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Abstract

Acquiring CBCTs from a limited scan angle can help to reduce the imaging time, save the 

imaging dose, and allow continuous target localizations through arc-based treatments with high 

temporal resolution. However, insufficient scan angle sampling leads to severe distortions and 

artifacts in the reconstructed CBCT images, limiting their clinical applicability. 2D-3D deformable 

registration can map a prior fully-sampled CT/CBCT volume to estimate a new CBCT, based 

on limited-angle on-board cone-beam projections. The resulting CBCT images estimated by 

2D-3D deformable registration can successfully suppress the distortions and artifacts, and reflect 

up-to-date patient anatomy through deformable registration. However, traditional iterative 2D-3D 

deformable registration algorithm is very computationally expensive and time-consuming, which 

takes hours to generate a high quality deformation vector field (DVF) and the CBCT. In this 

work, we developed an unsupervised, end-to-end, 2D-3D deformable registration framework using 

convolutional neural networks (2D3D-RegNet) to address the speed bottleneck of the conventional 

iterative 2D-3D deformable registration algorithm. The developed 2D3D-RegNet was able to 

solve the DVFs within 5 seconds for 90 orthogonally-arranged projections covering a combined 

90° scan angle, with DVF accuracy superior to 3D-3D deformable registration, and on par with 

the conventional 2D-3D deformable registration algorithm. We also performed a preliminary 

robustness analysis of 2D3D-RegNet towards projection angular sampling frequency variations, 

as well as scan angle offsets. The synergy of 2D3D-RegNet with biomechanical modeling was 

also evaluated, and demonstrated that 2D3D-RegNet can function as a fast DVF solution core for 

further DVF refinement.

I. Introduction:

Accurate tumor targeting has been a frequent challenge in radiation therapy, in most 

scenarios due to anatomical motion and deformation between treatment fractions and within 

each fraction (Keall et al., 2006; Liu et al., 2014). Faster imaging allows more frequent 

target localizations, which can potentially track mobile tumors and pinpoint radiation beams 
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towards them in real-time. Faster imaging may also translate into shorter patient on-board 

time, which may improve the treatment accuracy as longer on-board time was found 

positively correlated with the magnitude of target position deviations (Purdie et al., 2007; 

Ballhausen et al., 2018). However, due to the restrictions of currently-available imaging 

hardware, especially the rotational speed limit of the imaging arm, it usually takes ~1 minute 

or more to acquire a fully-sampled cone-beam computed tomography (CBCT), the current 

‘gold-standard’ imaging technique used in most modern linear accelerator (LINAC) systems 

(Jaffray and Siewerdsen, 2000). Digital tomosynthesis (DTS), or limited-angle CBCT, which 

is acquired through a partial arc rotation, can improve the temporal resolution of imaging 

for faster target localization (Zhang et al., 2013a; Zhang et al., 2013b). It may also be 

necessary in scenarios where a full-gantry rotation may not be cleared due to peripheral 

treatment sites, or obstructions from ancillary supporting systems attached to the patient. 

A limited-angle acquisition also naturally reduces the overall imaging dose to patients, and 

may allow continuous tumor localizations through arc-based treatment deliveries (Ren et al., 
2014; Zhang et al., 2017). However, the image quality of limited-angle CBCT is severely 

affected by the poor resolution along the direction perpendicular to the scan angle due to 

partial Fourier domain sampling (Davison, 1983; Zhang et al., 2013a). Previous studies have 

developed different approaches to improve the quality of the limited-angle CBCTs, while 

most of them can only remove partial of the artifacts, and usually still require a relatively 

large scan angle (>100°) for adequate image quality (Frikel and Quinto, 2013; Zhang et al., 
2016a; Wurfl et al., 2018).

2D-3D deformable registration, which is a technique that solves a deformation vector field 

(DVF) to map a previously acquired fully-sampled CT/CBCT (source) to a new on-board 

CBCT (target) via 2D projection matching, can be particularly effective under the limited-

angle sampling scenario (Ren et al., 2012; Wang and Gu, 2012; Zhang et al., 2013b; Zhang 

et al., 2016b). The combination of a priori high-quality information from the source image, 

and on-board information from limited-angle projections, can effectively mitigate the under-

sampling issue to render high-quality on-board CBCT images. Instead of measuring the 

similarity directly between a deformed source image and the artifacts-ridden limited-angle 

CBCT image, 2D-3D deformable registration calculates the similarity between the projected 

digitally reconstructed radiographs (DRRs) of the deformed source image and the artifacts-

free on-board projections. 2D-3D deformable registration has been investigated in recent 

years for its potential in sparse-view and limited-angle projection based CBCT estimation 

with very promising results (Brock et al., 2010; Ren et al., 2012). Recent developments 

also combined 2D-3D deformable registration with additional techniques, such as principal 

component analysis-based motion modeling, motion-compensated image reconstruction, or 

biomechanical modeling to further enhance its accuracy and applicability (Zhang et al., 
2013b; Wang and Gu, 2013; Zhang et al., 2016b). However, the current 2D-3D deformable 

registration algorithms involve a computationally-expensive optimization scheme of costly 

forward- and back- projection operations, repeated DVF gradient computations, iterative 

step size searches, and numerous image interpolations. Although parallel acceleration 

schemes via graphics processing units (GPUs) has been introduced into the 2D-3D 

deformable registration for efficiency improvement, considerable runtimes up to hours are 

still needed to derive a high-accuracy DVF. A prohibitive runtime defeats the purpose of 
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using limited-angle acquisition for fast on-board imaging and target localization, and limits 

its clinical deployment.

With the recent developments in artificial intelligence and machine learning, especially 

deep learning, many imaging-related tasks including segmentation, reconstruction, and rigid/

deformable registration have been successfully implemented via deep convolutional neural 

networks (Wang et al., 2018; Rivenson et al., 2018; Balakrishnan et al., 2019; Fu et al., 
2020). Packages including the Voxelmorph have been available to solve DVFs between 

images through deep neural networks within seconds at test time (Balakrishnan et al., 2019). 

However, those networks were designed to solve registrations between similar-quality 2D 

image pairs or 3D image pairs. No 2D-3D deformable registration has been attempted 

through a neural network framework yet. As the 2D-3D deformable registration is often 

based on sparse-view and limited-angle projections, it makes the deformable registration 

especially challenging as a high-quality target image is not available for the registration.

To address this issue, in this study, we developed an unsupervised, end-to-end, 2D-3D 

deformable registration network (2D3D-RegNet) on the basis of a core U-net structure, a 

popular network proved effective in handling various image domain tasks (Ronneberger et 
al., 2015). A simple Feldkamp-Davis-Kress (FDK) reconstruction module was included into 

the 2D3D-RegNet to align the 2D projections with the source image to feed into the U-net 

as parallel channels (Feldkamp et al., 1984). Forward-projection module was also included 

into the network to generate 2D DRRs from the deformed 3D source images to assess 

their match to 2D target cone-beam projections. A DVF inversion module was included in 

the 2D3D-RegNet to invert the forward DVF to promote inverse deformation consistency, 

which also adds additional constraints and regularizations for the ill-conditioned 2D-3D 

deformable registration problem. Different limited-angle sampling scenarios were simulated 

to evaluate the accuracy of 2D3D-RegNet against the traditional 2D-3D deformable 

registration algorithm, and against a mainstream, open-source deformable registration 

package (Elastix) (Klein et al., 2009). The feasibility and accuracy of combining 2D3D-

RegNet with biomechanical modeling were also evaluated to demonstrate the utility of 

2D3D-RegNet as a core for fast image registration and CBCT estimation.

II. Materials and Methods:

II.A. Network structures:

As shown in Fig. 1, the overall workflow of 2D3D-RegNet includes input channels (source 

image and target cone-beam projections), a reconstruction module, a U-net core, a forward-

projection module and a DVF inversion module. The function and design of each of the 

modules were introduced as following:

II.A.1. Reconstruction Layer: The input source 3D images and the cone-beam 

projections are of different physical properties, on different image reference frames, and 

also of different dimensionality and resolution. To align the two inputs as parallel channels 

that can be directly fed into the following U-net structure, in this study, we added a GPU-

enabled, non-trainable reconstruction layer on the basis of the 3D FDK algorithm to convert 

the 2D projections into the 3D image domain (Feldkamp et al., 1984; Syben et al., 2019a). 
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The FDK-reconstructed target image, as well as the source image, were concatenated as two 

channels to input into a following U-net core structure to solve the DVFs.

II.A.2. U-Net Core: With a multi-layered encoder and decoder structure, the U-net has 

been widely used for image registration studies for its capability of capturing both global 

structure changes and local variations, and generating voxel-wise DVFs (Eppenhof and 

Pluim, 2018; Balakrishnan et al., 2019). In this study, same as Voxelmorph, we used U-net 

as the core structure to generate the DVFs. The core U-net structure starts with a 16-filter 

convolutional layer, which was followed by four down-sampling convolutional layers (with 

a stride of two) of 16, 32, 32, and 32 filters, respectively. The expansive path features 

four layers symmetric to the contractive path, with each layer composed of up-sampling, 

concatenating skip connection, and convolution (32 filters) operations. The output of the 

expansive path was further convolved by three additional layers of 16, 16 and 3 filters, 

respectively. The final 3-filter convolutional layer yields a DVF output the same size as the 

original image, with three channels each representing the DVF along one Cartesian direction 

(x, y and z). All convolutional filters are of size 3 × 3 × 3, and each convolution operation 

was followed by a LeakyRelu activation with parameter 0.2 (Fig. 2).

II.A.3. DVF Inversion layer: The U-net core structure outputs the forward DVF that 

maps the source image to the target image. Contrary to the forward DVF, inverse DVF 

maps the target image back to the source image. The simultaneous solution of the inverse 

DVF along with the forward DVF is desired for many applications, including motion-

compensated reconstruction and finite-element-analysis based biomechanical modeling 

(Wang and Gu, 2013; Zhang et al., 2016b; Biguri et al., 2017). The solution of inverse-

consistent DVF pairs also further regularizes and improves the DVF accuracy. The inverse 

DVF was usually computed as the negate of the forward DVF, which was also employed 

in previous 2D-3D deformable registration algorithms (Wang and Gu, 2013). However, 

it is acknowledged that the negate operation is over-simplified and can lead to large 

inversion errors especially for those regions with large deformations (Chen et al., 2008). 

For previously developed 2D-3D algorithms, more complex DVF inversion schemes like the 

fixed-point iterative method and the Newton’s method was not used as they would render 

the gradient difficult to be analytically computed to drive DVF optimization (Gobbi and 

Peters, 2003; Chen et al., 2008). With the automatic differentiation method employed in 

deep learning network for gradient calculation and parameter optimization, however, more 

advanced inversion schemes can potentially be incorporated into the network. In this study, 

we incorporated a DVF inversion layer based on the iterative fixed-point method to generate 

the inverse DVFs based on their forward counterparts (Chen et al., 2008).

II.A.4. Forward-projection layer: To compute the similarity metric in the 2D 

projection domain, a GPU-enabled, non-trainable forward-projection layer was incorporated 

as a network layer, which computes 2D cone-beam projections from the deformed images 

using the Siddon’s ray-tracing algorithm (Siddon, 1985a; Syben et al., 2019a). The 

conjugate filtered back-projection operation (FDK) was registered as the gradient of the 

network layer when back-propagating the gradient of the designed network. Both the 

forward-projection layer and back-projection FDK reconstruction layer were adapted from 
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the PYRO-NN (python reconstruction operators in neural networks) package (Syben et 
al., 2019b), which provides them as embedded known operators that preserve the domain 

knowledge in image reconstruction while allowing an end-to-end deep learning chain using 

the Tensorflow backend (Abadi et al., 2016).

II.B. Loss function design

In 2D3D-RegNet, we defined three different loss functions to train the network. The 1st loss 

term (Loss1) measures the similarity between the input 2D cone-beam projections and the 

DRRs projected from the deformed source image (Equation set 1, Fig. 1). It serves as the 

main data fidelity term to drive the optimization of the DVF (v).

Idef = Isource x + v ,

Loss1 = D A * Idef, Ptarget (1)

In Equation set 1, Isource indicates the source image to be deformed (the fully-sampled 3D 

prior image, as in the case of 2D-3D deformable registration). x indicates the Cartesian 

coordinates of the Isource voxels, and v indicates the corresponding DVF at each voxel 

coordinate. Idef represents the resulting deformed source image, which was mapped by 

trilinear interpolation in this study (Ren et al., 2012). Ptarget indicates the on-board acquired 

target 2D projections reflecting the most up-to-date patient anatomical information, which 

drives the 2D-3D deformable registration. A is the system matrix that maps Idef onto the 

Ptarget reference frame using the Siddon’s ray-tracing algorithm (Siddon, 1985b). D indicates 

the image similarity metric, which can take many forms including mean absolute error, mean 

squared error, cross correlation, or mutual information (Viola and Wells III, 1997; Willmott 

and Matsuura, 2005; Zhao et al., 2006; Wang and Bovik, 2009). In this study, we used mean 

squared error as the similarity metric, while more advanced metrics may be used to improve 

the registration robustness.

The 2nd loss term (Loss2) employed in the network is the inverse similarity loss, based on 

the inverse DVF generated from the DVF inversion layer (II.A.3) (Zhang et al., 2016b). In 

the DVF inversion layer, the inverse DVF (vinv) was calculated via an iterative fixed-point 

conversion scheme as (Chen et al., 2008):

vinv
0 = 0,

vinv
n = − v x + vinv

n − 1 , n = 1, …, N (2)

n indicates the iteration number, with its maximum N. To strike a balance between the 

computational/memory load and accuracy, we set N = 7 in this study. vinv yields the 

corresponding Loss2 as shown in Equation set 3:

Iinv − def = Idef x + vinv ,
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Loss2 = D A * Iinv − def, A * Isource (3)

This loss term serves to measure the similarity between the inversely-deformed Iinv−def 

and the original Isource, enforcing the inverse-consistency of the DVF. Since a 3D high-

quality target image is not available for inverse registration, except for the low-quality one 

reconstructed from the Ptarget projections, we used the forwardly-deformed source image Idef 

as the target image to feed into the inverse-deformation scheme to generate the inversely-

deformed Iinv-def (Equation set 3). The forward-projection layer applied system matrix A to 

Iinv-def to generate DRRs for comparison with DRRs simulated directly from Isource. Same as 

Loss1, Loss2 was designed to measure the similarity metric D along the projection domain. 

Such a design eliminates the necessity of applying a relative weighting factor between Loss1 

and Loss2 which is needed if they are measuring similarities at different image domains. 

In general, the Loss2 term not only helps to further regularize the DVF solution, but also 

offers an inverse DVF to drive advanced applications like biomechanical modeling and 

motion-compensated reconstruction (Wang and Gu, 2013; Zhang et al., 2016b).

The 3rd loss term (Loss3) for the network training calculates the DVF energy and enforces 

the DVF smoothness:

E v = ∑x = 1
ni ∑y = 1

nj ∑z = 1
nk ∑m = x, y, z

∂vm
∂x

2
+ ∂vm

∂y
2

+ ∂vm
∂z

2
(4)

In Equation 4, m indicates one of the three Cartesian directions x, y and z. vm indicates 

the DVF along the corresponding m direction. ni, nj and nk indicate the image dimension 

along the three Cartesian directions x, y and z, respectively. DVF energy regularization is 

commonly applied in deformable registration algorithms to help preserve the smoothness of 

the deformation field, and reduce the solution space for more stable convergence (Lu et al., 
2004). A weighting factor of 5 was applied to the energy term relative to the combined Loss1 

and Loss2 terms after trial-and-error, to balance the data fidelity and the regularization loss 

terms.

II.C. Data preparation and training scheme:

To train the 2D3D-RegNet, we used 4D-CT lung datasets from two public libraries: 

the cancer imaging archive (TCIA) (Hugo et al., 2016) and the CREATIS laboratory 

(Vandemeulebroucke et al., 2011). A total of 20 4D-CT sets from TCIA, and another 6 

4D-CT sets from CREATIS were used as our training dataset. Each 4D-CT set has a total 

of 10 respiratory phase volumes. All 4D-CT phase volumes were resampled to 256 × 256 

× 256 in size, with each voxel measuring 1.5 mm × 1.5 mm × 1.5 mm in dimension. 

For each 4D-CT set, we extracted the end-expiration phase as the 3D source image, and 

simulated 2D cone-beam projections from all phases (including the end-expiration phase) 

for 2D-3D registration. The projection matrix was simulated in full-fan mode with 512 

× 512 pixels, with each pixel measuring 0.8 mm × 0.8 mm in dimension to match the 

X-ray volume imaging (XVI) system of Elekta (Elekta Limited: Crawley, UK) (Thing et 
al., 2013). For the cone-beam geometry, the source-to-isocenter distance was 1000 mm and 
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the source-to-detector distance was 1500 mm. The projections were simulated to match two 

limited-angle acquisition scenarios (Fig. 3): (1). Single-view: projections evenly distributed 

over a single-angle spanning around the anterior-posterior (AP) direction of the patient; and 

(2). Ortho-view: projections evenly distributed over two orthogonally-arranged angle spans, 

one along the AP direction, and the other along the left lateral direction of the patient. For 

each scenario, five total scan angle spans were simulated: 0°, 15°, 30°, 60° and 90°. The 

projections at each cluster were sampled every 1°.

The 2D3D-RegNet was developed through the Keras application programming interface 

(Version 2.3.0) (Gulli and Pal, 2017), using Tensorflow (Version 2.2.0) as the backend 

(Abadi et al., 2016). For training of the 2D3D-RegNet, we used a batch size of 1 due to the 

GPU card memory limit. Each batch randomly selected one patient from the 26 data sets, 

extracted the end-expiration phase as the source image, and randomly selected the simulated 

cone-beam projections at one phase as the new cone-beam projections. The 2D projections 

and the 3D source images were simultaneously input into the 2D3D-RegNet (Fig. 1) to 

drive the unsupervised, end-to-end, 2D-3D deformable registration training. A total of 50000 

epochs were used to train 2D3D-RegNet, which took ~72 hours on a NVIDIA V100 GPU 

card (NVIDIA Corporation, Santa Clara, CA). Independent models were developed and 

trained for each of the angular acquisition scenarios shown in Fig. 3.

II.D. Testing and evaluation:

II.D.1. Testing data: We used an independent in-house 4D-CT lung dataset to test the 

efficacy of the developed 2D3D-RegNet. The corresponding dataset has 12 lung patient 

cases, and each case has 10–14 respiratory phase volumes. Similar to the training dataset, 

the image volumes were resized to 256 × 256 × 256 with each voxel measuring 1.5 mm 

× 1.5 mm × 1.5 mm in dimension. The end-expiration phase of each case was selected as 

the source image, and cone-beam projections were simulated from the end-inspiration phase 

volume according to the scan angle scenarios of Fig. 3. The end-inspiration phase was used 

for testing as it has the largest extent of deformation from the source image, and could better 

assess the accuracy of 2D3D-RegNet.

II.D.2. Evaluation metrics: The images deformed using 2D3D-RegNet were visually 

compared against the original end-inspiration CT phase volumes which were used as the 

‘ground-truth’ (IGT). Relative errors (REs) were calculated between the deformed and 

‘ground-truth’ images to quantitatively assess the deformation accuracy (Eq. 5).

RE =
∑V (Idef − IGT)2

∑V IGT
2 × 100% (5)

The RE metric calculates the attenuation coefficient difference between Idef and IGT. A 

larger RE indicates more deviation from the true image.

Besides the images, 952 lung landmarks of small lung details were manually tracked by 

expert physicians on the 4D-CT lung dataset, which were also used as the reference to 
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benchmark the DVFs solved by 2D3D-RegNet (Werner et al., 2009; Zhang et al., 2016b). 

The target registration error (TRE) was defined as:

TRE = ∑m = x, y, z vmlm − vm
2

(6)

vmlm indicates the tracked landmark motion along direction m.

II.D.3. Evaluation scheme: To evaluate the efficiency and accuracy of 2D3D-RegNet 

in the context of currently available methods, we compared the deformation accuracy of 

2D3D-RegNet against that of the traditional iterative 2D-3D registration algorithm (Zhang 

et al., 2016b), and a widely-utilized 3D-3D deformable registration open-source package 

(Elastix) (Klein et al., 2009). Same as 2D3D-RegNet, the iterative 2D-3D registration 

algorithm combines symmetric forward and inverse data fidelity terms to enforce 2D 

projection matching, and an energy term for DVF regularization (Zhang et al., 2016b). 

The gradient of the overall objective function can be analytically derived to implement 

gradient-based optimization algorithms, and the conjugate gradient algorithm was used in 

this study. More details regarding the traditional 2D-3D deformable registration algorithm 

can be found in previous publications (Zhang et al., 2013b; Zhang et al., 2016b). On the 

other hand, Elastix is a popular 3D-3D deformable registration package which found wide 

applications in a number of studies (Staring et al., 2010; Kerner et al., 2015; Marchant et 
al., 2018). To use Elastix for registration, we reconstructed the 2D projections to a 3D target 

volume (Feldkamp et al., 1984), and performed registrations between the source and the 

reconstructed target 3D volumes.

In actual clinical scenarios, the angular sampling frequency may differ from the 1°/

projection setting adopted in our network training process. To further evaluate the robustness 

of 2D3D-RegNet, we differed the angular sampling frequency during the test time, and 

evaluated how it affected the registration accuracy. Five additional scenarios were simulated: 

(a). 0.25°/projection, (b). 0.5°/projection, (c). 2°/projection, (d). 4°/projection, and (e). 8°/

projection. In addition to angular sampling frequency variations, the scan angles may also 

not conform exactly to what was adopted during training (Fig. 3). Thus we also evaluated 

scenarios in test time where the scan angles deviated from those in training by five different 

magnitudes: (a). off by 5°, (b). off by 10°, (c). off by 15°, (d). off by 20°, and (e). off by 25°. 

The impacts of these variations in test time were quantified and analyzed through the metrics 

defined in II.D.2.

Since 2D-3D deformable registration (based on limited-angle projections) is an ill-

conditioned problem, previous studies also combined different DVF fine-tuning steps to 

further improve the accuracy of solved DVFs (Zhang et al., 2013b; Zhang et al., 2016b). In 

this study, we also added a biomechanical modeling step after 2D3D-RegNet to demonstrate 

that 2D3D-RegNet can function as a core to generate DVFs in near real-time, and the 

output DVFs could then be fine-tuned by far less computationally-expensive steps for 

efficient and high-quality deformable registration (Fig. 4). In general, the biomechanical 

modeling step uses the 2D3D-RegNet solved DVFs at the organ of interest boundary (lung 

in this study) to provide boundary condition to drive finite-element-analysis based lung DVF 
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correction. The physics-driven biomechanical modeling step helps to correct the residual 

errors of the pure intensity-driven DVFs solved by 2D3D-RegNet, especially those around 

small fine structures or low-contrast regions (Zhang et al., 2016b; Zhang et al., 2019). For 

biomechanical modeling, a lung mesh of tetrahedral elements needs to be built from the lung 

contour segmentation of the source image, which could be conveniently generated off-line 

as soon as the source image becomes available. More details about the biomechanical 

modeling process, including the mathematical derivations, the material models used, and the 

corresponding elasticity parameter optimization can be found in our previous publication 

(Zhang et al., 2016b).

In clinical scenarios, the source and the target images may be acquired hours, days or 

weeks apart, and may contain motion/deformation patterns not seen between same-session 

4D-CT images (intra-scan). For more comprehensive evaluation, we included additional 

4D-CT image sets (inter-scan) from the TCIA library. Out of the 20 patient cases of the 

library, 14 of them have inter-scan 4D-CT sets that are acquired weeks apart from the 

original 4D-CT set which we used in II.C. We included these inter-scan 4D-CT sets of 

10 cases into the training set which was described in II.C, and tested the trained model 

on the inter-scan 4D-CT sets of the other 4 cases. To perform the inter-scan registration, 

we used the same end-expiration phase volume of the original 4D-CT set (II.C) as the 

3D source image, and simulated the cone-beam projections from all the inter-scan 4D-CT 

phase volumes. In total, an additional 310 images were added to the training dataset, and 

a total of 160 inter-scan images were used for testing (a few inter-scan 4D-CT images of 

the TCIA dataset were excluded, due to substantial differences between their covered range 

in the longitudinal direction and that of the original 4D-CT set). Prior to the deformable 

registration, the source images were rigidly-registered to the inter-scan target projections to 

roughly align their positioning (Zhang et al., 2013a). The RE metric between the deformed 

and the ‘ground-truth’ inter-scan images was calculated for quantitative analysis.

III. Results:

III.A. Image Comparison

As shown in Figs. 5 (a) and 5 (b), the limited-angle projections from a single-view yielded 

significant artifacts and structure distortions in the reconstructed FDK images (Target-FDK). 

Correspondingly, direct 3D-3D deformable registration by Elastix is error-prone, which 

generated severe distortions in the deformed images (Elastix). For the Elastix registration 

results shown in Fig. 5, we used a region-of-interest mask to exclude regions outside the 

imaging field-of-view to account for the limited projection size, which however is unable to 

suppress the strong distortion artifacts from limited-angle sampling. In comparison, 2D3D-

RegNet has preserved the image integrity and did not introduce the distortions into the 

deformed image (2D3D-RegNet). It also deformed the lungs to well match with the ground-

truth target images (Target-GT). When ortho-view projections were used (Figs. 5 (c) and 5 

(d)), the image distortion artifacts were mitigated in the FDK images, which however still 

severely impacted the accuracy of Elastix-based deformable registration. The 2D3D-RegNet, 

on the other hand, worked well in both single-view and ortho-view projection scan angle 

scenarios.
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III.B. Quantitative Evaluation

Quantitative results shown in Table 1 and Table 2 echoed the images presented in Fig. 5. The 

2D3D-RegNet substantially improved the accuracy of the estimated on-board CBCT images 

through the deformation-driven approach, as compared to that of the CBCT images directly 

reconstructed by the FDK algorithm (Table 1). The 2D3D-RegNet also outperformed the 

Elastix (with and without masks) in terms of the accuracy of the deformed images and the 

accuracy of the DVFs (Table 1 and Table 2). Increasing the scan angle expectedly improves 

the accuracy of 2D3D-RegNet. Though with the same total scan angles, projections acquired 

from an orthogonal-view setting yielded better results than those acquired from a single 

direction, due to the complimentary information offered from the orthogonal directions. 

Comparing the traditional 2D-3D deformable registration with 2D3D-RegNet, under the 

single-view scan angles their results are similar (2D3D-RegNet performed better on the 

TRE metric), while under the orthogonal-view scan angles the traditional 2D-3D deformable 

registration algorithm performed better in the RE metric. Speed-wise, the 2D3D-RegNet 

solved DVFs for image volumes of size 256 × 256 × 256 in < 5 seconds at test 

time. In comparison, the iterative 2D-3D registration technique takes ~1.5 hours for 30 

projections, and 4–5 hours for 90 projections. Even though GPU-acceleration has already 

been incorporated into the iterative 2D-3D deformable registration technique, the conjugate 

gradient algorithm employed in its optimization scheme is very computationally expensive 

and time consuming in the step size searching process (Ren et al., 2012), which rendered the 

overall computation time prohibitively long.

III.C. Preliminary robustness analysis of 2D3D-RegNet

Table 3 summarizes the accuracy of the deformed images and the DVFs solved by 2D3D-

RegNet, under testing scenarios where the projection angular sampling frequencies differed 

from that used in training. The overall impact of angular sampling frequency variations is 

small. When angular sampling frequency changed from 0.25°/prj to 8°/prj, the average RE 

changed 0.3% - 0.8%, and the average TRE changed less than 0.3 mm. The 2D3D-RegNet 

demonstrated robustness towards angular sampling frequency variations, indicating the same 

network can potentially be applied to clinical scenarios with different angular sampling 

frequencies.

Similar to Table 3, Table 4 summarizes the accuracy of the deformed images and the DVFs 

solved by 2D3D-RegNet, under testing scenarios where the overall scan angles were offset 

by various degrees, as compared to the training scenario (Fig. 3). Compared to angular 

sampling frequency variation, the 2D3D-RegNet was not as robust to scan angle offset. 

However, scan angle offsets up to 15° yielded RE changes within 1%, and TRE changes 

within 0.2 mm, for the four scan angle scenarios studied. Acquisitions of smaller scan angles 

were more susceptible to the scan angle offset, which is expected.

III.D. 2D3D-RegNet and biomechanical modeling synergy

The original TRE between the source and target images with zero DVFs for all 952 

landmarks is 6.7 ± 5.2 mm. Based on a scan angle of ortho-view 30°, the mean (± s.d.) 

TRE reduced to 4.5 ± 3.4 mm by 2D3D-RegNet. Incorporating additional biomechanical 

modeling (Fig. 4) further reduced the TRE to 3.7 ± 2.8 mm. Increasing the scan angle 
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to ortho-view 90° further reduced the TRE to 3.3 ± 2.4 mm, for 2D3D-RegNet with 

biomechanical modeling fine-tuning. The registration results of ortho-view 90° were similar 

to a previous biomechanical modeling study based on the same data (3.3 ± 2.1 mm) (Werner 

et al., 2009). This previous study, however, used boundary conditions derived through direct 

registrations between the original fully-sampled 3D images. Using only ortho-view 90° 

projections (45° from each direction), 2D3D-RegNet was able to generate similarly accurate 

boundary conditions to drive finite element analysis for biomechanical modeling. A previous 

publication combining traditional iterative 2D-3D registration and biomechanical modeling 

generated slightly better results (2.9 ± 2.1 mm) (Zhang et al., 2016b). This previous study, 

however, used sparse projections covering a full 360° scan angle, and based on a much 

larger projection size (300 × 200, with 2 mm × 2 mm per pixel) that covers the full 

field-of-view. In addition, the previous study requires a computation time of over 1 hour 

for 20 projections. In comparison, the combined 2D3D-RegNet and biomechanical modeling 

runtime is less than 1 minute, which renders the total registration timeframe clinically 

feasible.

III.E. Evaluation of inter-scan registration

As shown in Fig. 7, for inter-scan registration, 2D3D-RegNet not only registered the 

respiratory-induced deformation (for instance, around the diaphragm region), but also 

registered mismatched areas including the upper chest wall where the image difference 

is more correlated with inter-scan positioning variation. The inter-scan external body contour 

mismatch has also been partially corrected by 2D3D-RegNet, especially for the ortho-90° 

scan angle scenario. Due to the field-of-view limit, some mismatches remain, especially for 

the single-90° scenario where the structure distortions in the FDK images were more severe.

Quantitatively, using single-90° projections for reconstruction/registration, the average (± 

s.d.) REs of Target-FDK, Elastix (with field-of-view mask) and 2D3D-RegNet were 55.4% 

(± 1.8%), 37.4% (± 5.0%), and 19.2% (± 4.1%), respectively. For ortho-90° projections, 

the corresponding results were 52.0% (± 2.6%), 28.6% (± 2.7%), and 17.3% (± 3.5%). The 

2D3D-RegNet presented larger REs as compared to the intra-scan registration evaluation 

(Table 1 and Table 2), which is expected as the deformation/motion patterns became more 

diverse and complex between inter-scan images to learn and register.

IV. Discussion:

2D-3D deformable registration is a promising technique that can generate high-quality, 

accurate on-board CBCT images from prior images and sparse-view or limited-angle on-

board projections. The mapping of prior information to new CBCT using DVFs can not 

only save on-board imaging dose/time, but enables accurate Hounsfield unit (HU) rendering 

for on-board dose calculation/optimization (Zhang et al., 2015b). The solved DVFs also 

fit well into the adaptive radiotherapy workflow to enable contour propagation and dose 

accumulation (Yan et al., 1997). To address the speed bottleneck of current iterative 2D-3D 

deformable registration techniques, in this study we developed an end-to-end, unsupervised 

2D-3D deformable registration network frame to allow near real-time DVF solution. Visual 

comparisons of the deformed images (Fig. 5, Fig. 7), and corresponding quantitative 
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evaluations of these images and the solved DVFs (Table 1, Table 2), demonstrated 

the superiority of 2D3D-RegNet over the conventional FDK reconstruction algorithm, 

and a 3D-3D registration method (Elastix). In the current 2D3D-RegNet structure, we 

reconstructed the 2D projections at the beginning to a 3D volume via FDK to align with 

the source 3D image, such that both can be conveniently fed into a subsequent U-net 

core as parallel channels. The FDK reconstruction is a degenerative process, especially 

considering the 2D projections are limited-angle, which leads to severe under-sampling 

artifacts in the reconstructed images (Fig. 5, Fig. 7). However, since the image similarity 

metric is measured by 2D3D-RegNet on re-projected 2D DRRs of the deformed image, 

instead of directly on artifact-ridden 3D images, the final deformation results are superior to 

direct 3D image-domain registration, with artifacts and distortions successfully suppressed 

(Fig. 5, Fig. 7 Table 1 and Table 2). Although the current study is based on limited-angle 

projections, the same network is readily applicable to sparse-view projections, where a few 

acquired projections cover a full scan-angle.

The results also showed that 2D3D-RegNet performed similarly to the traditional iterative 

2D-3D registration algorithm (Table 2), while with substantially improved efficiency (< 

5 seconds as compared to hours). However, the iterative 2D-3D registration algorithm 

generated comparatively smaller REs than 2D3D-RegNet (Table 1) under ortho-view scan 

angles. The discrepancy is potentially due to the artifacts and the distortions presented 

in the FDK input channel when the projections from two distinct, orthogonally-arranged 

scan angles were mixed together in reconstruction, as well as the loss of information 

from the degenerative FDK reconstruction process (Fig. 5, Fig. 7). Potential solutions to 

further improve the accuracy of 2D3D-RegNet include adding additional image filtration 

or enhancement layers after the FDK reconstruction module, or directly inputting the 2D 

projections into the network without explicit reconstruction, or feeding the projections into 

the network multiple times through a recurrent or cascaded pattern. Inputting two FDK 

channels separately reconstructed from the projections at each orthogonal direction, instead 

of one channel reconstructed from the mixed projections, may also be helpful.

In this study, we preliminarily evaluated the robustness of 2D3D-RegNet towards projection 

angular sampling frequency variations and scan angle variations (Table 3 and Table 4). 

Such a test is clinically relevant, considering actual clinical projection acquisitions can be 

similarly prone to these variations. The developed 2D3D-RegNet showed robustness to the 

variations of angular sampling frequency (Table 3), while being less robust to large scan 

angle offsets (Table 4). For the latter scenario, training a couple of models with different 

scan angle variations can help to select the most appropriate one during test time. A model 

trained using inputs of various scan angle scenarios may also help to improve its robustness 

to scan angle variations, which remains to be investigated in future studies.

In general, the 2D3D-RegNet performed well for inter-scan registration, as demonstrated 

in Fig. 7 and the corresponding RE results. To roughly align the source image to the 

target volume to account for their inter-scan positioning differences, we performed a rigid-

registration between the source images and the inter-scan target projections based on a 

previously published method (Zhang et al., 2013a), prior to feeding them into deformable 

registration. In addition, other machine/deep learning-based 2D-3D rigid registration 
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methods may also be combined with 2D3D-RegNet for fast initial rigid alignment (Ouadah 

et al., 2017; Shun et al., 2016). In radiotherapy treatments, pre-treatment setup scans are 

usually performed for alignment/verification. If the pre-treatment scan is used as the source 

image for intra-fractional 2D-3D deformable registration, the rigid registration may not 

be needed. Otherwise, if another source image is used, it can be rigidly-registered to this 

pre-treatment scan in 3D to eliminate large positioning differences prior to deformable 

registration. After initial rigid alignment between source and target images, 2D3D-RegNet 

is able to correct the residual mismatches including remaining positioning variations and 

deformation.

We simulated the cone-beam projections using the ray-tracing technique in this study from 

‘ground-truth’ CT volumes, such that quantitative evaluations on the deformed volumes can 

be performed using the known ‘ground-truth’. The projections were simulated to match 

with actual projection sizes offered by the Elekta XVI system. The limited field-of-view 

resulted from the realistically-simulated projection sizes led to inaccurate registrations 

at peripheral regions for the 3D-3D registration technique, which however had a much 

smaller impact on the 2D3D-RegNet results (Fig. 5, Fig. 7). Current simulations did not 

include scatter or noise into the projections, which may further degrade the projection 

quality to render accurate 2D-3D registration more difficult. Traditional 2D-3D deformable 

registration methods used projection intensity mapping, or more advanced projection 

similarity metrics include normalized cross-correlation (NCC) to solve this issue (Zhang et 
al., 2015a). Similarly, the similarity losses of 2D3D-RegNet can be replaced by these more 

advanced metrics to enhance its robustness. In addition, hardware-based or software-based 

scatter/noise correction techniques can be applied to the projections before feeding them 

into 2D3D-RegNet (Ren et al., 2016; Chen et al., 2017). Different deep learning networks 

have also been developed for scatter/noise removal with encouraging results, which could be 

naturally combined with 2D3D-RegNet for efficient projection pre-processing (Zhang et al., 
2018; Hansen et al., 2018).

The study results suggested that in general an ortho-view scan angle outperformed a 

single-view scan angle for limited-angle-based deformable registration, when the same 

combined total scan angle was used (Fig. 3, Fig. 5, Fig. 7, Table 1, Table 2, Table 

3, Table 4). The orthogonal-view projections were simulated in kilovoltage (kV) energy 

for both directions. In current clinics, such orthogonal-view kV-kV projection clusters 

can be acquired sequentially. In addition to being superior in registration accuracy, the 

ortho-view acquisition can also reduce the scan time to half when both acquisitions were 

fired simultaneously (Ren et al., 2014; Ren et al., 2016; Zhang et al., 2017). Modern 

LINACs are equipped with orthogonally-arranged kV and megavoltage (MV) imaging 

systems, which can acquire ortho-view projections to feed into 2D3D-RegNet for real-time 

imaging. Previous studies have applied pixel intensity linear scaling, or used NCC as the 

similarity metric, to account for the intensity differences between and harmonize the kV 

and MV projections (Ren et al., 2014; Zhang et al., 2017). Through a deep learning 

network, convolutional layers could be added to automatically convert between MV and 

kV intensities without explicitly assuming a potentially oversimplified linear relationship. 

The efficacy of such approaches on 2D3D-RegNet remains to be investigated.
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In Fig. 6, we also demonstrated that 2D3D-RegNet can be used as a fast DVF generation 

core, which can be followed by additional DVF fine-tuning steps such as biomechanical 

modeling to further improve the accuracy of solved DVFs. The efficient 2D3D-RegNet core 

renders the total execution time (2D3D-RegNet plus the biomechanical modeling step) to 

be less than 1 minute, a substantial speed boost compared to previous studies using similar 

strategies (Zhang et al., 2016b). However, it may still be desirable to unify all the steps into a 

single network for ultimate speed up to achieve real-time target tracking, which is currently 

being investigated.

In this study, the network was built via a one-pass design to generate the DVFs (Fig. 1). 

Using a pyramid structure of multi-scale resolution levels might help to further improve the 

deformation results, especially for areas with large deformations (Hu et al., 2019; Jiang et 
al., 2020; Fu et al., 2020). However, the memory limit of the GPU card currently prohibits 

us from deploying an end-to-end, pyramid-style 2D3D-RegNet for training and evaluation. 

Previous studies have also found replacing the isotropic deformation regularization term 

with an anisotropic energy function can preserve the sliding motion around organ boundaries 

and improve the deformation accuracy (Dang et al., 2016). Both strategies can potentially 

further increase the accuracy of 2D3D-RegNet and should be evaluated in future.

V. Conclusion:

We developed an unsupervised 2D-3D deformable registration network, 2D3D-RegNet, 

for efficient and accurate CBCT estimation from limited-angle or sparse-view on-board 

projections. 2D3D-RegNet solves DVFs to map prior high-quality CT/CBCT images to 

new CBCTs, which fits well into the adaptive radiotherapy workflow to allow automatic 

contour propagation and dose accumulation. 2D3D-RegNet solves DVFs with similar 

accuracy as the traditional iterative 2D-3D deformable registration network, while only 

takes a few seconds as compared to several hours of the latter method. The 2D3D-RegNet 

showed robustness to scan angle offsets and sampling frequency variations, while additional 

comprehensive evaluations are needed. Future studies on 2D3D-RegNet are warranted to 

further improve its accuracy, especially for orthogonally-arranged scan angle scenarios.
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Figure 1. 
The overall 2D3D-RegNet structure and workflow.
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Figure 2. 
The detailed structure for the U-net core (Fig. 1). The input has two channels: the source 

image and the FDK-reconstructed target image from the cone-beam projections. The output 

has three channels, each representing DVFs along one Cartesian directions (x, y, and z). The 

number on each block indicates the number of filters.
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Figure 3. 
The two simulated limited-angle projection acquisition scenarios: (1). The 1st row shows 

the single-view acquisition scenarios with scan angles spanning from 0° to 90° around 

the anterior-posterior (AP) direction. (2). The 2nd row shows the ortho-view acquisition 

scenarios with scan angles evenly split around the AP and left lateral directions. The 

projections at each cluster were sampled every 1°.
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Figure 4. 
The synergistic scheme of 2D3D-RegNet and biomechanical modeling. The 2D3D-RegNet 

outputs the inverse DVF(vinv) for biomechanical modeling-based correction, and the 

biomechanically-corrected inverse DVF is inverted in the end to forward DVF (v) which 

deforms the source image (Isource) to the target image.
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Figure 5. 
Three-view image comparison for one patient case (intra-scan), between ‘ground-truth’ 

target images (Target-GT), FDK-reconstructed target images (Target-FDK) by limited-

angle projections, source images (Source) before deformable registration, difference 

images (Source-diff) between Source and Target-GT, Elastix-deformed images (Elastix) 

with deformation between Source and Target-FDK, difference images (Elastix-diff) 
between Elastix and Target-GT, and 2D3D-RegNet-deformed images (2D3D-RegNet), 
and difference images (2D3D-RegNet-diff) between 2D3D-RegNet and Target-GT. Four 

sub-figures were presented based on different scan angle scenarios (Fig. 3): (a). 30° scan 

angle (single-view), (b). 90° scan angle (single-view), (c). 30° scan angle (ortho-view, 15° 

each), and (d). 90° scan angle (ortho-view, 45° each). The angular sampling frequency was 

1°/projection for all four scenarios.
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Figure 6. 
Boxplots of TRE results for different scan angle scenarios, and comparisons between 2D3D-

RegNet and 2D3D-RegNet with additional biomechanical modeling fine-tuning. The 25 

percentile (Q1), median and 75 percentile (Q3) of the data were respectively marked by the 

upper, middle and lower horizontal lines of each boxplot. The ‘+’ markers represent outliers 

outside the whiskers, and the upper whisker extends to the data point of value smaller than 

or equal to Q3 + 1.5 × (Q3 − Q1), and the lower whisker extends to the data point of value 

larger than or equal to Q1 − 1.5 × (Q3 − Q1). Four scan angle scenarios were included in 

this evaluation: single-view 30°, ortho-view 30°, single-view 90° and ortho-view 90° (Fig. 

3). Bio: biomechanical modeling.
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Figure 7. 
Three-view image comparison for one patient case (inter-scan), between ‘ground-truth’ 

target images (Target-GT), FDK-reconstructed target images (Target-FDK) by limited-

angle projections, source images (Source) before deformable registration, difference 

images (Source-diff) between Source and Target-GT, Elastix-deformed images (Elastix) 

with deformation between Source and Target-FDK, difference images (Elastix-diff) 
between Elastix and Target-GT, and 2D3D-RegNet-deformed images (2D3D-RegNet), 
and difference images (2D3D-RegNet-diff) between 2D3D-RegNet and Target-GT. Two 

sub-figures were presented based on different scan angle scenarios (Fig. 3): (a). 90° scan 

angle (single-view), and (b). 90° scan angle (ortho-view, 45° each). The angular sampling 

frequency was 1°/projection for both scenarios.
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Table 1.

Comparison between the relative errors (REs) of images generated by different methods, using different scan 

angle schemes. For Elastix, the mask is defined as a region-of-interest (ROI) equal to the limited imaging 

field-of-view, as determined by the limited projection size (512 × 512 pixels, with 0.8 mm × 0.8 mm 

each pixel) which is unable to cover the full patient volume. FDK: Feldkamp-Davis-Kress (reconstruction 

algorithm). Def: deformation.

RE/% Scan angle schemes FDK Elastix w/o mask for def* Elastix w/mask for def 2D-3D def 2D3D-RegNet

single-view

0° 155.3 ± 20.0 60.8 ± 9.8 53.7 ± 8.9 21.3 ± 3.4 20.4 ± 3.0

15° 113.0 ± 15.2 60.4 ± 10.3 53.4 ± 8.7 19.6 ± 3.1 18.2 ± 2.8

30° 95.3 ± 12.9 59.3 ± 10.9 53.5 ± 9.9 18.1 ± 2.9 17.7 ± 2.8

60° 72.5 ± 8.5 57.2 ± 11.1 44.6 ± 8.5 15.5 ± 2.5 16.1 ± 2.5

90° 57.1 ± 5.7 48.3 ± 9.6 41.0 ± 7.9 15.0 ± 2.8 15.3 ± 2.4

ortho-view

0° (0° each) 133.2 ± 19.0 38.9 ± 5.6 36.8 ± 5.1 17.8 ± 2.7 19.2 ± 2.4

15° (7.5° each) 105.3 ± 15.6 38.4 ± 5.7 36.3 ± 5.4 13.8 ± 2.5 16.3 ± 2.8

30° (15° each) 90.3 ± 13.1 36.7 ± 4.3 34.1 ± 5.4 12.4 ± 2.1 15.4 ± 2.5

60° (30° each) 67.8 ± 10.6 33.4 ± 4.9 29.3 ± 4.9 11.2 ± 1.6 14.8 ± 2.4

90° (45° each) 52.0 ± 9.9 29.3 ± 4.6 24.3 ± 4.6 11.1 ± 1.5 14.4 ± 2.1
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Table 2.

Comparison between the target registration errors (TREs) for deformation vector fields (DVFs) generated by 

different methods, using different scan angle schemes. For Elastix, the mask is defined as a region-of-interest 

(ROI) equal to the limited imaging field-of-view, as determined by the limited projection size (512 × 512 

pixels, with 0.8 mm × 0.8 mm each pixel) which is unable to cover the full patient volume. Note for both 

Elastix registration results (with and without mask), we calculated TRE only within the ROI defined by the 

mask, to avoid accounting the DVF errors caused by the field-of-view issue. FDK: feldkamp-Davis-Kress 

(reconstruction algorithm). Def: deformation.

TRE/mm Scan angle schemes Elastix w/o mask for def Elastix w/mask for def 2D-3D Def 2D3D-RegNet

single-view

0° 31.6 ± 22.5 28.4 ± 17.7 6.4 ± 4.7 5.4 ± 4.1

15° 30.0 ± 21.6 29.3 ± 18.2 5.5 ± 4.1 4.8 ± 3.5

30° 25.8 ± 17.6 25.0 ± 16.8 5.2 ± 4.0 4.6 ± 3.5

60° 21.2 ± 15.8 14.0 ± 9.3 4.6 ± 3.7 4.3 ± 3.4

90° 12.6 ± 8.2 7.0 ± 5.3 5.0 ± 3.9 4.3 ± 3.3

ortho-view

0° (0° each) 10.5 ± 6.8 9.4 ± 6.0 6.0 ± 4.4 5.4 ± 3.7

15° (7.5° each) 10.7 ± 6.6 9.5 ± 6.2 4.7 ± 3.5 4.8 ± 3.4

30° (15° each) 11.0 ± 6.8 8.8 ± 6.2 4.3 ± 3.4 4.5 ± 3.4

60° (30° each) 10.3 ± 6.8 7.3 ± 5.8 4.0 ± 3.3 4.1 ± 3.1

90° (45° each) 8.5 ± 7.0 5.4 ± 4.6 3.8 ± 3.1 3.9 ± 3.0
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Table 3.

Comparison between the relative errors (REs) and target registration errors (TREs) for images and 

deformation vector fields (DVFs) solved by 2D3D-RegNet, using different angular sampling frequencies 

at test time. Four scan angle scenarios were included in this evaluation: single-view 30°, ortho-view 30°, 

single-view 90° and ortho-view 90° (Fig. 3). The networks were separately trained on the four scan angle 

scenarios, under the 1°/projection (prj) angular sampling frequency. During testing, the angular sampling 

frequencies were varied from 0.25°/prj to 8°/prj.

0.25°/prj 0.5°/prj 1°/prj 2°/prj 4°/prj 8°/prj

30° (Single-view)
RE/% 17.7 ± 2.8 17.7 ± 2.8 17.7 ± 2.8 17.7 ± 2.8 17.7 ± 2.8 18.0 ± 2.8

TRE/mm 4.6 ± 3.5 4.6 ± 3.5 4.6 ± 3.5 4.6 ± 3.5 4.6 ± 3.5 4.7 ± 3.6

30° (Ortho-view, 15° each)
RE/% 15.4 ± 2.5 15.4 ± 2.5 15.4 ± 2.5 15.4 ± 2.5 15.7 ± 2.6 16.2 ± 2.8

TRE/mm 4.5 ± 3.4 4.5 ± 3.4 4.5 ± 3.4 4.5 ± 3.5 4.6 ± 3.5 4.8 ± 3.6

90° (Single-view)
RE/% 15.3 ± 2.4 15.3 ± 2.4 15.3 ± 2.4 15.3 ± 2.4 15.4 ± 2.3 15.7 ± 2.3

TRE/mm 4.3 ± 3.3 4.3 ± 3.3 4.3 ± 3.3 4.3 ± 3.3 4.3 ± 3.3 4.3 ± 3.3

90° (Ortho-view, 45° each)
RE/% 14.4 ± 2.1 14.4 ± 2.1 14.4 ± 2.1 14.4 ± 2.1 14.5 ± 2.2 15.0 ± 2.3

TRE/mm 3.9 ± 3.0 3.9 ± 3.0 3.9 ± 3.0 3.9 ± 3.0 3.9 ± 3.0 4.0 ± 3.1
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Table 4.

Comparison between the relative errors (REs) and target registration errors (TREs) for images and 

deformation vector fields (DVFs) solved by 2D3D-RegNet, using different offset angles at test time. Four 

scan angle scenarios were included in this evaluation: single-view 30°, ortho-view 30°, single-view 90° and 

ortho-view 90° (Fig. 3). The networks were separately trained on the four scan angle scenarios, with angle 

directions specified in Fig. 3. During testing, the scan angles were collectively offset by magnitudes ranging 

from 0° to 25°.

off 0° off 5° off 10° off 15° off 20° off 25°

30° (Single-view)
RE/% 17.7 ± 2.8 17.7 ± 2.8 18.0 ± 2.8 18.4 ± 2.9 18.8 ± 2.9 19.4 ± 3.0

TRE/mm 4.6 ± 3.5 4.6 ± 3.5 4.7 ± 3.6 4.8 ± 3.8 5.0 ± 3.9 5.2 ± 4.1

30° (Ortho-view, 15° each)
RE/% 15.4 ± 2.5 15.6 ± 2.4 15.9 ± 2.5 16.2 ± 2.5 16.8 ± 2.6 17.2 ± 2.6

TRE/mm 4.5 ± 3.4 4.5 ± 3.4 4.6 ± 3.5 4.6 ± 3.6 4.7 ± 3.7 4.8 ± 3.8

90° (Single-view)
RE/% 15.3 ± 2.4 15.4 ± 2.4 15.7 ± 2.4 16.0 ± 2.4 16.3 ± 2.5 16.6 ± 2.5

TRE/mm 4.3 ± 3.3 4.3 ± 3.4 4.4 ± 3.4 4.5 ± 3.5 4.6 ± 3.6 4.7 ± 3.8

90° (Ortho-view, 45° each)
RE/% 14.4 ± 2.1 14.3 ± 2.1 14.4 ± 2.1 14.5 ± 2.2 14.8 ± 2.2 15.2 ± 2.3

TRE/mm 3.9 ± 3.0 3.9 ± 3.0 4.0 ± 3.0 4.0 ± 3.1 4.0 ± 3.1 4.1 ± 3.1
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