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subfamily are further categorized into group I members 
(TRPV1-V4) and group II members (TRPV5 and V6). 
TRPV1-V4 are ‘ThermoTRPs’, channels that are activated 
by warmth and heat but generally act as diverse stimulus-
activated non-selective cation channels, while TRPV5 and 
V6 are constitutively active, highly selective Ca2+ channels 
involved in systemic Ca2+ resorption (van Goor et al. 2020). 
TRP channels in general are capable of integrating diverse 
stimuli, but the ubiquitously expressed TRP Vanilloid 4 
(TRPV4) protein displays exceptional polymodality even 
within the diverse TRP superfamily (White et al. 2016). 
TRPV4 is activated by moderate heat (Güler et al. 2002), 
osmotic and mechanical stress (Fernandes et al. 2008; Strot-
mann et al. 2000), pH (Suzuki et al. 2003), ions (Loukin et al. 
2015), nucleotides (Phelps et al. 2010), lipids (Garcia-Elias 
et al. 2013; Takahashi et al. 2014), lipid metabolites (Wata-
nabe et al. 2003) and lipid-like compounds (Watanabe et al. 
2002), proteins (Cuajungco et al. 2006; D’hoedt et al. 2008; 
Doñate-Macián et al. 2018; McCray et al. 2021), plant-
derived natural products (Ma et al. 2012; Peixoto-Neves et 
al. 2015; Smith et al. 2006), and small organic molecules 

Biological Context

Transient Receptor Potential (TRP) proteins are eukaryotic 
cation channels that play important roles in cellular homeo-
stasis, pain and temperature sensation or host-pathogen 
interactions (González-Ramírez et al. 2017; Samanta et 
al. 2018; Spix et al. 2020). In mammals, there are six TRP 
subfamilies. The members of the TRP Vanilloid (TRPV) 
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Transient receptor potential (TRP) channels are important pharmacological targets due to their ability to act as sensory 
transducers on the organismic and cellular level, as polymodal signal integrators and because of their role in numerous dis-
eases. However, a detailed molecular understanding of the structural dynamics of TRP channels and their integration into 
larger cellular signalling networks remains challenging, in part due to the systematic absence of highly dynamic regions 
pivotal for channel regulation from available structures. In human TRP vanilloid 4 (TRPV4), a ubiquitously expressed 
homotetrameric cation channel involved in temperature, osmo- and mechano-sensation and in a multitude of (patho)physi-
ological processes, the intrinsically disordered N-terminus encompasses 150 amino acids and thus represents > 17% of the 
entire channel sequence. Its deletion renders the channel significantly less excitable to agonists supporting a crucial role 
in TRPV4 activation and regulation. For a structural understanding and a comparison of its properties across species, we 
determined the NMR backbone assignments of the human and chicken TRPV4 N-terminal IDRs.

Keywords  Transient receptor potential · TRP vanilloid · Ion channel · Intrinsically disordered protein · Regulatory 
domain · Structural dynamics

Received: 14 January 2022 / Accepted: 17 March 2022 / Published online: 22 April 2022
© The Author(s) 2022

Backbone NMR assignments of the extensive human and chicken 
TRPV4 N-terminal intrinsically disordered regions as important players 
in ion channel regulation

Benedikt Goretzki1,2 · Frederike Tebbe1 · Sarah-Ana Mitrovic3 · Ute A. Hellmich1,2

http://orcid.org/0000-0001-7162-285X
http://crossmark.crossref.org/dialog/?doi=10.1007/s12104-022-10080-9&domain=pdf&date_stamp=2022-4-22


B. Goretzki et al.

1 3

Its deletion renders the channel significantly less excitable 
to agonists supporting a crucial role in TRPV4 activation 
and regulation (Botte et al. 2020). For a better understand-
ing of channel and species-specific channel regulation, we 
determined the backbone NMR assignments of the N-ter-
minal IDRs of human and chicken TRPV4, which are 147 
and 133 amino acids in length, respectively. The two pro-
teins have 57% sequence identity (67% similarity) and the 
known regions important for channel regulation, i.e. a pro-
line rich region and a PIP2 binding site (Cuajungco et al. 
2006; D’hoedt et al. 2008; Garcia-Elias et al. 2013; Goretzki 
et al. 2018), are present in both.

Methods and experiments

Protein expression and purification

The DNA sequences encoding for the TRPV4-IDR from H. 
sapiens (human, hsTRPV4-IDR) and G. gallus (chicken, 
ggTRPV4-IDR) were cloned from cDNA into a pET11a 
vector with an N-terminal His6SUMO-tag via Gibson 
Assembly. Uniformly 13C, 15N-labeled TRPV4-IDR con-
structs were expressed in E. coli BL21-Gold(DE3) (Agilent 
Technologies) grown in M9 minimal medium supplemented 
with 0.1 mg/mL Ampicillin as well as 15N-labeled NH4Cl 
(0.75 g/L) and 13C-glucose (2 g/L) as the sole nitrogen and 
carbon sources. Protein expression was induced with 0.15 
mM IPTG at an OD600 of 0.8 and cells were grown over 
night at 20  °C. After harvesting via centrifugation, cells 
were stored at -80 °C until further use. All purification steps 
were carried out at 4 °C. Harvested cells were resuspended 
in lysis buffer (20 mM Tris pH 8, 20 mM imidazole, 300 
mM NaCl, 0.1% (v/v) Triton X-100, 1 mM DTT, lysozyme, 
DNAse, RNAse and protease inhibitor (Sigmafast)) fol-
lowed by sonication on ice (Branson Sonifier 250). Cell 
debris was removed by centrifugation and the supernatant 
was applied to a Ni-NTA gravity flow column (Qiagen). 
After washing (20 mM Tris pH 8, 20 mM imidazole, 300 
mM NaCl), the protein was eluted with 500 mM imidaz-
ole and dialyzed overnight (20 mM Tris pH 7, 300 mM 
NaCl, 1 mM DTT) in the presence of 5 mol % Ulp-1 pro-
tease. Afterwards, the cleaved proteins were separated from 
the His6SUMO-tag and residual uncleaved proteins via a 
reverse Ni-NTA affinity chromatography step and further 
purified via size exclusion chromatography (SEC) using a 
HiLoad prep grade 16/60 Superdex200 column (GE Health-
care) with 50 mM ammonium bicarbonate, 1 mM DTT 
as buffer. Purified, tag-free TRPV4-IDR constructs were 
lyophilized and stored at -20 °C until further use. For NMR 
measurements, the lyophilized powder was dissolved in the 
appropriate buffer.

(Garcia-Elias et al. 2014). TRPV4 is involved in numerous 
physiological functions ranging from neuritogenesis (Jang 
et al. 2012), bone and cartilage formation (Muramatsu et 
al. 2007), response to viral infections (Doñate-Macián et al. 
2018), to the maintenance of the epidermal barrier (Sokabe 
et al. 2010), including in the lung (Weber et al. 2020) where 
its potential as a pharmacological target for the treatment 
of COVID-19 is currently being discussed (Kuebler et al. 
2020).

While there has been significant progress regarding TRP 
channel structural characterization, including cryo-elec-
tron microscopy (cryo-EM) structures of human and frog 
TRPV4 (Botte et al. 2020; Deng et al. 2018), many ques-
tions regarding the structural basis of channel functional 
regulation remain. This is partly because the large intrinsi-
cally disordered regions in the channel N- and C-termini, 
which harbor many important interaction sites for regula-
tory proteins and lipids, are often not resolved or are inten-
tionally removed from protein constructs used for structural 
studies (Goretzki et al. 2021; Hellmich and Gaudet 2014a). 
However, these ‘missing’ regions not only define TRP chan-
nel subfamily affiliation, but also present important lipid 
and protein interaction sites pivotal for channel regulation 
(Goretzki et al. 2021; Hellmich and Gaudet 2014b). The 
cytosolic N-terminal domain (NTD) of group I TRPV chan-
nels is composed of an α-helical ankyrin repeat domain 
preceded by an intrinsically disordered region (IDR). In 
TRPV4, the NTD acts as the central recruitment hub for reg-
ulatory partners such as ATP (Inada et al. 2012; Phelps et al. 
2010), PIP2 (Garcia-Elias et al. 2013; Takahashi et al. 2014) 
or proteins such as PACSIN3 and RhoA (Cuajungco et al. 
2006; D’hoedt et al. 2008; Goretzki et al. 2018; McCray 
et al. 2021). While the structural basis of TRPV4 (de)sen-
sitization remains unknown, dysregulated interactions in 
the channel termini can affect channel response to incom-
ing stimuli and ultimately determine cellular fate leading to 
e.g., neurite outgrowth or axonal degeneration (McCray et 
al. 2021; Woolums et al. 2020).

As opposed to structured proteins locking onto each 
other via complementary surfaces, intrinsically disordered 
proteins can engage in ‘one-to-many-signalling’ as a pre-
requisite for the participation in regulatory cascades and 
cellular protein networks. Therefore, intrinsic disorder is 
particularly prevalent in membrane receptors (Kjaergaard 
and Kragelund 2017). In TRP channels, IDRs typically 
present between a quarter and more than half of the entire 
protein sequence and endow the channels with the ability 
to dynamically react to environmental changes by undergo-
ing transient protein-protein and protein-lipid interactions 
(Goretzki et al. 2021). With ~ 150 amino acids represent-
ing > 17% of the entire channel sequence, the N-terminal 
IDR of human TRPV4 is the largest in the TRPV subfamily. 
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backbone NMR resonance assignments of hsTRPV4-IDR 
and ggTRPV4-IDR. The theoretical RCCS values were 
determined with the POTENCI webserver (https://st-pro-
tein02.chem.au.dk/potenci/) (Nielsen and Mulder 2018). 
The per-residue secondary structure propensities (SSP) of 
the hsTRPV4- and ggTRPV4-IDR sequences were calcu-
lated from their Cα, Cβ, Hα chemical shifts as described 
by Marsh et al. (Marsh et al. 2006) taking the NMR sam-
ple conditions (temperature, pH, and ionic strength) into 
account and excluding proline-preceding residues.

Extent of assignment and data deposition

While structural information on TRPV4 and its isolated 
N-terminal ankyrin repeat domain is available from X-ray 
and cryo-EM studies (Botte et al. 2020; Deng et al. 2018; 
Inada et al. 2012; Landouré et al. 2010; Takahashi et al. 
2014), the intrinsically disordered region (IDR) preceding 
the ARD is consistently missing in high-resolution struc-
tures, because it was entirely or partially removed from the 
constructs used for structure determination. To estimate the 
extent of flexibility and disorder present in the TRPV4-IDR, 
we analyzed the human and chicken TRPV4-IDR sequences 
using ODiNPred (Dass et al. 2020), which assesses the 
per-residue disorder propensities based on a deep-neural 
network trained with NMR chemical shift data available 
through a greatly expanded version of the CheZOD data-
base (Nielsen and Mulder 2016, 2020). The amino acid 
sequence based ODiNPred analysis predicts disorder prob-
abilities larger than 0.5 for more than 70% of the residues 
in both the human and chicken TRPV4-IDR (Fig. 1 A, B). 
Nonetheless, 43 of 148 residues (29%) in the human and 

NMR spectroscopy

All NMR experiments were performed at 298 K on Bruker 
AVANCE III HD 600, 700, 800 and 900  MHz spectrom-
eters equipped with cryogenic triple resonance probes 
(Bruker, Karlsruhe). Spectra for both the human and 
chicken TRPV4 construct were recorded at a concentration 
of 150–200 µM in 20 mM sodium phosphate pH 4.5, 150 
mM NaCl, 1 mM DTT. The proton chemical shifts of 13C, 
15N-labeled ggV4-IDR and hsV4-IDR were referenced to 
2,2-dimethyl-2-silapentane-5-sulfonic acid (DSS) while the 
heteronuclear 13C and 15N chemical shifts were indirectly 
referenced with the appropriate conversion factors depos-
ited in the BMRB. All spectra were processed with Bruker 
TopSpin™ 3.2 or 4.1. Backbone resonance assignments of 
13C, 15N-ggTRPV4-IDR and 13C, 15N-hsTRPV4-IDR were 
carried out in CARA using HNCO, HN(CA)CO, HNCA 
and HNCACB triple resonance experiments. Hα resonances 
for secondary structure prediction were obtained using 
HBHACONH experiments. All experiments were recorded 
with standard Bruker pulse sequences including water sup-
pression with WATERGATE.

Disorder prediction

Sequence-based disorder predictions of hsTRPV4-IDR and 
ggTRPV4-IDR were obtained with the ODiNPred Server 
(https://st-protein.chem.au.dk/odinpred) (Dass et al. 2020). 
Secondary structure content was evaluated from secondary 
chemical shifts, calculated as the difference between ran-
dom coil chemical shifts (RCCS) and the N, C’, Cα, Cβ, Hα, 
Hβ, HN chemical shifts from the experimentally obtained 

Fig. 1  The sequence-based ODiNPred webserver predicts a significant amount of disorder in both the human (Homo sapiens, hs) and chicken 
(Gallus gallus, gg) TRPV4-IDR (A and B, respectively). However, several regions with low predicted disorder propensities indicate the formation 
of ordered structures within the TRPV4-IDR. The Z-score (upper panel) and disorder probability (lower panel) were calculated for each residue 
by ODiNPred (Dass et al. 2020). Residues with Z-score larger than 8 (solid line) are considered to be ordered while residues with Z-scores below 
3 (dashed line) are fully disordered. Z-scores between 3 and 8 reflect transient structure formation. Regions with per-residue disorder propensities 
below 0.5 are shaded in light grey
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To analyze whether the sequence-based disorder predic-
tion is accurate, we characterized the structure of the proxi-
mal TRPV4 N-terminus in solution experimentally, using 
full-length human and chicken TRPV4-IDR constructs 
(hsTRPV4-IDR and ggTRPV4-IDR). Only the first residue 
(M1) was missing in the final constructs used for backbone 
NMR assignments which thus comprise residues 2-134 of 

33 of 133 residues (25%) in the chicken TRPV4-IDR have 
predicted disorder propensities of less than 0.5 (Fig.  1 A, 
B, shaded region). Notably, the conserved regions with low 
per-residue disorder probability in the TRPV4-IDR may 
exhibit (transient) structural order within the IDR, which 
could be functionally relevant in the context of the full-
length TRPV4 channel.

Fig. 2  [1H, 15N]-TROSY-HSQC spectra of 13C, 15N-labeled human (A) and chicken (B) TRPV4-IDR (147 and 133 residues, respectively) in 20 
mM NaPi, pH 4.5, 150 mM NaCl, 1 mM DTT, 0.1 mM DSS, 10% D2O at 298 K, recorded at 800 MHz. Assigned residues are annotated in one 
letter amino acid code according to the human and chicken full-length TRPV4 protein sequences (UniProtKB: Q9HBA0 and A0A1D5PXA5, 
respectively)
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human TRPV4-IDR, thus indicating that the folding state of 
the proteins are not significantly influenced by the change 
in pH.

The human and chicken IDR contain 22 and 21 proline 
residues, respectively. For hsTRPV4-IDR, we could assign 
95.7% of the backbone resonances (HN, N, C’, Cα, Cβ). For 
ggTRPV4-IDR, the backbone resonance assignments are 
94.5% complete. The C’, Cα, Cβ resonance assignments for 
proline residues are missing (*) in sequences with consecu-
tive proline residues such as the triple proline motif P142*/
P143*/P144 in hsTRPV4-IDR or P128*/P129*/P130 in 
ggTRPV4-IDR, respectively, or the double proline motifs 
P43*/P44 and P65*/P66 in ggTRPV4-IDR.

chicken and residues 2-148 of human TRPV4, respectively. 
In line with a low overall secondary structure content, the 
[1H, 15N]-TROSY-HSQC spectra of 13C, 15N-labeled human 
and chicken TRPV4-IDR (Fig. 2 A, B) show a narrow chem-
ical shift dispersion. Presumably due to the absence of sec-
ondary structure, strong solvent exchange and subsequent 
line broadening at pH 7 and 298 K substantially hampered 
protein backbone NMR assignments of the IDR (data not 
shown). To suppress solvent exchange, all spectra were thus 
recorded at pH 4.5 with the standard set of triple-resonance 
NMR experiments (Fig. 2 A, B). Importantly, the decrease 
in pH did not affect the overall chemical shift dispersion in 
the [1H, 15N]-TROSY-HSQC spectra of both chicken and 

Fig. 3  Chemical shift-based 
disorder analysis confirms that 
the human (A) and chicken (B) 
TRPV4-IDR are highly disor-
dered throughout the entire pro-
tein sequence. (i-vii) Secondary 
chemical shifts calculated from 
the experimentally determined 
and predicted (using POTENCI, 
Nielsen and Mulder 2018) N, 
C’, Cα, Cβ, Hα, Hβ, HN chemical 
shifts. (viii) Secondary structure 
prediction based on Cα, Cβ, Hα 
chemical shifts using the SSP 
script (Marsh et al. 2006). Posi-
tive and negative values reflect 
α-helix and β-sheet propensi-
ties, respectively
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TRPV4 N-termini is a conserved feature across species thus 
making these important regulatory channel regions inacces-
sible to X-ray crystallography or cryo-EM but interesting 
spectroscopic targets.
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