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Abstract: The NFκB transcription factors are major regulators of innate immune responses, and
NFκB signal pathway dysregulation is linked to inflammatory disease. Here, we utilised bone
marrow-derived macrophages from the p65-DsRedxp/IκBα-eGFP transgenic strain to study the
functional implication of xenogeneic (human) RelA(p65) protein introduced into the mouse genome.
Confocal imaging showed that human RelA is expressed in the cells and can translocate to the nucleus
following activation of Toll-like receptor 4. RNA sequencing of lipid A-stimulated macrophages,
revealed that human RelA impacts on murine gene transcription, affecting both non-NFκB and NFκB
target genes, including immediate-early and late response genes, e.g., Fos and Cxcl10. Validation
experiments on NFκB targets revealed markedly reduced mRNA levels, but similar kinetic profiles
in transgenic cells compared to wild-type. Enrichment pathway analysis of differentially expressed
genes revealed interferon and cytokine signaling were affected. These immune response pathways
were also affected in macrophages treated with tumor necrosis factor. Data suggests that the presence
of xenogeneic RelA protein likely has inhibitory activity, altering specific transcriptional profiles of
key molecules involved in immune responses. It is therefore essential that this information be taken
into consideration when designing and interpreting future experiments using this transgenic strain.

Keywords: macrophage; NFκB; RelA(p65); inflammation; lipid A; lipopolysaccharide; toll-like
receptor; tumour necrosis factor

1. Introduction

The NFκB family of transcription factors is a major regulator of immune responses, but
is also involved in multiple other cellular functions, such as growth and development [1–3].

Biomedicines 2022, 10, 757. https://doi.org/10.3390/biomedicines10040757 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10040757
https://doi.org/10.3390/biomedicines10040757
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-6665-8508
https://orcid.org/0000-0002-3441-803X
https://orcid.org/0000-0002-6872-0691
https://orcid.org/0000-0002-1025-646X
https://orcid.org/0000-0002-1297-9725
https://orcid.org/0000-0002-2352-9017
https://orcid.org/0000-0002-7407-012X
https://doi.org/10.3390/biomedicines10040757
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10040757?type=check_update&version=1


Biomedicines 2022, 10, 757 2 of 18

The NFκB family consists of five members, p105/p50, RelA(p65), c-Rel, p100/p52 and
Rel-B that form dimers [4]. These dimers are held in the cytoplasm in an inactive state
by binding to specific inhibitory proteins, the inhibitors of NFκB (IκB family) [5]. Upon
stimulation, the IκB proteins are phosphorylated, ubiquitinated and consequently degraded,
leading to translocation of the NFκB dimers into the nucleus where they activate gene
transcription [6–8].

The amplitude of the NFκB response is tightly regulated and can be affected at the
receptor level, as has been shown in studies focused on human T-lymphocytes [9] and
macrophages [10]. Also, experiments using murine lymphocytes have revealed that dif-
ferent thresholds are required to activate the NFκB pathway and the apoptotic pathway
downstream of wild-type versus heterozygous CD95 receptor activation [11]. Numerous
studies have revealed how important integrity of the primary DNA structure is, as muta-
tions can affect the normal function of NFκB proteins: Polymorphisms of genes encoding
NFκB subunits have been correlated with dysregulated DNA binding activity [12] across
a wide spectrum of diseases, such as Huntington’s disease [13], inflammatory bowel dis-
eases [14,15] and various cancers [16]. A recent study has revealed that haplo-insufficiency
in RELA results in autosomal-dominant chronic mucocutaneous ulceration in humans [17].
Using NFκB transgenic mice, it has been shown also that genetic manipulation of the
p50 subunit can rescue, to a variable extent, target gene expression in macrophages and
B-lymphocytes from Nfkb1SSAA/SSAA mice [18,19]. These studies highlight that the NFκB
subunit allele dose is important for the physiological activation of the NFκB pathway in
a cell-specific and target-specific manner. Recently, a novel transgenic mouse expressing
human p65 tagged with Discosoma red fluorescent protein (DsRedxp) was reported, with
confocal microscopy used to monitor human RelA(p65) during the circadian cycle in murine
intervertebral disc explant cultures [20], and in cytokine activated bone marrow-derived
macrophages (BMDMs) [10]. We also utilised this same strain to generate murine intesti-
nal crypt stem-cell derived 3D organoid cultures expressing p65-DsRedxp, to study the
effect of the macrolide antibiotic clarithromycin on p65 nucleocytoplasmic shuttling [21].
To understand further cell-specific pathways in this mouse, we have examined the func-
tional implication of xenogeneic (human) RelA protein on murine macrophage biology,
investigating the transcriptional responses to inflammatory stimuli.

Using confocal imaging, we assessed whether the human RelA subunit can translo-
cate to nucleus upon stimulation with lipopolysaccharide (LPS), implying functional re-
sponse downstream of Toll-like receptor 4 (TLR4). RNA sequencing analysis was also
performed to compare the transcriptional profile of the transgenic BMDM to wild-type
C57BL/6J BMDMs, before and post-stimulation using lipid A, the endotoxic centre and
immune-activating component of LPS [22]. Validation experiments in BMDMs, at rest and
following TLR4 activation, confirmed that the presence of the human RelA transgene affects
known pro-inflammatory pathways within macrophages and the expression of a variety
of genes that are direct or indirect targets of the canonical NFκB pathway. RNA sequenc-
ing analysis was also performed on transgenic and C57BL/6J BMDMs stimulated with
tumour necrosis factor alpha (TNF), known to be released following LPS-TLR4 activation of
macrophages [23]. Comparison of the two stimuli showed that there are ligand-specific dif-
ferentially affected targets, as well as common genes that are involved in immune responses,
such as the interferon and cytokine pathways.

2. Materials and Methods
2.1. Mice

Transgenic p65-DsRedxp/IκBα-eGFP mice used in this study were generated by the
Genomic Technologies Core Facility (University of Manchester, UK) with support of the
Max Planck Institute of Molecular Cell Biology and Genetics (Dresden, Germany), as
detailed in [10], using previously described NFκB RelA(p65) subunit-optimised Discosoma
red fluorescent Express protein (DsRedxp) and IκBα-enhanced green fluorescent protein
(eGFP) bacterial artificial chromosome (BAC) constructs [24,25]. Mice express fusion
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proteins of p65-DsRedxp) under the regulation of the native human p65 promoter, and IκBα-
eGFP, regulated by the human IκBα promoter, to enable real-time visualisation of human
p65 signalling in primary cell cultures and in vivo. Transgenic mice backcrossed on the
C57BL/6J background for several generations were made available through the SysmedIBD
consortium (www.sysmedibd.eu/ (accessed on 19 February 2022)), with matched C57BL/6J
substrain mice provided by Charles River Ltd. (Harlow, UK).

Ethics Statement

Mice were housed at the Biological Services Facility (University of Manchester) under
specific-pathogen-free conditions, on a 12 h/12 h light/dark cycle and with access to food
and water ad libitum. Transgenic p65-DsRedxp/IκBα-eGFP mice were bred for this study
under Home Office project license (PPL 70/7800). Mice were euthanised by rising CO2,
followed by cervical dislocation, in agreement with the Animal (Scientific Procedures)
Act 1986.

2.2. Bone Marrow-Derived Macrophage Isolation and Culture

Bone marrow was isolated from mouse femurs and aliquots prepared in 90% v/v
foetal bovine serum (FBS) containing 10% v/v dimethyl sulfoxide (DMSO). Fresh iso-
lated bone marrow was differentiated to macrophages for RNA sequencing studies. Vials
were also stored in liquid nitrogen, until required for further confocal and qPCR vali-
dation studies. Briefly, bone marrow cells (fresh or frozen) were cultured in vitro in the
presence of 50 ng/mL recombinant macrophage colony-stimulating factor (MCSF) (Pepro-
Tech; London, UK) to induce differentiation of monocytes to macrophages, as described
previously [26]. For in vitro stimulation, ligands used included Lipid A (Sigma Aldrich;
Poole, UK), LPS extracted using modified phenol/water method [27] from the ileal Crohn’s
disease mucosa-associated Escherichia coli isolate, LF82 [28], or recombinant mouse tumour
necrosis factor alpha (TNF) (Catalogue # 315-01A; PeproTech).

2.3. Confocal Microscopy

BMDMs (2 × 105) from transgenic p65-DsRedxp/IκBα-eGFP mice plated in 35 mm
MatTek glass bottom microwells (MatTek Corp.; Ashland, MA, USA), in RPMI 1640 medium
containing 10% v/v FBS. Cultures were stimulated with 100 ng/mL of LPS, and imaged for
5 h using a Leica LSM-800 confocal microscope (488 nm and 561 nm lasers)

2.4. RNA Sequencing

Unstimulated and Lipid A (100 ng/mL) stimulated BMDM cultures from C57BL/6J
and p65-DsRed/IκBα-eGFP mice (n = 3) were used for transcriptome analysis. Total RNA
was purified using a RNeasy kit (Qiagen). Strand-specific libraries were created with TruSeq
stranded Total RNA kits (Illumina; Cambridge, UK) from 1 µg total RNA. RNA sequencing
(100-nucleotide paired-end reads) was performed on an Illumina HiSeq2000 platform.

2.4.1. Read Mapping and Analysis of Differential Expression

Initial data (raw reads) that passed chastity filtering from Illumina sequencing were
pre-processed using cutadapt [29] and PrinSeq-lite [30] software and reads aligned to non-
repeat masked version of the Mus musculus reference genome (GRCm38) using TopHat2 [31],
while the corresponding GTF annotation file was obtained from the Ensembl database
(Mus_musculus.GRCm38.80.gtf). DESeq2 was used for differential expression analysis [32].
Log2 fold changes between C57BL/6J and p65-DsRed/IκBα-eGFP strains were calculated.
and adjusted p-values corrected for multiple testing (Benjamini and Hochberg method).

2.4.2. Network and Pathway Analyses

NFκB target genes within the RNA sequencing datasets were identified using an avail-
able database from the Gilmore lab (www.bu.edu/nf-kb/gene-resources/target-genes/
(accessed on 4 January 2022)) and key publications [33–39]. Transcriptional regulatory net-

www.sysmedibd.eu/
www.bu.edu/nf-kb/gene-resources/target-genes/
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works were analysed further using the manually curated reference database TRRUST
v2 (www.grnpedia.org/trrust (accessed on 13 January 2022)) [40]. Enrichment anal-
ysis of differentially expressed genes was performed using the inBio Discover™ tool
(www.inbio-discover.com/ (accessed on 16 January 2022)) to reveal important pathway
networks and disease associations [41].

2.5. RNA Extraction and qPCR

Total RNA extracted using the RNeasy mini kit (Qiagen) was reverse transcribed with
the High-Capacity RNA-to-cDNA Kit (Applied Biosystems; Paisley, UK). Real time PCR
(qPCR) was performed using Taqman Fast advanced master mix and Gene Expression
probes, with 50 ng cDNA on a LightCycler 480 qPCR instrument (Roche; Burgess Hill, UK)
under standard conditions recommended by the manufacturer (Applied Biosystems). Cp
values were calculated from 2nd derivative analysis and relative quantification was calcu-
lated using 2−∆∆CT method [42]. Taqman Gene Expression Assay probes (Applied Biosys-
tems) were Cxcl10 (Mm00445235_m1), c-Fos (Mm00487425_m1), Il12b (Mm99999067_m1),
Nfkbia (Mm00477798_m1), Ptges (Mm00452105_m1), Tnf (Mm00443258_m1) and Tnfaip3
(Mm00437121_m1). Results were normalized to Gapdh (Mm99999915_g1).

2.6. Statistical Analysis of Experimental Datasets

Statistical inferences on data were performed using Kruskal–Wallis test, followed by all
pairwise comparisons of treatments (StatsDirect v3.0.171-StatsDirect Ltd.; Birkenhead, UK).
Differences were considered significant when p < 0.05.

3. Results
3.1. Confocal Imaging of RelA(p65) Translocation in LPS-Stimulated Murine BMDMs

p65-DsRedxp/IκBα-eGFP BMDMs were cultured in imaging plates and rested overnight
in medium containing 10% v/v FBS. Cells were imaged for 40 min before the addition of the
stimulus. At rest, microscopy showed that macrophages expressed (RelA)p65-DsRedxp
(red) and IκBα-eGFP (green) within the cytoplasm (Figure 1). Upon stimulation with
100 ng/mL LPS, cells show nuclear translocation of the human RelA signal whilst IκBα-
eGFP remains within the cytoplasm (Figure 1). Translocation observed was asynchronous
in responding cells and there were also cells that did not seem to respond within the period
of observation (see Supplementary Materials, Video S1).

3.2. RNA Sequencing of Bone Marrow-Derived Macrophages Following TLR4 Activation

To further examine the impact of xenogeneic RelA protein in the transcriptional
response of murine macrophages to an inflammatory stimulus, both C57BL/6J and p65-
DsRedxp/IκBα-eGFP BMDMs (n = 3 mice per group) were left untreated or were stimulated
with 100 ng/mL Lipid A for a time course of 1, 3 and 6 h. Analysis of the RNA sequencing
data revealed that 343 genes were differentially expressed in the transgenic BMDMs at one
or more time points relative to wild-type macrophages of the same time point, with an
adjusted p-value of <0.05. At rest, 87 genes were identified as being differentially expressed
in the p65-DsRedxp/IκBα-eGFP BMDMs compared to wild-type macrophages at rest;
28 being upregulated and 59 downregulated (Figure 2A). Median log2 fold change of those
genes upregulated at rest was 1.77 (range, 0.644 to 12.34) and those downregulated, −1.32
(range, −4.45 to −0.61); see Figure 2B.

www.grnpedia.org/trrust
www.inbio-discover.com/
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Figure 1. Confocal microscopy shows p65-DsRedxp translocation from the cytoplasm to the nucleus
of bone marrow-derived macrophages (BMDMs) from p65-DsRedxp/IκBα-eGFP mice following
stimulation with bacterial lipopolysaccharide. Bone marrow cells from frozen stocks were differ-
entiated in vitro to macrophages as described in Materials and Methods. Live macrophages were
monitored at rest for 40 min before being stimulated with lipopolysaccharide (LPS), at 100 ng/mL,
and continuously monitored for over 5 h. Confocal imaging (using a 63x oil immersion objective)
showing composite images of 4 fields, of untreated and post LPS-treatment of BMDMs: (A) upper
panel, red channel showing p65-DsRedxp localisation; middle panel, red (DsRedxp) and green (eGFP)
channels superimposed (Col RG) and, lower panel, green channel, showing IκBα-eGFP localisation
in the cytoplasm. (B) Differential interference contrast (DIC) imaging of macrophages. (C) Higher
magnification of the Col RG channel, and (D) histogram illustrating % of cells with p65-DsRedxp
observed in the nucleus at rest (start), and following TLR4 activation (end); (n = 36; *** p < 0.001,
unpaired t-test). Bar = 20 µm.
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Figure 2. Gene expression changes in p65-DsRedxp/IκBα-eGFP bone marrow-derived macrophages
(BMDMs) as identified by RNA sequencing. BMDMs were left unstimulated or stimulated with
100 ng/mL Lipid A for 1, 3, and 6 h (n = 3 mice per treatment group). Total RNA was isolated, RNA
sequencing was performed, followed by informatics analysis. (A) Total number and (B) heatmap of
87 differentially expressed (DE) genes (upregulated [red], downregulated [green]) in unstimulated
p65-DsRed/IκBα-eGFP BMDMs relative to wild-type C57BL/6J mice, having an adjusted p-value
of < 0.05, corrected for multiple testing using the Benjamini and Hochberg method. (C) Number of
differentially expressed genes, using a cut-off log2 fold changes ≥1.5 and ≤−1.5, in unstimulated and
Lipid A-stimulated p65-DsRedxp/IκBα-eGFP BMDMs (100 ng/mL lipid A, at 1, 3 and 6 h); n = 101
genes across all treatment groups.

From the 343 differentially expressed genes, we selected those with a log2 fold change
in expression of ≥1.5 and ≤−1.5. When this cut-off filter was applied, 101 genes were
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identified as having a significant change in expression (Figure 2C). Of these 101 genes,
39 of them were differentially expressed at treatment time points 0 h, 1 h, 3 h and/or 6 h
(Supplementary Materials, Figure S1). Further analysis for transcription factor binding,
using the manually curated database TRRUST v2, revealed a top five list of transcription
factors, in which NFκB1/p105 and RelA/p65 were prominent (Table 1). A search within the
differentially expressed gene data set, identified 21 known NFκB target genes (affected in
one or more time point), representing ~20% of the total. Out of these genes, 10 genes already
showed altered level of expression in unstimulated transgenic BMDMs compared to the
wild-type controls; with 9 being reduced in expression (Saa3 > Cd38 > Il1a > Cfb > Iigp1 >
Cd69 > Vcam1 > Mx1 > Aoah; range −4.28 to −1.72 log2 fold change) and one increased in
expression (Mmp12, 1.53 log2 fold change). Notably, amongst these genes identified, Aoah,
Cd38 and Vcam1 encode proteins known to play key roles in macrophage function and/or
response to Gram negative bacterial endotoxin [43–45]. Upon TLR4 activation, a further
11 NFκB target genes showed differential expression, with Saa3 being the most decreased
in expression in transgenic BMDMs compared to the wild-type controls (−4.12 log2 fold
change, at 1 h post-lipid A treatment) and Ptges showing the greatest elevation in expres-
sion (2.46 log2 fold change, at 6 h post lipid A treatment); see Supplementary Materials,
Figure S2).

Table 1. Transcriptional regulatory relationships identified from the differentially expressed genes in
bone marrow-derived macrophages (BMDMs) from p65-DsRedxp/IκBα-eGFP transgenic mice.

TRRUST 1 v.2 Database Analysis

Transcription Factor Description Number of Genes p-Value FDR 2

Nfkb1 Nuclear factor of kappa light polypeptide
gene enhancer in B cells 1, p105 9 7.9 × 10−9 8.74 × 10−8

Irf1 Interferon regulatory factor 1 4 8.8 × 10−7 4.85 × 10−6

Stat1 Signal transducer and activator of
transcription 1 4 3.2 × 10−6 1.16 × 10−5

RelA(p65) v-rel reticuloendotheliosis viral oncogene
homolog A (avian) 5 3.1 × 10−5 8.58 × 10−5

Mafb v-maf musculoaponeurotic fibrosarcoma
oncogene family, protein B (avian) 2 8.8 × 10−5 1.61 × 10−4

1 TRRUST, Transcriptional Regulatory Relationships Unravelled by Sentence-based Text mining; 2 FDR, False dis-
covery rate.

3.3. NFκB Target and Non-Target Genes Are Differentially Expressed in LPS-Stimulated BMDMs

Validation experiments and qPCR analysis showed that presence of the human
RelA(p65) subunit in BMDMs resulted in elevated levels of expression under resting
conditions for NFκB target genes Tnf, Nfkbia, Tnfaip3 and Ptges; all being 2 to 5-fold higher
relative to wild-type levels of expression at rest. Similarly, the proto-oncogene Fos was
~9-fold higher in expression in unstimulated BMDMs from p65-DsRedxp/IκBα-eGFP mice
(Figure 3A–E). Conversely, all 5 genes showed significantly attenuated dynamic levels of
expression in the transgenic macrophages stimulated with LPS, as compared to responses
seen in TLR4 activated C57BL/6J BMDMs. (Figure 3A–E). Notably, the immediate-early
response NFκB target gene Fos and the late response gene Ptges were markedly reduced,
with Fos almost undetectable, in LPS-stimulated transgenic strain cultures (Figure 3E).
Amongst the late response NFκB target genes, Cxcl10 (encoding C-X-C motif chemokine
ligand 10) showed a statistically significant higher expression at resting state, but its expres-
sion was also observed to be 50% lower in the LPS-stimulated p65-DsRedxp/IκBα-eGFP
BMDMs compared to stimulated wild-type C57BL/6J macrophages (Figure 4A). Il12b,
encoding IL-12p40, was also affected, showing 75% reduction in expression levels in the
LPS-stimulated p65-DsRedxp/IκBα-eGFP BMDMs at 3 h (Figure 4B).
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eGFP bone marrow-derived macrophages (BMDMs). Bone marrow cells from frozen stocks were
differentiated in vitro to macrophages as described in Materials and Methods. Murine C57BL/6J
and transgenic BMDMs were left unstimulated or were stimulated with LPS (100 ng/mL) for a time
course of up to 3 h. Total RNA was purified, and the samples were analysed by qPCR for expression
of NFκB target genes (A) Tnf, (B) Tnfaip3, (C) Nfkbia, (D) Ptges, and (E) Fos; with the left hand panel
showing a histogram of fold change in mRNA levels in untreated transgenic BMDMs (white bar)
relative to C57BL/6J controls (black bar), and the right hand panel showing dynamic changes in gene
expression following treatment with LPS relative to respective unstimulated control or transgenic
BMDMs. Significant differences to unstimulated BMDMs, * p < 0.05, ** p < 0.01, *** p < 0.001 and
**** p < 0.0001; or stimulated transgenic, # p < 0.05, ## p < 0.01 and ### p < 0.001 (Kruskal–Wallis test;
n = 3 mice, n = 2–3 replicates).
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Figure 4. NFκB regulated cytokines/chemokines show decreased gene expression levels in TLR4
activated p65-DsRedxp/IκBα-eGFP bone marrow-derived macrophages (BMDMs). Bone marrow
cells from frozen stocks were differentiated in vitro to macrophages as described in Materials and
Methods. C57BL/6J and transgenic BMDMs were left unstimulated or were stimulated with LPS
(100 ng/mL) for a time course up to 3 h. Total RNA was purified, and the samples were analysed by
qPCR for the expression of (A) Cxcl10 and (B) Il12b; with the left hand panel showing a histogram
of fold change in mRNA levels in untreated transgenic BMDMs (white bar) relative to C57BL/6J
controls (black bar), and the right hand panel showing dynamic changes in gene expression following
treatment with LPS relative to respective unstimulated control or transgenic BMDMs. Significant
differences to unstimulated BMDMs, ** p < 0.01 and *** p < 0.001; or stimulated transgenic, # p < 0.05
(Kruskal–Wallis test; n = 3 mice, n = 2–3 replicates).

3.4. Integrative Pathway Enrichment Analysis of Differentially Expressed Genes in
p65-DsRed/IκBα-eGFP BMDMs

Using the inBio Discover™ tool, we performed an enrichment analysis to explore
which molecular interactions and relation networks all 343 differentially expressed genes
might be involved in. This revealed that amongst the most prominent pathways fea-
tured were the interferon and cytokine signalling pathways (Figure 5). Enrichment anal-
ysis also revealed that autoimmune disease, inflammatory bone diseases and viral in-
fection were amongst the top 5 conditions linked to the affected proteins in the p65-
DsRedxp/IκBα-eGFP macrophages (Figure 6). The analysis was repeated with only those
genes with a log2 fold change ≥1.5 and ≤−1.5 (n = 101) and a similar outcome was seen
(Supplementary Materials, Figure S3).

3.5. Comparison of BMDM Transcriptional Responses to TNFR1 and TLR4 Activation

We further examined the impact of xenogeneic RelA protein on the transcriptional
response to TNF in murine C57BL/6J and p65-DsRedxp/IκBα-eGFP BMDMs (30 ng/mL
TNF for 1, 3 and 6 h; n = 3 mice per group). Analysis of the RNA sequencing data following
TNFR1 activation revealed that 550 genes were differentially expressed in the transgenic
BMDMs at one or more time points, relative to wild-type macrophages (at 1 h TNF, n = 210;
at 3 h TNF, n = 173 and at 6 h TNF, 167 genes). Of these, 222 genes were identified as having
a significant change in expression with a log2 fold change ≥ ±1.5, with 146 of them were
differentially expressed at one or more TNF treatment time points (1 h, 3 h and/or 6 h) and
36 known NFκB target genes, representing ~25% of the total (Supplementary Materials,
Figure S4).
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richment map and data table indicate the top 5 prognostic signalling pathways identified using all
363 differentially expressed genes identified in unstimulated and Lipid A-stimulated (100 ng/mL, at
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multi-coloured nodes indicate pathways that were prognostic according to several types of molecular
evidence. Data outputs were generated using the inBio Discover™ tool (www.inbio-discover.com/
(accessed on 16 January 2022)) and no relevance score cut-off was used.
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Figure 6. Integrative enrichment disease association analysis as defined by all differentially expressed
genes identified in p65-DsRed/IκBα-eGFP BMDMs. The enrichment map and data table indicate the
top 5 significant prognostic disease associations from 363 differentially expressed genes identified in
unstimulated and Lipid A-stimulated (100 ng/mL, at 1, 3 and 6 h) p65-DsRedxp/IκBα-eGFP BMDMs.
Interactions are indicated by connecting lines and multi-coloured nodes indicate prognostic disease
processes based on molecular evidence submitted. Data outputs were generated using the inBio
Discover™ tool (www.inbio-discover.com/ (accessed on 16 January 2022)) and no relevance score
cut-off was used.

Comparison between Lipid A-treated and TNF-treated p65-DsRedxp/IκBα-eGFP
BMDMs showed a significant proportion of overlapping genes, ~36% overall, with 13/61
being NFκB target genes (Figure 7). Enrichment pathway analysis of the 61 overlapping
differentially expressed genes was conducted using inBio Discover tool, revealing common
affected immune response pathways (Supplementary Materials, Figure S5).

www.inbio-discover.com/
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Figure 7. Distribution of differentially expressed genes comparing Lipid A and TNF treatments
of p65-DsRedxp/IκBα-eGFP BMDMs. Venn diagram illustrating the distribution of differentially
expressed genes common to Lipid A-stimulated and TNF-stimulated BMDMs (100 ng/mL Lipid A
or TNF 30 ng/mL for 1, 3, and 6 h; n = 3 mice per treatment group). Total RNA was isolated, RNA
sequencing was performed, followed by informatics analysis. All genes included were identified as
being significantly changed in expression (p < 0.05, corrected for multiple testing using the Benjamini
and Hochberg method, and based on log2 fold changes ≥1.5 and ≤−1.5) compared to treated wild-
type control mice. Weighted Venn diagram constructed using Biovenn (www.biovenn.nl (accessed on
14 March 2022)) [46] and table using Venn diagram software from Ghent University, freely available
at http://bioinformatics.psb.ugent.be/webtools/Venn/ (accessed on 28 January 2022). NFκB target
genes identified from database searches are indicated in bold.
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4. Discussion

The NFκB family of transcription factors consists of proteins that are ubiquitously
expressed and are involved in a wide range of biological functions. In macrophages, NFκB
activation can be induced downstream a variety of pattern recognition receptors (PRRs),
such as TLR4, and cytokine receptors, such as TNFR1, both regulating the function of
macrophages in innate and adaptive immune responses [47]. Here, we studied TLR4 path-
way activation in p65-DsRedxp/IκBα-eGFP murine macrophages expressing the human
RelA(p65) subunit. Human RelA showed cytoplasmic distribution in resting macrophages
and LPS-induced nuclear translocation within the first 120 min of activation. Our observa-
tions here are in agreement with previous reports that describe a single translocation wave
in macrophages downstream of TLR4 activation [47].

One of the first studies to use a transgenics approach with specific aim to evaluate
NFκB activity, showed that the NFκB/Rel family of transcriptional activators were involved
in tissue-specific and inducible gene activation [48]. A few years later, a lacZ reporter mouse
driven by promoter elements that were dependent on the presence of nuclear NFκB/Rel
activity, indicated that NFκB was unlikely to be involved in regulating processes of early
development and differentiation of the different tissues, but rather it had greater impor-
tance in maintaining their function once cells had matured [49]. More recently, studies
using transgenic mice to study thymic development has confirmed that the classical NFκB
pathway is indeed responsible for development of specific T cell populations [50]. Also,
a p65 S276A knock-in mouse, in p65 cannot be phosphorylated on serine 276, not only
caused embryonic lethality, but it also affected expression of genes not normally regulated
by NFκB [51]. Therefore, it is of key importance to evaluate any new transgenic NFκB strain
in depth before proceeding to complex in vivo experimentation. The p65-DsRedxp reporter
mouse has previously been used for live fluorescence imaging of mouse intervertebral disc
(IVD) explants, where it was shown that the RelA(p65) subunit translocated to nucleus of
cells within the IVD following stimulation with IL-1β or TNF [20]. In our own earlier stud-
ies using the p65-DsRedxp/IκBα-eGFP double transgenic strain, we successfully showed
that TNF induced p65 oscillations in murine intestinal-stem cell derived 3D organoid
cultures [21]. In those experiments, we observed a first, synchronised wave of p65 nuclear
translocation, followed by a second wave of partially synchronised translocation [21]. In the
current study, we observed one wave of nuclear translocation in p65-DsRedxp/IκBα-eGFP
macrophages upon LPS stimulation. Moreover, in support of this, we have previously
shown that upon LPS treatment only a single, strong nuclear translocation of p65 is ob-
served by confocal imaging of human blood-derived macrophages expressing human
p65-AmCyan [52], and in lipid A-induced murine p65-DsRedxp BMDMs [10]. Again,
these observations in human and murine macrophages are in agreement with cell-specific
observations of p65 activation profiles [47].

Given, in our experiments, that the human p65 protein showed inducible nuclear
translocation, we set up key experiments to explore its influence on the transcriptional
profile of transgenic BMDMs, under resting conditions and upon TLR4 stimulation. Over
300 genes were differentially regulated in the p65-DsRedxp/IκBα-eGFP cells with 20% of
them identified as known NFκB targets. Validation experiments confirmed the impact of
the human p65 protein on some of these differentially expressed genes, where they showed
similar expression profiles, but markedly reduced mRNA abundance levels compared to
the wild-type cells. This could be due to primary sequence specific differences in RelA
between the two species. Comparing the human and mouse RelA protein sequences reveals
differences in the carboxy terminal domain, as previously reported [53]. It is of note too
that the linker region between the Rel Homology Domain (RHD) and the Transactivation
Domain (TAD) shows low homology between the human and mouse sequences. There is
also a small stretch of non-conserved amino acids (IPVAPH) between conserved region 2
(CR2) and CR3 (aa 473–480 in the human sequence) [53]. The carboxyterminal region of
RelA is a transactivation domain regulating protein-protein interactions with transcriptional
machinery and other key transcription factors. This could potentially impact the human
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p65 protein within murine cells. We think it unlikely that the differences can be attributed
to presence of the human promotor. Activation dynamics of p65 controlled by the human
RelA promotor in BMDMs [10], has been shown to be comparable to those activation
profiles of murine p65-EGFP BMDMs where the endogenous p65 locus was tagged [54]. It
is possible, however, that overexpression of human IκBα in this transgenic mouse could
impact on gene transcription. Previous in vitro studies have looked at the effect of IκBα
levels on p65 nuclear translocation [55]. Using co-transfected versus single transfected cells,
it was shown that cells expressing markedly higher levels of IκBα-EGFP demonstrated
not only slower rates of IκBα-EGFP degradation but also significantly delayed p65-DsRed
translocation compared to cells expressing lower levels [55]. Whilst the p65/IκBα ratio
can be easily controlled in transient transfection experiments, it is far more difficult to
regulate this ratio in an in vivo context, taking in to account that these mice are already
heterozygous for each transgene.

Amongst those NFκB target genes observed to be significantly attenuated in expres-
sion in LPS-stimulated transgenic macrophages, we identified Tnf and Il12b, encoding
proinflammatory cytokines TNF and IL-12p40. The latter is one of the subunits of bioactive
proinflammatory cytokines IL-12p70 and IL-23 that regulate Th1 responses during infection
and inflammation [56]. We also confirmed reduced expression of the chemokine Cxcl10
(also known as interferon-gamma (IFN-γ) inducible protein 10), a protein that binds to its
receptor CXCR3 and regulates immune responses (mainly Th1) through recruitment of
leukocytes, including T cells and monocytes/macrophages [57]. In contrast, a previous
study showed expression levels of Cxcl10 to be normal in LPS-stimulated BMDMs express-
ing a GFP-p65 fusion protein from the endogenous p65 genomic locus, i.e., where there
is no xenogeneic p65 subunit present [54]. In our study, we also observed that the level
of expression of Cd38, encoding for the cell-surface membrane receptor CD38, was also
reduced in p65-DsRedxp/IκBα-eGFP macrophages at rest. CD38 is known to be involved
in proinflammatory responses regulating the secretion of inflammatory cytokines, such as
IL-12p40, thus impacting on macrophage function [58]. CD38 also has nicotinamide ade-
nine dinucleotide nucleosidase (NADase) activity, and is reported to play key senescence
associated function in non-activated macrophages [43]. Vascular cell adhesion protein 1
gene Vcam1 was also reduced throughout our lipid A stimulation time course. A decrease
in Vcam1 levels could have a substantial impact in vivo because it has been shown to
regulate trans-endothelial migration of macrophages during inflammation [59], and more
recently, was shown to be involved in homing of haematopoietic stem and progenitor
cells [44]. Another gene identified as decreased in expression in resting macrophages was
Aoah, encoding for the enzyme acyloxyacyl hydrolase, an important lipase that inactivates
Gram-negative bacterial endotoxin (LPS) [45]. Additionally, we noted reduced relative
mRNA abundance levels of Nfkbia and Tnfaip3, encoding for IκBα and A20 respectively,
both downstream targets and known inhibitors of the NFκB pathway [60–62]. Comparison
of all differentially regulated genes in the DsRedxp/IκBα-eGFP transgenic macrophages
downstream of TLR4 and TNFR1 activation showed common genes affected. This is not
surprising, given that it has already been shown that the two receptors have common
downstream signalling pathways in macrophages [63]. Pathway analysis undertaken based
on genes differentially expressed in both LPS and TNF treated p65-DsRedxp/IκBα-eGFP
macrophages revealed their importance in cytokine and IFN-γ signalling pathways.

5. Conclusions

Taken together, these data suggest that the presence of the xenogeneic RelA(p65) pro-
tein in murine p65-DsRedxp/IκBα-eGFP macrophages likely has an inhibitory action. We
speculate that this might either be due to competition with endogenous p65 for (i) dimer-
ization with other NFκB subunits and/or (ii) interaction with other key transcriptional
regulators. Similarly, it is also possible that overexpression the human IκBα could impact
on the signalling pathway that regulates activation of NFκB dimers, and therefore down-
stream gene transcription. Given that the p65-DsRedxp/IκBα-eGFP macrophages have



Biomedicines 2022, 10, 757 15 of 18

reduced specific transcriptional profiles of key molecules involved in innate and adaptive
immunity, they are highly likely to show defective Th1 responses. It is therefore essen-
tial that this information be taken into consideration when designing future experiments
and/or interpreting phenotypes during experimental protocols.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10040757/s1, Video S1: RelA(p65) translocation
from the cytoplasm to the nucleus of bone marrow-derived macrophages (BMDMs) from p65-
DsRedxp/IκBα-eGFP mice following stimulation with bacterial lipopolysaccharide. Figure S1: Dis-
tribution of differentially expressed genes in p65-DsRedxp/IκBα-eGFP BMDM treatment groups,
as identified by RNA sequencing. Figure S2: Differentially expressed genes identified by RNA
sequencing in p65-DsRedxp/IκBα-eGFP bone marrow derived murine macrophages (BMDMs), with
or with treatment with Lipid A. Figure S3: Integrative pathway enrichment analysis of differentially
expressed genes from p65-DsRed/IκBα-eGFP BMDMs using a cut-off of ≥1.5 and ≤−1.5 log2 fold
change in expression. Figure S4: Number and distribution of differentially expressed genes identi-
fied by RNA sequencing in p65-DsRedxp/IκBα-eGFP bone marrow derived murine macrophages
(BMDMs), with or with treatment with tumour necrosis factor. Figure S5: Integrative pathway
enrichment analysis of differentially expressed genes common to Lipid A and TNF treatment of
p65-DsRedxp/IκBα-eGFP BMDMs.
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