematic 
biases of statistics that rely on cumulative functions. Furthermore, age heaping is readily 

detectable and there are well-known and widely accepted adjustment procedures, including 

redistribution algorithms, smoothing, and high order polynomial fitting of cumulative age 

distributions. (Sprague 1880; Shryock et al. 1971; McNeil 1977; Camarda et al. 2008).

A second, more insidious, type of error consists of systematic over or under age reporting. 

If left uncorrected it can impart biases to all estimates of life table parameters. Unlike age 

heaping, these errors are rarely visible to the naked eye, are difficult to detect with certainty, 

and cannot be readily adjusted with anything resembling a widely accepted technique (Coale 

and Kisker 1986; Dechter and Preston 1991; Condran et al. 1991; Preston et al. 1999, 2003).

The method we propose integrates adjustments for defective completeness and identification 

and correction of systematic age misreporting. Although we only focus on the experience 

of Latin American Countries (LAC) during 1950–2010, the procedure could be generalized 

to other populations if and when additional information about conditions producing the 
observed data is available. We hasten to emphasize that throughout we only address the 

problem of older adult age misreporting, e.g at ages over 45. While in some demographic 

contexts, this type of error may also be common at younger ages, this does not appear to be 

the case in populations in LAC.

The paper is in seven sections. In section 2 we briefly review direction and magnitudes 

of errors induced by defective vital statistics (death counts) and census enumerations 

(population counts) in LAC. Section 3 introduces a model of age misreporting that 

will be used throughout. Section 4 proposes a technique to identify and adjust for age 

misreporting and section 5 describes a step-bystep procedure integrating adjustment for 

death underregistration and systematic age misreporting. Section 6 is a detailed empirical 

illustration. The last section summarizes and highlights advantages and limitations of the 

integrated procedure.

Palloni et al. Page 2

Popul Stud (Camb). Author manuscript; available in PMC 2022 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2 Defective measurement of adult mortality

The post-1950 mortality data in LAC and in most low- to middle-income countries is limited 

by defective coverage and adult age misreporting. By and large, observed death counts are a 

variable fraction of the ‘true’ number of deaths as they exclude events that, for a number of 

reasons, are recorded with delays or never recorded. Since census counts are also distorted 

by errors of coverage, mortality rates computed with raw data may contain smaller net 
errors than would be induced by defective vital registration alone. In general, however, the 

observed mortality rates underestimate true mortality levels.

Another important domain of errors is systematic age over(under) reporting of older 

adult population counts. Census population counts in LAC are, almost without exception, 

distorted by older adult age overstatement, particularly at ages 45 and older (Ortega and 

Garcia 1985; Dechter and Preston 1991; Grushka 1996; Del Popolo 2000).In most cases, 

systematic age overreporting will lead to underestimates of mortality rates at older adult 

ages. Indeed, when the (true) age distribution of a population is roughly exponential —as it 

is always the case in stable and quasi-stable populations—systematic age overstatement of 

populations induces downward biases in mortality rates at older ages. These biases are not 

offset when there is an equal propensity to overstate ages at death. The reason these two 

type of errors do not, as a rule, offset each other is that while both the adult mortality rates 

and adult population age distribution are roughly exponential, one slopes upwards (mortality 

rates) whereas the other slopes downwards (population age distribution). Matters are made 

only worse when, as is almost always the case, the rate of decrease of population by age 

(natural rate of increase in a stable population) is an order of magnitude lower than the 

rate of increase of (the log of) adult mortality rates (rate of senescence or Gompertz slope). 

The consequence is that, unless the propensity to overestimate ages at death is much higher 

than the propensity to overestimate ages of population, observed mortality rates of older 

adults will be biased downwards. If left uncorrected, estimates of life expectancy and of the 

rate of acceleration of the force of mortality at older ages will contain downward biases. 

Furthermore, as the quality of vital registration and census enumeration improves over time 

the magnitude of these biases decreases and will induce distortions of the time trajectory of 

older adult mortality levels and age patterns.

Unlike errors associated with age heaping, distortions caused by systematic age misreporting 

are harder to diagnose and more difficult to correct. As we show below, adjustments 

require knowledge of two functions that are generally unknown: (a) the conditional (on age) 

propensity of individuals to exaggerate (reduce) their true age and (b) the conditional (on 

age) distribution of the difference between the correct and declared ages. The information 

needed to estimate these two functions is generally unavailable and, in countries with 

deficient population and vital records, it is either inexistent or not ready to use.

To solve this problem we propose a model of age misreporting and a technique requiring 

minimal information to adjust observed adult mortality rates. In its current formulation the 

technique is applicable to populations whose patterns of age misreporting resemble those 

found in some LAC countries. While the logic of the method we propose is quite general 

and could be easily adapted to other populations, a number of considerations need to be kept 
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in mind. First, there are precious few instances in which the researcher has access to at least 

two independent sources of age declaration, one of which is considered to be “correct” (this 

excludes the frequent case of a census and a post-enumeration survey). This means that it 

is difficult to decide ex ante the nature of the age misreporting pattern in the second data 

source. Second, as we show later, one does not need to know the exact level or seriousness 

of age misreporting, only its age pattern. This may be a escape route from the problem 

identified before. However, if the determinants of the levels of age misreporting exert 

influences on the age patterns, the assumption of independence between the two on which 

the method proposed rests, will be violated. The problem is that we know very little about 

the nature of these determinants. The only ones we have some control over are associated 

with observable individual profiles, namely, age, gender, race or ethnic group. Much less, if 

anything, is known about cultural or institutional determinants, such as regimes of schooling 

admission and graduation regimes, regulations regarding military conscription, eligibility 

rules for health care, unemployment benefits or pensions, all of which operate as checks 

on the accuracy of individuals’ ages, much as it does the individuals’ levels of education. 

In sum, applications of the technique to populations with no documentation confirming the 

nature (not the level) of systematic (not age heaping) age misreporting, should be carried out 

with caution.

3 A model of systematic adult age misreporting

3.1 Definitions

We begin with a few definitions. Let θx
o be the average probability that individuals aged 

x overstate their age and θx
u the average probability that they understate their age. Then 

1 − θx
o − θx

u  is the probability of an accurate age statement at age x. Individuals who 

over(under) state their age do so by choosing, not always randomly, the age declared 

in the census. This age could be n > 0 years removed from the true age. As we show 

below, it suffices to let n range between 1 and 10+ since the number of individuals who 

over(understate) their age by more than ten years in LAC populations is exceedingly small. 

Let ρxo(n) be the average conditional probability that individuals aged x who overstate 

ages will do so by n years. An analogous definition applies to the probabilities of age 

understatement, ρxu (n) with ∑nρnu n = ∑nρxo n  = 1. To compute the population observed at 

age y, Py
o, we consider the true population count at that age, Py

T , and apply the conditional 

probabilities defined above to get: or, using a more compact matrix notation:

Py
o = Py

T 1 − θy
O − θy

u + ∑
n = 10

n = 1
Py − n

T ρy − no (n)θy − n
o + ∑

n = 10

n = 1
Py + n

T ρy + nu (n)θy + n
u . (3.1)

or, using a more compact matrix notation:

∏o = Θ∏T
(3.2)
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where ∏o is the (101×1) vector of observed single age population counts at ages 0 to 100, 

ΠT is the (101×1) vector of true population counts at those ages, and Θ is a 101×101 square 

matrix of transition probabilities, e.g. the probabilities of ‘migrating’ (via age misreporting) 

into or out of single year age-groups. The diagonal of Θ contains the probabilities of 

correctly declaring ages, 1 − θy
o − θy

u . Entries in the off-diagonal cells pertaining to the 

yth row and columns y+1,y+2,...,y+10 are the quantities ρy + 1
u (1)θy + 1

u , …, ρy + 10
u (10)θy + 10

u . 

Entries in the off-diagonal cells pertaining to the yth row and columns y−1,y−2,...,y−10 are 

the quantities ρy − 1
o (1)θy − 1

o , …, ρy − 10
o (10)θy − 10

o . It is possible to retrieve the vector of true 

population counts by pre-multiplying the previous expression by the inverse of Θ−1, that is

Θ−1∏o = ∏T . (3.3)

This operation requires full knowledge of the matrix Θ and we only have superficial 

information about its nature in LAC countries or anywhere else for that matter (but see (Bhat 

1990) for an illustration of observed patterns of age misreporting in India). To circumvent 

this problem we will adopt shortcuts that lead to an estimable and invertible matrix of 

transition probabilities.

3.2 What do we know about Θ? Patterns of systematic adult age misreporting in 
population counts

Although there is an extensive literature on systematic adult age misreporting in population 

counts in low to middle income countries (Mazess and Forman 1979; Bhat 1987, 1990; 

Coale and Li 1991; Dechter and Preston 1991; Grushka 1996; Del Popolo 2000), high 

income countries (Coale and Kisker 1986; Condran et al. 1991; Elo and Preston 1994; 

Preston et al. 1999, 2003) and in US migrant populations groups (Hispanic or Hispanic 

origins) (Rosenwaike and Preston 1984; Spencer 1984), we know very little about the 

nature of Θ. Systematic age overstatement has also been invoked to explain the so-called 

Black-White mortality crossover (Elo and Preston 1994) and the Hispanic paradox of lower 

mortality in the US (Palloni and Arias 2004).

Partial information on Θ comes from studies involving record linkages (Elo and Preston 

1994; Preston et al. 1996; Rosenwaike and Preston 1984; Rosenwaike 1987), post 

enumeration surveys (Ortega and Garcia 1985), and comparisons of two independent data 

sources that should produce the same outcomes (Bhat 1990). However, in all these studies 

the information on population counts is either aggregated in five-year age groups or applies 

to populations with levels of education higher than those in LAC countries. Lack of age 

detail is problematic since computation of conditional probabilities in coarse age groups 

rests on approximations that, if violated, are generally harmful to the accuracy of estimates. 

Using a transition matrix appropriate for a population with higher or lower levels of literacy 

than the target one may lead to distortions because age misreporting is associated with a 

population’s literacy level. In the section that follows we propose an estimate of Θ suitable 

for LAC populations.
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3.3 Estimation of a standard pattern of older adult age misreporting

To estimate Θ we employ an unusual study launched in 2002 by the Central American 

Center for Population at the University of Costa Rica. This study was designed to assess the 

quality of information of death registration and the accuracy of the 2000 census counts for 

an older adult population.One of the components of this study was a linkage of a sample of 

individual census records with national voting registers, a database that contains information 

from birth certificates. A stratified sample of census records consisting of 7,426 individuals 

aged 55 and older in the census were matched to the voting registers. This represents about 

.81 of the total (observed) sample of census records originally sampled. Observations in 

the data set are classified by nationality, age (reported and from birth records), sex and 

education.

To estimate entries of the matrix Θ from this dataset we proceed in two steps:

i. Estimation of probabilities of age over and understatement at ages x, θx
o(V ) and 

θx
u(V ) (V is a vector of individual characteristics): We first estimate a logistic 

model to predict age misreporting, an event that affected a total of 2,894 

individuals (40 percent) of whom 1,992 overreported and 902 underreported. 

We create a 1/0 binary variable whose value is set to 1 when there is either over 

or under statement and zero otherwise. To be useful in general applications, 

the vector V only includes covariates universally available in a population 

census, namely, age and sex. Since the effects of sex and quadratic age had 

statistically insignificant effects, the final model we adopt includes true ages 

as the only predictor. Because by design the sample only includes individuals 

aged 55 and above, it excludes individuals who reported ages younger than 55. 

As a consequence, the probabilities of age misreporting and, in particular, age 

understatement, will be underestimated if the true age falls (approximately) in 

the neighborhood of ages 55 to 59. To minimize the size of this bias we estimate 

models using a sample restricted to those who are 60 and older. This reduces the 

effective sample size from 7,246 to 6,290 of whom 1,786 overreported and 789 

under reported. Table 1 displays estimated parameters for over and under stating 

ages using the weighted sample.

ii. Estimation of conditional probabilities of over(under) stating ages by n years, 

ρxo(n) and ρxu(n): We estimate a (conditional) multinomial model with 9 categories 

for n = 1,2...,10+ that includes (true) continuous age as independent variable. The 

model is conditional on over (under) reporting ages and includes only age as an 

independent variable. Since the magnitude of age effects is quite small in 6 out 

of 8 contrasts in models of overstatement and in 5 out of 8 contrasts in models 

of understatement, we will utilize null models for the conditional probability that 

the declared age exaggerates (or reduces) the true age by n years. This model 

summarizes the average pattern of over (under) reporting ages in the population 

60 and older. The values of the predicted probabilities of over and understating 

the true age by n years are in Table 2.
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iii. Extensions: The quantities estimated above reflect mostly errors in the 

population 60 and above, partially among those older than 55, and more 

marginally among those aged 45–49. Although empirical evidence for LAC 

and other populations suggests that systematic age misreporting (but not age 

heaping) becomes significant at ages over 55–59, we will include probabilities of 

misreporting (over and understatement) for ages 45–59. We estimate these using 

predicted values from the logistic model. This extrapolation is justified on the 

grounds that the fit of the model is very good and the conditional distribution of 

years of age misreporting is age invariant.

Although it is now possible to compute an estimate of the target mobility matrix, Θ, its 

application to populations other that those similar to Costa Rica may be hard to justify if, as 

empirical evidence suggests, the severity of age misstatement is a function of a population’s 

literacy levels.

A less constraining assumption is that while the magnitude or severity is different and 

may depend on population characteristics, including education levels, the age pattern of age 

misreporting is similar across countries (irrespective of population education levels). This 

could be captured by shifting the probabilities of over (under) stating ages by some constant, 

say ϕo and ϕu for over and understatement respectively.

Although this is a reasonable strategy, it generates a new problem, namely, a unique 

solution for equation (3.2) may not exist since different combinations of ϕo and ϕu could 

yield identical results.To circumvent this difficulty we propose to use an age pattern of 

probabilities of net age overstatement defined as φxS = θx
o − θx

u.

Two conditions must be met before the age pattern of net age misreporting can be useful. 

First, at all ages older than 45 the probabilities of age overstatement must be larger than 

the probabilities of age understatement. Second, the conditional distribution of n, the integer 

number of years by which individuals exaggerate (diminish) their true age, follows a similar 

pattern among those who over and understate ages. Figure 1 displays predicted (from the 

logit model) probabilities of over and understating ages by age, θx
o and θx

u, Figure 2 displays 

the differences φxS = θx
o − θx

u or net overstatement, and Figure 3 shows predicted conditional 

probabilities of over and under stating ages by n years. These figures confirm that the first 

condition is always satisfied whereas the second condition is very closely met in these data 

as the differences in the conditional probabilities of under and overstating age by n years are 

trifle.

Jointly, the set of age-specific probabilities of net overstatement (Table 1) and associated 

conditional probabilities of overstating by n years (column 1 in Table 2), constitute what we 

will refer to as a standard pattern of age net overstatement. The introduction of this standard 

pattern simplifies the off-diagonal cells of a redefined matrix of net age overstatement, 

Θs
, as all entries for age understatement become zeros. Under conditions described below, 

identification is possible and a unique solution for ϕno, a parameter measuring the magnitude 

of net overstatement relative to the standard pattern, is possible.
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The formulation we propose defines observed patterns of net age overstatement as constant 

multiples of the standard pattern. Although this simplifies description, it should be borne in 

mind that the standard pattern is a set of probabilities, all bounded by 1 and, therefore, 

permissible values for the constant must be bounded above and below. Simple logit 

transform can resolve this.

3.4 Systematic misreporting of adult ages at death

Up to this point we focused solely on age misreporting in population counts. Although we 

know much less about about misreporting of ages at death, there is evidence suggesting that 

it also takes place (Rosenwaike1987; Coale and Li 1991). A handful of studies based on 

record linkages show that misreporting of ages at death does occur and is also dominated by 

age overstatement (Rosenwaike and Preston 1984). Additional empirical evidence originates 

in applications of techniques that detect footprints of overstatement of ages at death in a 

number of low and high income countries(see below). If so, it may be possible to estimate 

a transition matrix just like Θ but specialized to death counts. The information required is 

the following: (a) reported ages at death, (b) accurate dates of death, (c) accurate birth dates. 

To our knowledge, there are no examples of a data set that combines all three sources of 

information in LAC nor is there an empirical estimate of the associated transition matrix.

To circumvent this roadblock we rely on the following “identity”: there is a standard 
pattern of age net overstatement of death counts identical to the standard pattern of age net 
overstatement of population counts and, in addition, the level or magnitude of misreporting 

could be different in death and population counts. Although, as we show below, this leads to 

a simple solution of the problem, the assumption is quite strong and requires at least crude 

tests to assess its accuracy. We pursue these later in the paper.

We can now compactly define the final model of age misreporting in a set of two equations 

with two unknown parameters:

∏o = ϕnoΘs∏T
(3.4)

Δo = λnoΘs ΔT (3.5)

where ΠT and Πo are the true and observed population age distributions, ϕno is the level of 

net population age overstatement relative to the standard pattern embedded in Θs
, ΔT and Δo 

are the true and observed age distributions of death counts, and λno is the level of net death 

age overstatement relative to the standard pattern embedded in Θs
.

In closed populations equations (3.4) and (3.5) are naturally related and it is unlikely that 

solving for the two unknowns, one equation at time and, as shown in Appendix A, this will 

always lead to under-identification of ϕno and λno. A brief proof of lack of identification is 

in Appendix A. In sections 4.2 we propose a strategy that leads to a satisfactory treatment of 

the problem.
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4 Identification and estimation of errors due to systematic age 

misreporting

We first describe tools to identify the existence and nature of age misreporting in empirical 

data. We then combine these tools with the model in (3.4) and (3.5) to estimate the two 

unknown parameters of age misreporting from observed data. Finally, we describe a step-by 

step adjustment procedure.

4.1 Identification of systematic age misreporting

A key component of our analysis is the detection and identification of patterns of age 

misstatement in the population and death counts. The model discussed before suggests that 

distortions associated with age misreporting in population and death counts is more complex 

than those involving faulty completeness. Similarly, and unlike the case of age heaping, 

detecting the problem is difficult and, in the absence of overt and striking regularities, is 

likely to remain unnoticed.

There are two strategies to identify the existence of systematic age over(under) statement in 

either population or death counts. The first one requires external data sources with correct 

dates of birth (or ages) that can be compared to age-specific population (death) counts. 

These types of record linkages using multiple sources are costly and require resolution of 

complicated confidentiality issues.

A second strategy is much less data demanding, considerably less expensive, and simple 

to apply. However, it can only detect but not correct age misreporting and provides only 

a handful of clues about its nature. The procedure was first proposed by Preston and 

colleagues (Rosenwaike and Preston1984; Bhat 1990; Elo and Preston 1994; Grushka1996) 

and has been applied in countries of North America, Western Europe and in Latin America 

(Condran et al. 1991; Dechter and Preston 1991; Grushka 1996; Del Popolo 2000; Palloni 

and Pinto 2004). In a nutshell, the method consists of comparing cumulative population 

counts in a census in year t1 to the expected cumulative population counts in a second 

population census in year t2. The computation of expected quantities requires both an 

initial census opening the intercensal interval, a second census counts at time t2 closing 

the intercensal interval, and age specific deaths counts in the intercensal period spanning 

an interval of k = (t2 − t1 + 1) years. The ratio of observed to expected population is an 

indicator of age misstatement:

cmRx, t1, t2
o =

cmPx + k, t2
o /cmPx, t1

o

1 − cmDx, t1, t2
o /cmPx, t1

o (4.1)

where cmPx, t1
o  and cmPx + k, t2

o  are cumulative populations above ages x and x+k in the first 

and second census, respectively, and cmDx, t1, t2
o  is the cumulative (intercensal) number of 

deaths after age x experienced by the cohort aged x in the first census. This expression 

is a simple contrast between two different estimators of the same underlying unobserved 

parameter, namely, the cumulative survival ratio: the denominator uses the complement 
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of the observed ratio of (cumulative) intercensal deaths to the (cumulative) population in 

the first census, whereas the numerator expresses the same parameter as a survival ratio 

computed from the cumulative counts in two successive population censuses.

The behavior of this index can be summarized as follows:

1. When there are no errors, the values of the two estimates of the cumulative 

survival ratios will be identical and the index will be exactly 1;

2. When there is systematic age overstatement of population counts ONLY, the 

index will be less than 1 and will slope downward with age;

3. When there is systematic age overstatement of death counts ONLY, the index 

will be larger than 1 and will slope upwards with age;

4. When there is systematic age overstatement of BOTH population and death 

counts, the index will be generally larger than 1 and, with some exceptions, will 

slope upwards with age (but much less so than in case (3) above).

Appendix B contains an informal algebraic justification of the expected behavior of the 

index under the conditions specified above.

The foregoing description suggests that the observed sequence of values cmRx,[t1,t2] 

provides partial indication, albeit not completely unambiguous, about the nature and levels 

of systematic age misreporting in any particular case. Before venturing too far, however, 

three notes of caution are needed. First, empirical patterns of age overstatement of deaths 

and populations could offset each other and produce ratios close to 1. That is, it is possible 

(but unlikely) that in scenario (4) the ratios cmRx,[t1,t2] are 1 at all ages even though there is 

net age overstatement in population and death counts. Because of this possibility, diagnostics 

based on the observed value of cmRx,[t1,t2] alone can only detect consistency (including 

error consistency) rather than accuracy of age declaration in population and death counts 

(Dechter and Preston 1991).

Second, throughout we assumed that there is perfect coverage of both population and death 

counts and that the sequence cmRx,[t1,t2] could only be distorted by age misreporting. This 

is an unrealistic assumption, at least in LAC countries. In Appendix B we show that, under 

conditions of defective census and death registration coverage, the values of the sequence 

cmRx,[t1,t2] will also depend on Ct1, Ct2 and CD[t1,t2], the completeness of the first and 

second census, and the average completeness of intercensal death registration, respectively. 

The quantities Ct1, Ct2 and CD[t1,t2] are the ratio of the observed to the true counts in 

the first and second census and death respectively. Following standard practice, we assume 

that completeness of population and death registration are age invariant. In the evaluation 

study described later we identify procedures that are robust to violations of this assumption. 

This result justifies following standard practice throughout. As shown in Appendix B, the 

intrusion of Ct1, Ct2 and CD[t1,t2] in the expression for cmRx,[t1,t2] makes it impossible 

to separate the influence of age overstatement and of defective completeness. Lack of 

completeness will generate values of the index that are far away from 1 even if there is no 
age misreporting at all. As a consequence, the observed values of cmRx,[t1,t2] cannot be used 

to infer patterns of age misreporting unless population and death counts are first suitably 
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adjusted for defective completeness. Well-known adjustment techniques for completeness of 

population and death counts are identified and evaluated in Appendix C and D.

Third, like defective completeness, intercensal migration flows will distort the sequence 

of values cmRx,[t1,t2] even in the absence of errors in population and death counts or age 

distributions. If migration is known to have taken place, the observed ratios must be adjusted 

for age specific migration counts.

The technique to estimate the unknown parameters described below assumes that values 

of cmRx,[t1,t2] have been computed with data adjusted for defective completeness and 

migration.

4.2 Estimation of levels (severity) of age misreporting

Is it possible to use the adjusted- for- completeness sequence of values cmRx,[t1,t2] to 

retrieve the two unknown parameters, λno and ϕno? Under some conditions, a handful of 

solutions are possible. These depend on regularities discovered in an exploration of the 

effects of systematic age misreporting in simulated populations described below.

4.2.1 Simulated populations—To assess the effects of age misreporting we generated 

a very large number of simulated populations (N = 63,720) and their trajectories during a 

100 year time span. The assessment we describe in this paper uses only one intercensal 

interval, roughly corresponding to 1970–80. This large set includes a broad range of stable 

and non-stable populations, population and death counts with defective completeness, and 

population and death age distributions distorted by patterns of age misreporting described 

before.

Below we use the simulated populations to investigate the behavior of the sequence of values 

cmRx,[t1,t2]. In particular, we examine the relation between adjusted values of cmRx,[t1,t2] 

and the pair of unknown parameters for levels of age misreporting of deaths and population.

4.2.2 An important regularity in the simulated populations—Given its nature, 

it should be intuitively clear that the adjusted (for completeness and migration) sequence 

of values cmRx,[t1,t2] must be closely related to age and the magnitude of net age 

overstatement, namely, λno and ϕno. Less intuitive is the nature of such a relation. It came 

as a surprise to us that a very simple linear model captures the relation in the simulated 

population. The model is as follows:

cmRix, t1, t2
−1 = α0x + α1xλi

no + α2xϕi
no (4.2)

where i is an index for the simulated population, x ≥ 45 refers to age and, importantly, the 

values of cmRix,[t1,t2] are distorted only by age misreporting, not by defective completeness.

In this model the independent “variables” are the values of the levels of age misreporting 

λi
no and ϕi

no in the ith population whereas α0x, α1x and α2x are parameters estimable from 

the simulated data. Table 3 displays estimates of coefficients for the independent variables 

λi
no and ϕi

no from these simulated population. The table shows that the fit of the model is 
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very good and, importantly, that the estimated values of the constant of the model is always 

close to 1, as it should be when the parameters λi
no and ϕi

no drift to 0. The range of feasible 

values of the parameters of interest is in the closed interval ∼ [0,3]. Values outside this range 

produce implausible death and population age distributions (See Appendix C).

How can the above finding help us to estimate the unknown parameters λno and ϕno? 

If the population observed by the investigator is a member of the simulated set, the 

observed sequence of values (cmRix)−1 must obey equation (4.2). Thus, knowing what 

the values of α0x, α1x, and α2x are (in the simulated populations) suffices to identify 

the unknown parameters that generate the sequence cmRx,[t1,t2]. This requires to simply 

“invert” the relation represented by (4.2) as follows: for any observed population we define 

the vector of values [cmRx,[t1,t2]]−1 for all x > 45 as the ‘dependent variable’ and the 

corresponding vectors containing the values of the coefficients for ages x > 45 in Table 

3 as the “independent variables”. We then estimate a regression equation using as many 

observed values of [cmRx,[t1,t2]] as there are single year age groups in the observed data. 

The estimated regression coefficients will be unbiased estimates of the pair of unknown 

parameters (λno, ϕno) in the set of simulated populations. It follows, that they will also be 

unbiased estimates of the same parameters in the observed population as long as this belongs 

to the simulated set.

Table 4 displays results of the inverse procedure applied to the simulated populations with 

a limited combination of values of the unknown parameters. The first two columns of the 

table display estimates of the parameters λno, ϕno whereas the third and fourth columns 

display the actual values of these parameters in the simulated data. The last column of the 

table displays the values of R2. The table shows that, given the vector of values {cmRx=45, 

…, 100} from the simulated populations and the vectors of parameters {α1x=45, …,100} and 

{α2x=45 ….,100} extracted from Table 3 and used as independent variables, there is a best (in 

mean squared error sense) solution for the unknown parameters of model (4.2). The model 

(4.2) is ‘best’ in the sense that interaction terms or higher order moments of the independent 

variables do not reduce the mean squared error by a statistically significant amount. A 

comparison of ‘true’ (first and third columns) and estimated parameters (second and fourth 

columns) reveals satisfactory concordance. If one of the unknown parameters is close to 

0 (the simulated data contains no age overreporting) the inverse technique could produce 

a negative estimate for that parameter. But even so, it will always generate an accurate 

estimate for the other parameter as long as it is different from zero. A negative estimate 

is thus a tell-tale sign that the unknown parameter is too close to its lowest boundary (e.g 

no systematic age overstatement) and adjustments should only be a function of the other 

unknown parameter.

4.2.3 Alternative regression estimates—Although the simple regression procedure 

outlined above may work well in most cases, it is desirable to deploy other methods to 

generate a range of estimates of the unknown parameters and to reveal, at least informally, 

the uncertainty associated with adjustments. To accomplish this, we propose two different 

strategies.
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1. Constrained regressions. The very large set of simulated populations include 

values of parameters λno, no within a range, ∼ [0,3]. Thus, an obvious strategy 

is to estimate a regression model constraining the estimates to be within this 

permissible parameter space only. It is, of course, important to verify that the 

regression fits the data well. In addition, the constrained estimates should be 

approximately equal to the unconstrained ones. Significant differences may be an 

indication of violation of some of the assumptions.

2. Optimal regression. We could define a countable set of possible combinations 

of values of the unknown parameters λno, ϕno within the permissible range. 

Each pair will generate a set of predicted values for the elements of the vector 

cmRx,[t1,t2]. The mean (median) absolute difference between these predicted 

vectors and a vector of 1’s is a measure of errors associated with the combination 

of parameters λno, ϕno that generated the predicted vector. One could then choose 

the combination that minimizes the mean (median) absolute difference between 

the two vectors. It may be the case that there are multiple pairs of estimates that 

perform well and distinguishing among them could be difficult. If so, a plausible 

strategy is to construct adjusted life tables with each of the competing pairs of 

estimates. In a subsequent step one reevaluates their performance in light of the 

consistency of the adjusted life tables with other known life tables for the same 

population in different periods.

4.2.4 Important checks—All three regression methods described above should only 

be applied if the data passes two basic checks. The first is that the sequence of values 

cmRx,[t1,t2] must be free of errors associated with defective completeness. To ensure that this 

is the case the observed sequence must be adjusted for defective completeness. The adjusted 

values of the sequence are computed as follows

ADJcmRx, t1, t2

=
Ct2/Ct1 ∗ cmPx + k, t2

o /cmPx, t1
o

1 − .5 ∗ Ct1 + Ct2 /CD t1, t2 ∗ 1/ Ct1/Ct2 + 1 ∗ cmDx, t1, t2
o /cmPx, t1

o
(4.3)

an expression that includes the observed data and the estimated adjustment factors for 

completeness.

The second check must ensure that the sequence of adjusted values is well-behaved. By 

this we mean that it must contain only positive values and there should be no sharp 

discontinuities. Negative values and sharp discontinuities can be caused by inappropriate 

adjustments for relative completeness of death registration and/or violation of some or all of 

the assumptions supporting the use of the standard of age misreporting. But they can also 

be a consequence of erratic behavior of very low counts of population and deaths at extreme 

ages. In this case, it is advisable to trim the age groups included in the regression equation.

4.2.5 A regression-free solution—A regression-free approach yields a more general 

solution. It can be implemented by first constructing the matrix Θs
 using the standard 
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patterns of age misreporting. With this matrix it is possible to compute partially adjusted 

vectors of populations in both censuses and intercensal deaths. These adjusted vectors are 

associated with a unique sequence of values cmRx,[t1,t2] that corresponds to what would be 

observed if the pattern of age misreporting is well identified and the true parameters ϕno

and λno were equal to 1. One can then search for alternative values for the pair of unknown 

parameters and repeat the computations. In each case, a new sequence of values cmRx,[t1,t2] 

will be generated. Each of these sequences is associated with a measure of error, namely, 

the mean (median) absolute deviation from 1. One can then choose the pair of estimates that 

generates a sequence with minimal mean (or median) absolute deviation from 1 as the best 

possible estimates for the observed data. As in the case of an optimal regression, multiple 

pairs may perform well and the investigator may need exogenous criteria to choose among 

competing pair of parameter estimates.

5 An integrated procedure to remove distortions due to adult age 

misreporting

As argued before, a condition for the application of the above technique is that the sequence 

of values cmRx,[t1,t2] be adjusted for defective deaths and populations counts. Choosing a 

suitable procedure to do this, however, is complicated because there are multiple candidate 

methods to choose from, each with its own idiosyncracies, advantages, and shortcomings. 

To establish solid grounds for selecting an optimal adjustment method, we use the simulated 

populations and evaluate the performance of several techniques (see Appendices C and D). 

This evaluation study suggests the following strategy to compute final adjustments for age 

misreporting:

i. In the absence of exogenous information about the difference in completeness 

between the two census, obtain estimates of relative completeness of the two 

census enumerations. Brass (Brass 1979b, a) proposed a couple of procedures 

to estimate these quantities, one resting on the assumption of stability and 

another applicable to more general populations. To our knowledge, Hill(Hill 

and Choi 2004; Hill et al. 2009) suggested the use Brass’s method to adjust 

intercensal rates of growth rate before using methods to estimate defective dearth 

registration (see (ii) below). We will refer to this adjustment as the Brass-Hill 

method.

ii. Use the estimate of relative completeness obtained in the first step to correct 

the rates of intercensal growth and then apply one of the variants of Bennett 

and Horiuchi (1981) technique to estimate relative completeness of death 

registration;

At this point one can choose one of the following two options (or both)

iii. a Use results from (i) and (ii) to compute an adjusted sequence of values 

cmRx,[t1,t2] and apply the inverse technique in one of its three variants, 

unconstrained, constrained and optimal, to retrieve estimates of the unknown 

parameters λno, ϕno. or, alternatively, iii.a iii.b Use the regression-free approach 

to obtain best estimates of the unknown parameters;
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iv. Compute the matrix of age misreporting, ΘS
 and its inverse. Use these matrices 

and the estimates of levels of age misreporting for the unknown parameters, λno

and ϕno, obtained in step (iii.a) and/or (iii.b). Finally, use expressions (3.4) and 

(3.5) and the observed vectors of population and deaths, Πo and Δo, to compute 

adjusted populations and intercensal deaths counts.

v. Calculate mid-intercensal period mortality rates and adjust then for defective 

completeness;

vi. Compute an intercensal life table, centered in mid-period, with the adjusted 

intercensal mortality rates.

Needless to say, application of the integrated procedure requires a preliminary investigation 

to assess if the assumptions on which it rests are indeed satisfied. To support this assessment, 

Appendix E contains a sensitivity analysis with a partial evaluation of errors induced by 

departures from the assumptions about patterns of age misreporting in population and death 

counts.

6 Empirical illustration

We apply the integrated procedure to data for Guatemala in the intercensal period 1981–

1994. Despite much recent progress, the country’s death registration and census counts 

are still defective and offer good testing grounds for the technique as estimates of relative 

completeness of death registration in Guatemala after 1950 range between .75 and .91.

Figure 4 displays plots of deviations of observed, partially, and fully adjusted sequences 

cmRx,[1981,1994] from 1. The observed sequences reflect the impact of both defective 

completeness and age misreporting. They exhibit the expected upward slope caused by 

systematic age overstatement of both population and deaths. Large values of the sequence 

(and even sharp discontinuities leading to negative values) at very old ages are not 

uncommon and may not always be a sign of unusually large age overstatement. It could 

also be an artifact of random fluctuations of small counts at these ages and/or a result of 

inappropriate adjustments for defective census or vital registration coverage. The median 

values of absolute deviations are .30 for females and .21 for males.

To remove errors due to defective completeness we estimate completeness of the first 

census relative to the second, C1981/C1994, 1.03 for males and .98 for females, and relative 

completeness of death registration, CD[1981,1994]/(.5 ∗ (C1981 + C1994), .90 and .89 for 

males and females. We multiply the observed values of the function cmRx,[1981,1994] by 

the correction factor (see equation 4.3) and obtain the sequence of partially adjusted 

values plotted in the figure. As shown in the figure, adjustment for defective completeness 

significantly improves the behavior of the sequences, particularly among males but less so 

among females. The maximum deviation for males drops from about 2 to .5. Among females 

the reduction is from 7.5 to about 3.5. The median values are .27 and .056 for females and 

males respectively.
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To adjust for age misreporting we choose the regression-free method. To do so, we 

identify the pair of values for λno and ϕno that, when used jointly with the adjustment 

for defective completeness, yields a best fitting sequence cmRx,[1981,1994], e.g. one that 

minimizes absolute deviations from a vector of 1’s. These best estimates of λno, ϕno are in 

the range (0,.5) and (2–2.5) for females and (0-.5) and (1.5–2) for males. The parameters 

λno and ϕno are real numbers and can attain an uncountable number of values in the 

permissible range. To short-circuit the search of the optimal pair we looped through all 36 

possible combinations of discrete values 0, .5, 1, 1.5, 2.0 and 2.5. Thus, strictly speaking the 

solution we present here only identifies a range of values within which the “true” values are 

contained.

Figure 5 plots the median values of deviations of the fully adjusted sequences. The figure 

plots the median deviations of the fully adjusted sequences for each of the 36 pairs of 
parameters values. Before plotting, we rank the absolute deviations in ascending order so 

that the lowest value to the left of the graph is associated with the pair of optimal parameter 

estimates. In contrast, the highest value is associated with the worst performer pair. The 

scale of the x-axis is arbitrarily set to the natural numbers reflecting the rank order of 

the absolute deviations. In the case of females, for example, the minimum median value 

of absolute deviations from 1 was generated by estimates of λno in the range (0-.5) and 

estimates of ϕno in the range (2.0–2.5).

Ideally, the fully adjusted values of the sequence cmRx,[1981,1994] should be equal to or 

very close to 1. The smallest medians of absolute deviations of fully adjusted values from a 

vector of 1’s plotted in the figure are .014 and .21 for males and females. They represent 7 

and 70 percent of the male and female observed values, respectively, and 26 and 78 percent 

of the partially adjusted values. Although improvements are substantial, we live in an 

imperfect world and the fully adjusted values for females are less satisfactory than for males. 

In both cases these sequences are devoid of discontinuities, considerably flatter and closer 

to 1 than the observed ones but, as revealed by the values attained by absolute deviations, 

the adjustments are less satisfactory at the oldest ages. This could be an indication of 

mismatches between the assumed and underlying patterns of age reporting or imperfect 

adjustment for completeness of census and death registration.

In a final step, we use the inverse of the (male and female) estimated matrices Θs
, estimates 

of the two level parameters and compute adjusted (for age misreporting) vectors of age-

specific population and intercensal death counts. We then calculate adjusted (for defective 

coverage and age misreporting) age specific intercensal mortality rates, and an adjusted life 

tables centered in middle of the intercensal interval. Table 5 displays observed, partially 

and fully adjusted values of life expectancy at ages 5 and 60. Partially adjusted values 

only reflect adjustment for relative completeness and ignore age misreporting. The relative 

differences between observed and partially adjusted life expectancy at age 5, on one hand, 

and observed and fully adjusted values, on the other, are as follows: for life expectancy at 

age 5 they are about 3.7 percent and 4.1 percent for males and 2.8 percent and 3.9 percent 

for females. For life expectancy at age 60 the contrasts are sharper: differences for females 

are 6.3 percent and 12 percent very similar to those for males, 6.1 percent and 12 percent.
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7 Summary and discussion

The method proposed here combines corrections for completeness of censuses and death 

registration coverage with adjustments that remove effects of age misreporting in population 

censuses and death registration. Results from the evaluation study suggest that, under some 

assumptions, the proposed strategy is quite accurate and applies to a broad set of conditions 

frequently encountered in populations with defective censuses and vital statistics.

The logic of the technique is quite general and could be adapted to populations that 

exhibit patterns of age misreporting different from the standard adopted here. However, 

any adaptation demands that the age pattern in the observed population be known to the 

investigator and that suitable modifications are introduced before applying the adapted 

version of the technique

In cases in which the standard age pattern of age misreporting is consistent with the one 

adopted here, proper application of the technique requires that the observed population 

belongs to the large set of simulated populations. For this to be the case several conditions 

must be satisfied. The first condition is that the age pattern of age misreporting be a 

simple transform of the Costa Rican standard. This implies that (a) probabilities of net 

overstatement increase linearly (approximately) with age and (b) the conditional distribution 

of n, the number of years of overstatement be approximated by a negative binomial (or 

similar) density function.

The second condition is that the age patterns of older adult age misreporting of death counts 

be identical to the age pattern of age misreporting of population counts. The technique could 

be made more general and powerful if future research exploits record linkages to assess 

patterns of age misreporting of death counts. In the absence of this type of data, we proposed 

a handful of tests that detect severe departures from the assumption (see Appendix E).

The third condition is that the population is either closed to migration or that population 

counts are adjusted for migration. If the vector of values cmRx,[t1,t2] is accurately adjusted 

for defective completeness but not for migration, it will confound the effects of age 

misstatement with those of migration.

A useful application of the technique demands that the investigator ascertains if and to what 

an extent the observed data depart from any of the above assumptions. Mild departures may 

cause no damage whereas large departures will almost surely produce anomalous results that 

can be taken as a sign that application of the technique is unwarranted.

A final note is needed regarding the relation between adjustments for age heaping and 

adjustments for systematic age overeporting. Throughout we ignored age heaping. As 

emphasized in the text, systematic age misreporting is a different problem and has different 

implications than those of age heaping. Because it depends in accumulated quantities, the 

integrated technique minimizes the effects of age heaping and the resulting adjustments 

smooth out some of its impacts. If there are visible signs of age heaping, one could first 

smooth out the age distribution using a number of available procedures (assuming that the 
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one chosen is adequate for the observed population) and then adjust for systematic age 

overstatement. Doing the reverse could violate some the assumptions of the method.

In summary, the integrated procedure can handle a limited set of populations with a 

particular profile of defective statistics. It is not a grand solution to problems created by 

all classes of errors in population and death counts. It is, however, quite flexible and, with 

additional information, could be modified and applied to populations that do not fit the error 

profile for which it is originally designed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Predicted probabilities of over- and understating age, by age: Costa Rica 2000

Source: Estimates using a logit model with data from matching study of Costa Rica 2000 

Population Census and voting registers (Central American Center for Population at the 

University of Costa Rica).
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Figure 2. 
Predicted probabilities of net overstating age, by age: Costa Rica 2000. Source: As for 

Figure 1.

Palloni et al. Page 22

Popul Stud (Camb). Author manuscript; available in PMC 2022 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Conditional probabilities of over- and understating age by n years, by age: Costa Rica 2000

Source: Estimates using a multinomial logit model with data from matching study of Costa 

Rica 2000 Population Census and voting registers (Central American Center for Population 

at the University of Costa Rica).
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Figure 4. 
Absolute deviations of observed, partially, and fully adjusted values of cmRx,[1981,1994] 

from vector of ones, by sex: Guatemala 1981–94. Source: Authors’ calculations. Data and 

code available at https://gitlab.com/csic-echo/lambda-pop
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Figure 5. 
Median of deviations of fully adjusted values of cmRx, [1981,1994] from vector of ones for 

36 pairs of unknown parameters, by sex: Guatemala 1981–94 Note: Absolute deviations are 

ranked in ascending order from left to right. Source: As for Figure 4.

Palloni et al. Page 25

Popul Stud (Camb). Author manuscript; available in PMC 2022 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Palloni et al. Page 26

Table 1:

Estimated parameters of best logistic models for age misreporting.

Variable Overreporting Coeff(se) Underreporting Coeff(se)

True age
1 0.014(0.0036) 0.002(0.0040)

Constant −2.127(0.271) −1.846(0.297)

N 7,402 7,402

1
Models estimated in a sample of 6,290 individuals reported to be older than 60, excluding ambiguous cases a foreign citizens.

Note: All models estimated using sampling weights from the strati ed sample; Coeff corresponds to coefficients andse to standard errors.
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Table 2:

Average (conditional) probabilities
1
 of age misreporting by n years.

N Overstating Understating Difference

1 0.621 0.510 0.111

2 0.191 0.128 0.063

3 0.079 0.091 −0.012

4 0.040 0.052 −0.012

5 0.023 0.041 −0.018

6 0.015 0.035 −0.020

7 0.009 0.028 −0.019

8 0.007 0.026 −0.019

9 0.005 0.013 −0.008

10+ 0.009 0.060 −0.051

1
Predicted values computed from a null multinomial logistic model with 10 categories, from a model estimated in subsample of 1,786 individuals. 

All models estimated using sampling weights from the stratified sample. Figures may not add up to 1 due to rounding errors.
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Table 3:

Regression model relating index of age misstatement and parameters of age misreporting.

Age α0 α1 α2 R2

45 0,99750 −0,02605 −0,00351 0,9996

46 0,99874 −0,01187 −0,00426 0,9996

47 0,99925 −0,00599 −0,00490 0,9996

48 0,99954 −0,00278 −0,00555 0,9996

49 0,99973 −0,00062 −0,00623 0,9996

50 0,99988 0,00104 −0,00699 0,9997

51 1,00002 0,00245 −0,00785 0,9997

52 1,00015 0,00377 −0,00886 0,9997

53 1,00028 0,00505 −0,01004 0,9996

54 1,00043 0,00636 −0,01140 0,9996

55 1,00059 0,00772 −0,01299 0,9995

56 1,00077 0,00918 −0,01483 0,9995

57 1,00100 0,01090 −0,01698 0,9994

58 1,00130 0,01293 −0,01951 0,9993

59 1,00169 0,01537 −0,02252 0,9992

60 1,00219 0,01830 −0,02612 0,9991

61 1,00283 0,02173 −0,03033 0,9990

62 1,00365 0,02575 −0,03526 0,9989

63 1,00472 0,03058 −0,04117 0,9987

64 1,00612 0,03647 −0,04836 0,9985

65 1,00797 0,04371 −0,05717 0,9983

66 1,01040 0,05240 −0,06776 0,9980

67 1,01360 0,06275 −0,08046 0,9977

68 1,01791 0,07543 −0,09610 0,9974

69 1,02375 0,09123 −0,11566 0,9969

70 1,03163 0,11114 −0,14036 0,9965

71 1,04227 0,13588 −0,17126 0,9959

72 1,05678 0,16619 −0,20957 0,9953

73 1,07669 0,20367 −0,25758 0,9945

74 1,10412 0,25015 −0,31805 0,9936

75 1,14202 0,30774 −0,39439 0,9926
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Table 4:

Results of inverse method to recover parameters of age misreporting.

run ϕno ϕno λno λno R2

1 0.000 0.061 0.350 0.370 1.000

2 0.000 0.002 0.700 0.685 1.000

3 0.000 −0.059 1.050 0.999 1.000

4 0.000 −0.118 1.400 1.313 1.000

5 0.000 −0.178 1.750 1.628 1.000

6 0.000 −0.238 2.100 1.942 1.000

7 0.000 −0.298 2.450 2.256 1.000

8 0.000 −0.358 2.800 2.571 1.000

9 0.350 0.393 0.700 0.727 1.000

10 0.350 0.392 1.050 1.078 1.000

11 0.350 0.391 1.400 1.429 1.000

12 0.350 0.390 1.750 1.780 1.000

13 0.350 0.388 2.100 2.130 1.000

14 0.350 0.387 2.450 2.481 1.000

15 0.350 0.386 2.800 2.832 1.000

16 0.700 0.710 1.050 1.067 1.000

17 0.700 0.755 1.400 1.445 1.000

18 0.700 0.801 1.750 1.823 1.000

19 0.700 0.846 2.100 2.201 1.000

20 0.700 0.892 2.450 2.579 1.000

21 0.700 0.938 2.800 2.957 1.000

22 1.050 1.013 1.400 1.393 1.000

23 1.050 1.096 1.750 1.791 1.000

24 1.050 1.179 2.100 2.189 1.000

25 1.050 1.262 2.450 2.587 1.000

26 1.050 1.345 2.800 2.985 1.000

27 1.400 1.303 1.750 1.704 1.000

28 1.400 1.416 2.100 2.117 1.000

29 1.400 1.530 2.450 2.530 1.000

30 1.400 1.643 2.800 2.943 1.000

31 1.750 1.582 2.100 2.004 0.999

32 1.750 1.720 2.450 2.427 1.000

33 1.750 1.859 2.800 2.851 1.000

34 2.100 1.851 2.450 2.292 0.999

35 2.100 2.009 2.800 2.723 1.000

36 2.450 2.110 2.800 2.569 0.998
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Table 5:

Observed and adjusted life expectancy at ages 5 and 60: Guatemala, 1981–1994.

Observed and adjusted life expectancy
1

Population Age Observed
Adjusted

Partially
2

Fully
3

Males

5 60.06 58.3 57.73

60 17.11 16.12 15.24

Females

5 65.13 63.37 62.7

60 18.51 17.41 16.54

1
Relative completeness of first to second census: Males=1.0256; Females=0.984; Relative completeness of death registration: Males=0.899; 

Females=0.888. Severity of age misreporting: Males: λno value set to middle of range (0-.5); ϕno value set to middle of range (1.5–2); Females: 

λno value set to middle of range (0–.5) and ϕno value set to middle of range (2–2.5).

2
Adjusted for completeness only.

3
Adjusted for completeness and age misreporting.
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