Algorithm 1: Discriminative fine-tuning algorithm. | ||||||
1: | Procedure DFT | |||||
2: | Input: |
minimum learning rate, : maximum learning rate, : minimum momentum, : maximum momentum, : size of dataset, batch_size) |
||||
3: | Output: | Network parameters) | ||||
4: | ||||||
5: | //κ determines how rapidly the learning rate increase or reduces | |||||
while | ||||||
6: | for in each iteration do: | |||||
7: | for in each layer do: | |||||
8: | //increase learning rate per layer | |||||
9: | //increasing the momentum per layer | |||||
10: | ||||||
11: | //update the layer parameters | |||||
12: | end for | |||||
13. | end for | |||||
14. | end while | |||||
15. | while | |||||
16. | for t in each iteration do: | |||||
17. | for in each layer do: | |||||
18. | //increase learning rate per layer | |||||
19. | //increasing the momentum per layer | |||||
20. | ||||||
21. | //update the layer parameters | |||||
22. | end for | |||||
23. | end for | |||||
24. | end while | |||||
25. | end Procedure |