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Abstract: Pneumonia is one of the main causes of child mortality in the world and has been re-
ported by the World Health Organization (WHO) to be the cause of one-third of child deaths in
India. Designing an automated classification system to detect pneumonia has become a worthwhile
research topic. Numerous deep learning models have attempted to detect pneumonia by applying
convolutional neural networks (CNNs) to X-ray radiographs, as they are essentially images and have
achieved great performances. However, they failed to capture higher-order feature information of all
objects based on the X-ray images because the topology of the X-ray images’ dimensions does not
always come with some spatially regular locality properties, which makes defining a spatial kernel
filter in X-ray images non-trivial. This paper proposes a principal neighborhood aggregation-based
graph convolutional network (PNA-GCN) for pneumonia detection. In PNA-GCN, we propose a
new graph-based feature construction utilizing the transfer learning technique to extract features
and then construct the graph from images. Then, we propose a graph convolutional network with
principal neighborhood aggregation. We integrate multiple aggregation functions in a single layer
with degree-scalers to capture more effective information in a single layer to exploit the underlying
properties of the graph structure. The experimental results show that PNA-GCN can perform best in
the pneumonia detection task on a real-world dataset against the state-of-the-art baseline methods.

Keywords: pneumonia detection; transfer learning; convolution neural network; graph neural
network; principal neighborhood aggregation

1. Introduction

Pneumonia is an infection of the lower respiratory tract. It is caused by several
pathogens, mainly viruses or bacteria. Pneumonia is more common in underdeveloped
and developing countries, where overcrowding, pollution, and unsanitary environmental
states make the situation more menacing, and medical resources are limited. Moreover,
it is one of the leading causes of child mortality worldwide. It has been reported by
the World Health Organization (WHO) to be the cause of one-third of child deaths in
India [1]. Pneumonia is characterized by the presence of an abnormal area compared to the
surrounding tissues in an X-ray image (see Figures 1 and 2 for examples). Early diagnosis
and treatment are critical in preventing further fatalities due to pneumonia. Analysis of the
lungs by computed tomography (CT), magnetic resonance imaging (MRI), or X-rays is used
for the diagnosis of pneumonia. Chest X-rays are commonly used to detect malignancy in
the lungs, mostly because X-ray analysis constitutes is a relatively inexpensive and non-
invasive lung exam [2]. However, as stated in [3], slight dissimilarities in terms of shape,
scale, textures, and intensity, can complicate X-ray-based pneumonia detection, especially
for patients below five years old. Other illnesses, such as congestive heart failure and lung
scarring, could also be misclassified as pneumonia [1]. Thus, pneumonia detection requires
an expert to use additional patient information to detect pneumonia symptoms from chest
X-ray radiography, which is time-consuming for the radiologist, costly to hospitals, and not
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necessarily affordable for the users in need. Thus, designing an automated classification
system to aid in detecting pneumonia has become a valuable research topic.

Figure 1. Examples of chest X-ray images of healthy people.

Figure 2. Examples of chest X-ray images of people with pneumonia presenting a bandlike opaqueness
with a peripheral, mid-to-lower lung zone distribution—white infiltrates, a hallmark of pneumonia.

In the last few decades, researchers and medical practitioners have investigated the
possibility of using deep learning in automated disease diagnosis systems. Deep learning
techniques utilize the activation states of neurons to gradually assemble low-level fea-
tures and automatically acquire higher-order abstract representations, avoiding complex
feature engineering. Many deep learning models attempt to detect pneumonia by apply-
ing convolutional neural networks (CNNs) to X-ray radiographs, as they are essentially
images [4]. The convolutional network approach involves hidden convolution and pooling
layers to determinate spatially localized attributes through a set of receptive fields in kernel
form. The convolution operator, also known as the feature detector of a CNN, is a filter
in which the kernel filters input data, and the pooling operator is used to condense the
resolution of each attribute map in the spatial dimensions, keeping the sizes of the attribute
maps unchanged. Thus, CNNs are a class of neural networks with architecture that can
achieve mappings between spatially distributed grid data of random lengths, making it
flawless for classifying images. The standard CNN model pipeline consists of an input
layer, a set of convolution layers, optional pooling layers with a fully connected neural
network, and a final layer. The convolutional neural networks applied for pneumonia
detection include VGGNet, Inception, ResNet, DenseNet, and AlexNet. Although these
convolution-based approaches have achieved great performances in pneumonia detection
to some extent, they can only achieve the higher-order features of ground objects in a distri-
bution region, and fail to adaptively catch the geometric changes of different object regions
in the X-ray images. Meanwhile, the boundary pixel classification attribute information
may be mislaid while extracting the features, impacting the overall prediction. Hence,
they cannot capture the higher-order feature information of all objects based on X-ray
images. This is because the topology of the X-ray image’s dimensions does not always
come with some spatially regular locality properties, which makes defining a spatial kernel
filter for X-ray images non-trivial [5]. One solution to this limitation is to use graph signal
computation-based convolutions.

In the last couple of years, graph neural networks (GNNs) have become increasingly
important and have been a very popular topic for both academia and industry in the
processing of non-Euclidean data because of their ability to learn useful features from a
graph. GNN can operate directly on the graph structure and aggregate and transfer neigh-
borhood information [6]. At the same time, it can also grasp higher-order representations
of irregularly distributed data. Advances in computer vision show that Graph Neural
Network (GNN) architectures perform very well in several image-processing tasks, such as
object detection, segmentation, classification, and medical image computing. Shen et al. [7]
improved the performance accuracy by applying the graph convolutional neural network to
hyper-spectral remote sensing image classification. Cai et al. [8] combined graph convolu-
tion integration and a cross-attention mechanism for classification of remote sensing images.
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They first obtained low-dimensional attributes, which are more expressive. Next, they
performed the prediction on the hyperspectral data using attributes and the relationship
between them, which were generated by the graph convolution integration algorithm. Al-
though these methods effectively learn pixel distribution in an image, they cannot capture
enough information from the neighbors of the node in a single layer, leading to limitations
in their expressive power and learning ability.

In this paper, we propose an efficient principal neighborhood aggregation-based graph
convolutional network framework for pneumonia detection (PNA-GCN). Our proposed
model has three essential components: feature extraction, graph feature reconstruction,
and representation learning. Unlike typical ML approaches, which are heavily based on
manually-crafted features, our model extracts abstract data features in two main steps:
transferring state-of-the-art CNNs to extract features, and graph reconstruction based on
the extracted features. In our method, we utilize deep-learning based algorithms that are
effective at generalization. Specifically, we achieve feature extraction with the use of a trans-
fer learning approach. After extracting features using a trained CNNs network, we build
the features graph, in which each feature extracted from each image is represented as a
node of the graphs. Finally, we propose a GCN with principal neighborhood aggregation,
which combines multiple aggregators with degree-scalers.

To sum up, the key contributions of the work are summarized as follows:

1. To the best of our knowledge, we made the first attempt to use the graph convolutional
network approach for pneumonia detection.

2. We propose PNA-GCN, an efficient principal neighborhood aggregation-based graph
convolutional network framework for pneumonia detection. In PNA-GCN, we pro-
pose a new graph-based feature construction utilizing the transfer learning technique
to extract features and construct the graph from images. Then, we propose a principal
neighborhood aggregation-based graph convolutional network, in which we integrate
multiple aggregation functions in a single layer with degree-scalers to enable each
node to gain a better understanding of the distribution of messages it receives.

3. The performance of the proposed method is evaluated on the publicly available chest
X-ray datasets. The accuracy, precision, recall, and F1 score have been utilized to
evaluate the effectiveness of the proposed method compared to existing work in
the literature.

2. Related Work

Pneumonia has become increasingly popular as a research topic in recent years. Mak-
ing a very accurate diagnosis and identifying the source of the symptoms in a timely
manner is a big challenge for doctors in order to alleviate the suffering of their patients.
As a result, when it comes to the analysis and processing of biomedical images, image pro-
cessing and deep learning algorithms have produced quite good results [9–11]. Several
significant additions to the current literature are reviewed in this section.

Recent advancements and the availability of massive datasets have enabled algo-
rithms to outperform medical experts in a wide variety of biomedical tasks. For example,
several biomedical image detection methods have been proposed utilizing deep learning
algorithms. The challenges of biomedical image processing are discussed by [9]. Deep-
learning-based approaches have been extensively used to detect several diseases. The au-
thors of [10,12] proposed deep learning models for dermatologist-level classification of
the skin cancer. Reference [13] proposed a method to depict the prostrate in MRI volumes
utilizing a convolutional neural network (CNN). In [14], deep learning techniques were
used to detect brain hemorrhaging in CT scans, along with a technique to detect diabetic
retinopathy in the photographs of retinal fundus [15]. In [16], deep learning techniques
are proposed for chest pathology detection. Several examination techniques have been
used to examine disease detection by utilizing X-ray images [17–19]. An algorithm for the
evaluation of scanning the line optimization is applied on a chest X-ray image to avoid
diagnostic errors by eliminating all the other body parts [20]. The authors of [21] proposed
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CMixNet, a two-deep, three-dimensional customized mixed link network to classify and
detect lung nodules. An approach that combines DenseNet and long-short term memory
networks (LSTM) is proposed to exploit the abnormality dependencies [22].

Several works have been proposed methods on pneumonia classification. The au-
thors of [23] have used EMD (earth mover’s distance) to classify infected and normal
non-infected pneumonia lungs. The authors of [11,24] utilized a CNN model for pneumo-
nia detection. Reference [25] discussed the performance of a customized CNN in detecting
pneumonia and also differentiating between bacterial and viral types via pediatric CXRs.
The region-based CNNs have been used to segment pulmonary images by utilizing the im-
age augmentation for pneumonia detection [26]. AlexNet and GoogLeNet neural networks
have been used with data augmentation without any pretraining [27]. A deep CNN model
CheXNeXt with 121 layers was used by [28] to classify 14 different pathologies, including
pneumonia, in frontial-view chest X-rays. To identify 14 thoracic diseases, researchers
in [29] employed a localization strategy based on pre-trained DenseNet-121, as well as
feature extraction, to identify the diseases. Deep-learning-based pneumonia classification
algorithms were utilized by [30–32] to classify pneumonia. On the basis of chest com-
puted tomography (CT) images, reference [33] introduced a new multi-scale heterogeneous
three-dimensional (3D) convolutional neural network (MSH-CNN), which they called the
MSH-CNN. For the diagnosis of pneumonia, the authors of [34] used a hierarchical convo-
lutional neural network (CNN) structure and a unique loss function, sin-loss. The authors
of [35] used Mask-RCNN, which utilized both global and local features for pulmonary
image segmentation, with dropout and L2 regularization, along with dropout and L2 regu-
larization. Using a 3D deep CNN (3D DCNN), Jung and colleagues [36] were able to create
shortcut links. According to [37], they merged the outputs of several neural networks and
arrived at the final forecast by utilizing a majority voting procedure. The results showed
that the deep features were strong and consistent in detecting pneumonia.

More recently, Liang et al. [38] combined a 3D convolutional neural network (3D-
CNN) and GCN to diagnose COVID-19 pneumonia. They used the 3D-CNN for extracting
features from an initial 3D-CT images, and used these features to design a COVID-19
graph in GCN. Although their approach seems to be similar to ours, they have a slight
difference. Indeed, their method requires three pieces of information, including equipment
type, hospital information, and disease training sample label, which are not always all
available in real word cases. Keicher et al. [39] proposed a holistic graph-based approach
combining both imaging and non-imaging information. The study in [40] offers a unique
semantic-interactive graph convolutional network (SIGCN) capable of leveraging topo-
logical information gained from knowledge networks to improve multilabel recognition
performance. In summary, given that this is essentially an image classification problem,
it is evident that pre-existing or innovative CNN models are used as classifiers. However,
CNN has several disadvantages, such as over-fitting when the dataset includes class imbal-
ance. In contrast, graph neural network (GNN)-based models can address issues such as
over-fitting and class imbalance by using a graph neural network. Based on the experimen-
tal results obtained in various disciplines, it is clear that a GNN-based model works fast in
general [41]. GNN, a relatively recent approach in the domain of deep learning, is used to
solve graph classification challenges. As a result, GNN requires input data in the form of
graph data. Considering all the advantages and novelties of GNN approach, we propose a
GNN-based model to solve the problem of pneumonia detection.

3. Materials and Methods

In this section, we describe the framework of the proposed model, as shown in Figure 3.
In classical machine learning (ML) methods, data features are first extracted and then
classified by classifiers. Our proposed PNA-GCN model has four essential components:
data augmentation and preprocessing, feature extraction, graph feature reconstruction,
and representation learning. We first apply the image preprocessing and data augmentation
strategy on a pneumonia dataset. Unlike typical ML approaches which heavily based on
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manually-crafted features, our model extracts abstract data features utilizing two main
steps: transferring state-of-the-art CNNs to extract features, and graph reconstruction based
on the extracted features. In the following, we discuss the four main components of our
proposed method for pneumonia disease detection.

Start

Image dataset

Image pre-processing

Feature extraction 𝒇𝟏:𝑵

Pre-trained network

If (𝒇𝒊== 𝒇𝒋) Distance(𝒇𝒊, 𝒇𝒋)

Sort Distance(f,:)
Index(f,:)

NoYes

Graph Construction

PNA-GCN MLP

Image Classification End

Figure 3. The methodology flowchart.

3.1. Data Augmentation and Preprocessing

We used the data augmentation strategies that have been published in the literature to
alleviate the problem of overfitting and improve the model’s capacity to generalize during
the training phase, and to raise the amount and quality of the data [42]. The parameters that
were used in data augmentation are listed in Table 1 on the right. The rescaling of the image
is the first step in the process (reduction or magnification during the augmentation process).
Following that, we perform rotation of the images, which is rotated at random throughout
the training. It is the width shift that determines how far the images are offset horizontally,
and it is the height shift that determines how far the images are offset vertically. In our
situation, the width shift and the height shift were both 10 percent. Finally, the images were
rotated horizontally and zoomed by a factor of 20 percent at random.

Table 1. The settings for the image augmentation process.

Methods Setting

Rotation range 30
Height shift 0.10
Width shift 0.10

Rescale (1/255)
Zoom range 0.20
Shear range 0.20

Horizontal flip True
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3.2. Feature Extraction

Feature extraction plays an important role in classification tasks, which affects the
overall performance of classifiers. In our method, we utilized deep-learning-based algo-
rithms that are effective at generalization. Specifically, we achieved feature extraction
with the use of a transfer learning approach. In the feature extraction step, we first trans-
ferred state-of-the-art networks to the binary classification problem by replacing the top
layers with new ones. After training on the training set, CNNs can generate preliminary
findings and features. Generally, CNNs are trained using ImageNet [43], which provides
classification results for 1000 categories. We used the general architecture of CNNs [44].
After transferring the state-of-the-art networks, we chose the CNN that performed the best
on the test set to serve as a feature extractor for PNA-GCN.

In our proposed architecture, the transferring process was done by removing the top
layers of the general architecture of CNNs and replacing them with dropout, transitional
fully-connected (256 channels), and classification layers.

Figure 4 shows the architecture of the transferred state-of-the-art CNNs after removing
the top layers of CNNs and adding the new layers. After the final pooling layer, we added
one dropout layer, one 256-channel transitional fully-connected layer, and a final 2-channel
fully-connected layer for classification. In order to avoid overfitting problems during
the training period, a dropout layer was included. If the size of a feature drops rapidly,
the information contained within the feature will be significantly reduced. A transitional
fully-connected layer is therefore on top of the dropout layer in order to prevent significant
information loss from occurring. FC256 and FC2 are two fully-connected layers with 256
and 2 channels, respectively. As illustrated in Figure 4, the link between the final pooling
layer and the softmax layer has been replaced with a connection between the last pooling
layer and the newly added dropout layer. The parameters inside the CNNs were fine-tuned
to offer better representations of the dataset after training with the pneumonia dataset for a
limited number of epochs.

The details of how features are acquired in our architecture can be seen in the following
steps: network transferring and feature extraction, where the acquired features were
analyzed for underlying graph representation.

• In network transferring step, we first load a pre-trained convolution neural networks,
which has been trained on the ImageNet dataset. Then, we remove the softmax and
classification layers. After that, we add new layers, including a dropout layer and
fully-connected layers with 256 and 2 channels (FC2 and FC256 in Figure 4). Using pre-
defined parameters, we train the new networks on the training set of pneumonia
dataset and save the networks and parameters.

• In feature extraction step, we first load the trained networks in the first step. Then,
the target dataset is used as input to the network for feature extraction. We extract the
features generated by the fully-connected layer (FC256 in Figure 4).
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Input

convolution

Batch 

Normalization

Pooling

convolution
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Pooling

Activation

Dropout
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FC2

SoftMax

Classification

Features

Combination
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Batch 

Normalization

Batch 

Normalization

ActivationActivation

Figure 4. The architecture of the transferred CNNs. FC256 and FC2 are the fully connected layers
with 256 and 2 channels, respectively.

3.3. Graph Construction

As shown in the overall architecture of the proposed model in Figure 5, first, the images
were used as input to the pretrained deep CNNs described in in Section 3.2 to extract
the image vector features. After extracting image vector features using trained deep
CNNs network, we built the features graph, in which each feature extracted from an
image is represented as a node of the graph, and the edges were built by calculating the
distances between vector features, as described below. After that, the proposed principal
neighborhood aggregation GCN was applied to the constructed graph. Finally, we applied
the multi-layer perceptron MLP to pneumonia detection.

For faster computation, features are broken up into batches. Given the features
F ∈ RD×M, where D is the number of images and M is the feature dimension, let the batch
size be B. Then the number of batches n can be defined as:

n = dD/Be (1)

where d·e is the ceiling operation.
For each batch Fi, the graph (Vi, Ei) is constructed, which represents the underlying

relationship between image vector features (nodes). Vi indicates the nodes of the graph,
which represents the feature vector for an image i in the batch, and Ei represents the edges
between nodes (image feature vectors). We utilize Euclidean distance to construct the edges
among nodes. We build the edges between each node and its k neighbors if the k smallest
Euclidean distance is found. Then, we build the adjacency matrix A ∈ RB×B. When the



Sensors 2022, 22, 3049 8 of 17

node fi and its neighbor fi+1 are related, the value in Ai at the position i, i + 1 is set to a
positive number.

...Image
Input

Features

Deep CNNs

...

Graph
Construction 

...

MLP

Image Labels

Feature Extraction and Graph construction

Principal Neighbourhood
Aggregation-GCN 

...

PNA-GCN

GRU
Layer 1

PNA-GCN

GRU
Layer N

Figure 5. The overall architecture of the proposed model. In the architecture, we first use deep CNNs
to extract the image vector features. Then, we construct graphs by calculating the distances between
image vector features. Next is multiple principal neighborhood aggregation GCN. Each PNA-GCN is
followed by a GRU layer. Finally, a MLP is used to classify features and images are labeled.

Given a batch of features, wherein each feature represents an image, we construct the
graph according to the following process:

First, we initialize the adjacency, distance, and index matrices as follows:

Ai = zeros(B, B) (2)

Distance = In f inity(B, B) (3)

Sorted_Distance = zeros(B, B) (4)

Index = zeros(B, B) (5)

where B is the number of samples in the batch. Note that Ai, Distance, Sorted_Distance,
and Index are initialized variables.

The Distance is calculated as follows:

Distance(j, m) =

√√√√ M

∑
h=1

( f j(h, 1)− fm(h, 1))2 (6)

After calculating Ai, each feature f j in batch Fi is recomputed as follows:

f j = Ãj
i Fi (7)

where Ãi is the normalized adjacency matrix Ai and Ãj
i is the jth row of Ãi.

To build the graph Gi for each batch of features Fi, we follow the following steps:
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• Calculate the distances between each feature and the other features in the batch. Then,
the distance matrix Distance ∈ RB×B is computed.

• Sort Each row of the distance matrix in a ascending order.
• Generate the corresponding index matrix Index ∈ RB×B, in which the nearest k

features are recorded in the batch Fi.
• Set the value of Ai at the position (j, j) to 1 if the features Bi and Bj are nearest to each

other based on the distance matrix.

3.4. Principal Neighborhood Aggregation-Based Graph Convolutional Network

In this section, first, we introduce GCN, and then we introduce the proposed principal
neighborhood aggregation, which combines multiple aggregators with degree-scalers.

3.4.1. Graph Convolutional Networks

GNNs are used to transfer a non-linear mapping g from a graph to a feature vector for
the graph classification task.

g : G 7→ FG, (8)

where FG is a feature vector of the entire graph G that is used for estimating the label of
the graph. Based on the neighborhood aggregating techniques, a new perspective divides
GNNs into two groups [45]. The spectral-based convolutional GNNs [46,47] are the first
group (spectral GNN). The spectral decomposition of graphs inspired this group of GNNs,
which try to approximate the spectral filters in each aggregating layer [48,49]. The spatial-
based convolutional GNNs are the other type of GNN (spatial GNN). They do not set out
to learn spectral properties of graphs; instead, they execute neighborhood aggregation
based on the spatial relationships between nodes. The message passing neural network is a
well-known example of a spatial GNN (MPNN) [50], and the GIN is another [51].

Inspired by CNNs, the GCN [49] is a multi-layer neural network that works on a graph
and tries to find high-level features by combining information from the neighborhoods of
graph nodes with information from other graph nodes. Formally, the undirected graph
G = (V ; E) is defined in GCN as the set of nodes and edges. In G, the adjacency matrix (A)
is used to show the presence of an edge between each pair of nodes. Specifically, the spatial
domain convolution operation may be used to implement the first-order approximation of
the Chebyshev expansion of the spectral convolution operation:

X(l) = σ
(

D̃−
1
2 ÃD̃−

1
2 X̃(l−1)W̃(l)

)
∈ RN×C(l)

(9)

where Ã = A + I is the adjacency matrix with the recurring loop, D̃ is the degree matrix,
and X̃(l−1) is calculated as follows:

X(l) =
[

x(l)1 . . . x(l)
C(l)

]
∈ RN×C(l)

(10)

where C(l) represents the channel signals at the lth layer. This means that GCN implements
the node feature with its neighbors via a layer-specific learnable weight matrix W(l) and
non-linearity σ.

In contrast to spectral GNNs, spatial-based approaches define graph convolutions
based on the spatial relations of a node. In general, this operation consists of the AGGRE-
GATE and COMBINE functions:

a(l)v = AGGREGATE(l)
({

p(l−1)
v : u ∈ N (v)

})
, (11)

p(l)v = COMBINE(l)
(

p(l−1)
v , a(l)v

)
, (12)

where p(l)v ∈ RC(l)
is the l−th layer feature at the v−th node. This means that the AG-

GREGATE function collects features from nearby nodes to produce an aggregated feature
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vector for the layer l, and the COMBINE function then combines the previous node feature
p(l−1)

v with the aggregated node features a(l)v to produce the current layer’s node feature
p(l)v . The mapping is defined after this spatial process by:

PG = READOUT
({

p(l)v |v ∈ G
})

(13)

3.4.2. Principal Neighborhood Aggregation

Most work in the literature uses only a single aggregation method (Equation (11))
Mean, sum, and max aggregators are the most used in the state-of-the-art models. However,
in the literature, we observed how various aggregators fail to discriminate between different
messages when using a single GNN layer. In our method, we first apply degree-based
scalers [52]. We use the logarithmic scaler Samp, which is computed as follows:

Samp(d) =
log(d + 1)

δ
, δ =

1
|train| ∑

i∈train
log(di + 1) (14)

where δ is a normalization parameter that was calculated over the training set. d is the
degree of the node that is getting the message. Then, we generalize this scaler as follows:

S(d, α) =
(

log(d+1)
δ

)α
, d > 0,−1 6 α 6 1 (15)

where α is the value of a variable parameter that can be negative for attenuation, positive
for amplification, or zero for complete lack of scaling. Other definitions of S(d) can be
used, such as a linear scaling definition, as long as the function is injective for S(d) greater
than zero.

The principal neighborhood aggregation function is created by combining the aggre-
gators and scalers described in the preceding sections (PNA). As detailed in following
equation, we employed four neighbor-aggregations with three degree-scalers each to evalu-
ate this general and flexible architecture.

a(l)v =

 I
S(D̃, α = 1)

S(D̃, α = −1)


︸ ︷︷ ︸

scalers

⊗


µ
σ

max
min


︸ ︷︷ ︸

aggregators

(16)

where mean (µ), standard deviation (σ), max, and min are the aggregators defined in [52];
scalers are defined in Equation (15); and ⊗ is the product.

M convolutions were used for the experiments, and then three fully-connected layers
were used to label nodes. This architecture, shown in Figure 5, was used for the experiments.
After each layer’s update function, gated recurrent units (GRUs) [53] were added to each
layer to help it run faster. Their ability to keep information from previous layers worked
well when we added more convolutional layers M.

4. Experiments
4.1. Dataset

In this research, we used chest X-ray images from Kaggle [54]. The dataset is available
online. The dataset contains 5856 chest X-ray images in the JPEG format of children under
six years old that were captured during routine clinical care of patients. As shown in Table 2,
the training set contained 4232 images divided between 3883 images classified as depicting
pneumonia and 1349 images classified as normal. It should be noticed the training set is
imbalanced, as shown in Figure 6. The model was evaluated with 390 images classified
as depicting pneumonia and 234 images classified as normal. Examples of healthy chest
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X-ray images and pneumonia infected chest X-ray images are shown in Figures 1 and 2,
respectively.

Table 2. Dataset description.

Pneumonia Infected Chest X-ray Images Healthy Chest X-ray Images

Training set 3100 1073
Validation set 775 628

Test set 390 234

Figure 6. The training set distribution of image classes showing the disparity in data used for training.

4.2. Experimental Settings and Evaluation Criteria

For the experiment, we used a consistent setup. We trained the model for 70 epochs
with the Adam optimizer with an initial learning rate of 5× 10−4 and weight decay of
10−6. The mini-batch sizes were set to be 32 and we used add as an aggregation operator.
To reduce over-fitting, we utilized dropout with a rate of 0.6 for embeddings and used
a rate of 0.3 for aggregation module outputs. We set the number of multi-head to be 4.
We chose the image size to be 150× 150× 3. All our code was implemented in Pytorch [55].

Evaluation Criteria

We tested a number of models on the test dataset for a fair comparison. For model
evaluation, we used four performance metrics: accuracy, precision, recall, and F1 score.

1. The accuracy metric is the ratio of the number correctly predicted images to the total
number of images examined.

Accuracy =
(True Positive + True Negative)

total number o f images
(17)

2. The precision metric is the ratio of the number correctly predicted pneumonia images
to the sum of the number correctly predicted pneumonia images and the number of
normal images incorrectly identified as pneumonia images.

Precision =
True Positive

True Positive + False Positive
(18)

3. The recall metric is the ratio of the number of correctly predicted pneumonia images
to the sum of the number correctly predicted pneumonia images and the number of
pneumonia images incorrectly identified as normal.

Recall =
(True positive)

True positive + False Negative
(19)
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4. F1 score is the weighted harmonic mean of recall and precision.

F1 score = 2× (Recall × Precision)
Recall + Precision

(20)

4.3. Results and Discussion

This section represents the experimental results achieved for the considered X-ray
images with chosen dimensions. The equivalent convergence for accuracy and the loss func-
tion of the outcomes achieved from various convolution layers for training and validation
process are shown in Figure 7, and the confusion matrix is shown in Figure 8. The merits of
our method were further verified by comparing it with other algorithms from the literature,
including those of Kermany et al. [54] and Lahsaini et al. [56]. The outcomes shown in
Table 3 substantiate that the results achieved with the proposed method were better result
compared to the other methods on the chosen dataset.

Table 3. Comparison of results.

Accuracy Precision Recall F1 Score

Kermany et al. [54] 92.8% 90.1% 93.2% -
Lahsaini et al. [56] 93.24% 91.4% 95% 92.96%

Arunmozhi et al. [57] 97.65% 96.71% 98.32% 97.86%
PNA-GCN (Ours) 97.79% 98.63% 98.40% 98.51%

Figure 7. Training and validation performance.

Figure 8. Confusion matrix of PNA-GCN on test data.

4.4. Ablation Study
4.4.1. Input Size

The dimensions of processed images were fixed. To evaluate the validation perfor-
mance of our model, we resized the chest X-ray images at 300 × 300 × 3, 250 × 250 × 3,
and 150 × 150 × 3, respectively, and we trained them for 30 epochs each. The results
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obtained showed that the shape of the 150 × 150 image gave a better result than the others,
as the model achieved higher validation accuracy with it. The experimental results are
presented in Figure 9.

(a) (b) (c)

Figure 9. Performance of PNA-GCN with different data sizes. (a) Data size = 300 × 300 × 3. (b) Data
size = 250 × 250 × 3. (c) Data size = 150 × 150 × 3.

4.4.2. The Influence of Batch Size N

We explored the effects of different values for the batch size N on the PNA-GCN
performance. We chose 16, 32, 50, and 64, respectively. The experiment results plotted
in Figure 10 show that PNA-GCN performs best with N = 32, alleviating the memory
problem during training.

Figure 10. Performance comparison with different values for batch size.

4.4.3. Effectiveness of the multi-head attention

Rather than using the attention function just once, we use a multi-head attention layer,
as [58] showed that the learning process can be stabilized using multiple independent
attention operators. We collected the number M of multi-total heads within the set (1, 2, 4,
6, 8) to show the effectiveness of the multi-head attention. The experimental results plotted
in Table 4 show that PNA-GCN performs best with the number of multi-heads being 4.

Table 4. Results comparison with different values for multi-head attention.

M = 1 M = 2 M = 4 M = 8

Accuracy 96.12% 96.59% 97.79% 96.90%
Precision 97.99% 98.30% 98.63% 98.41%

Recall 96.75% 97.08% 98.40% 97.39%
F1 score 97.36% 97.69% 98.51% 97.90%
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4.5. Influence of the Number of Aggregators

We compare the performance of PNA-GCN when making use of multiple aggregators
along with degree-based scalers with single aggregators, as shown in Figure 11. PNA-GCN
performs better with multiple aggregators. Specifically, PNA-GCN performs well with
a combination of mean aggregation, standard deviation aggregation, max aggregation,
and min aggregation. That is because the model can benefit from the strengths of each
of them.

(a) (b)

(c) (d)

Figure 11. Performance of PNA-GCN with variable numbers of aggregators. (a) One aggregator;
(b) two aggregators; (c) three aggregators; (d) four aggregators.

5. Conclusions

In this work, we proposed PNA-GCN, a principal neighborhood aggregation-based
graph convolutional network for detecting pneumonia. The proposed model was devel-
oped taking into account the criteria of parameters and the time cost and memory cost of
the training step, in contrast to other approaches that are based on transfer learning or use a
more complex architecture. In this work, binary classification is executed and four different
evaluation metrics have been used to evaluate the proposed method. The experimental
results confirmed that the PNA-GCN achieved an improved outcome compared with other
related approaches existing in the literature.
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