Skip to main content
. 2022 Apr 22;79:102459. doi: 10.1016/j.media.2022.102459

Table 6.

Quantitative evaluation of different models trained with Dataset3 for segmentation of multi-class COVID-19 pneumonia lesions. The best results are highlighted in bold.

Method ground-glass opacity (GGO)
Consolidation
Average
DSC HD95 MAE NSD DSC HD95 MAE NSD DSC HD95 MAE NSD
U-Net 0.3596 7.3888 0.0320 0.3391 0.5277 3.6676 0.0030 0.4838 0.4437 5.5282 0.0175 0.4115
nnU-Net 0.4049 7.7792 0.0214 0.3395 0.4239 4.5909 0.0051 0.3697 0.4144 6.1851 0.0133 0.3546
Inf-Net 0.3021 8.9342 0.0448 0.3084 0.3987 4.8367 0.0054 0.2934 0.3504 6.8855 0.0251 0.3009
SSA-Net 0.4152 6.7788 0.0186 0.3713 0.4953 3.5529 0.0029 0.4529 0.4553 5.1659 0.0108 0.4121
SSA-Net(I) 0.4654 5.9266 0.0116 0.4016 0.6562 2.9541 0.0026 0.6239 0.5608 4.4404 0.0071 0.5128