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Abstract: Anticancer peptides (ACPs) are selective and toxic to cancer cells as new anticancer drugs.
Identifying new ACPs is time-consuming and expensive to evaluate all candidates’ anticancer abilities.
To reduce the cost of ACP drug development, we collected the most updated ACP data to train a
convolutional neural network (CNN) with a peptide sequence encoding method for initial in silico
evaluation. Here we introduced PC6, a novel protein-encoding method, to convert a peptide sequence
into a computational matrix, representing six physicochemical properties of each amino acid. By
integrating data, encoding method, and deep learning model, we developed AI4ACP, a user-friendly
web-based ACP distinguisher that can predict the anticancer property of query peptides and promote
the discovery of peptides with anticancer activity. The experimental results demonstrate that AI4ACP
in CNN, trained using the new ACP collection, outperforms the existing ACP predictors. The 5-fold
cross-validation of AI4ACP with the new collection also showed that the model could perform at
a stable level on high accuracy around 0.89 without overfitting. Using AI4ACP, users can easily
accomplish an early-stage evaluation of unknown peptides and select potential candidates to test
their anticancer activities quickly.

Keywords: anticancer peptides (ACPs); deep learning; web service; prediction

1. Introduction

Cell membrane properties differ between the tumor cell and healthy cells [1]. For
example, the membrane fluidity of cancer cells is higher than that of healthy cells [2]. In
addition, cancer cells are characterized by a negatively charged surface [3]. Anticancer
peptides (ACPs), a subset of antimicrobial peptides (AMPs), are found to be toxic to cancer
cells [1]. Compared with chemotherapeutic reagents used in the standard cancer treatment
protocol, ACPs have higher specificity and selectivity to the neoplasm. Meanwhile, ACPs
can be easily synthesized and scaled up. It can thus serve as a new option in cancer
treatment modality [1].

ACPs can be divided into two types based on their putative anticancer mechanism:
molecular-targeting and cancer-targeting peptides. Several state-of-the-art ACP predictors
have been constructed using ACP data as a positive training set and non-ACP data as
a negative training set. These predictors are helpful for scientists to evaluate peptides’
anticancer activities in anticancer agent development. However, these existing predictors
were built using traditional machine learning methods. For example, a support vector
machine (SVM) was applied to build AntiCP [4] and iACP [5]. Both ACPred [6] and
MLACP [7] were trained using random forest (RF). Although these basic machine learning
methods are popular for model construction, they have some limitations affecting model
performance. Recent advances in deep learning architecture have been successfully applied
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in many fields (e.g., for the prediction of ACPs). For example, PTPD used Word2Vec and
the deep learning network (DNN) model [8].

To hasten the discovery of ACPs, we built a deep learning model to detect pep-
tides with anticancer activity. Our model was composed of a peptide sequence encoding
method and a machine learning model. In this study, we used PC6 [9], a novel protein-
encoding method, to convert a peptide sequence into a computational matrix, representing
six physicochemical properties of each amino acid. We mainly applied the convolutional
neural network to build our model. Because of an increase in the number of ACPs con-
firmed recently, we could identify more ACP sequences and construct a highly accurate
ACP prediction model.

2. Results

Firstly, we recruited ACPs from publications described in the Materials and Meth-
ods. Figure 1 presents the relationship between our positive set and the dataset used in
Charoenkwan et al. [10]. Data sets used in Charoenkwan et al. (to simplify the expression,
we used “Charoenkwan sets”) were composed of the main data set and the alternative
data set. The main data set was 861 experimentally validated ACPs as the positive set and
861 AMPs with no anticancer ability as the negative set. The alternative data set consisted of
970 ACPs as the positive set and 970 peptide sequences randomly chosen from Swiss-Prot
as the negative set. Positive set in the new collection (this study, positive n = 2124 + negative
n = 2124) includes Charoenkwan sets, and other 942 ACPs discovered recently. We used
80% of the data in model training and 20% for validation (Table 1) and spared one small set
from the new collected ACPs (n = 212) as the testing set.
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Table 1. Comparison of the composition of three data sets.

Dataset Dataset Usage Positive Set Negative Set

Main set
(P861 + N861)

Training set 689 ACPs 689 AMPs

Testing set 172 ACPs 172 AMPs

Alternative set
(P970 + N970)

Training set 766 ACPs 776 peptides from Swiss-Prot

Testing set 194 ACPs 194 peptides from Swiss-Prot

New collection
(P2124 + N2124)

Training set 1912 ACPs 956 peptides from UniProt + 956
randomly generated sequences

Testing set 212 ACPs 106 peptides from UniProt + 106
randomly generated sequences

We compared AI4ACP, trained using the main data set and the alternative data set
in the previous study, with other ACP predictors. Most of the ACP predictors are poorly
maintained, and thus they were not working or available. The results shown in Tables 2 and 3
were obtained from the manuscripts of AntiCP2.0 [11] and ACPred [10], which were done
based on Charoenkwan’s main set. As shown in Table 2, most ACP predictors trained with
the main data set did not perform efficiently in low specificities or low sensitivities.



Pharmaceuticals 2022, 15, 422 3 of 10

Table 2. Comparison of ACP predictors trained and tested with the main data set. Results were
obtained from AntiCP2.0 [11] and ACPred [10], except AI4ACP.

Predictors Classifier Accuracy Sensitivity Specificity MCC *

AntiCP SVM 0.506 1.000 + 0.012 0.070
iACP SVM 0.551 0.779 0.322 0.110

ACPred SVM 0.535 0.856 0.214 0.090

PEPred-Suite ensemble
approach 0.535 0.331 0.738 0.080

ACPred-FL ensemble
approach 0.448 0.671 0.225 −0.120

ACPred-Fuse RF 0.689 0.692 0.686 0.380
AntiCP_2.0 ETree 0.754 0.775 0.734 0.510
iACP-FSCM SVM 0.825 0.726 0.903 0.646

AI4ACP CNN 0.718 0.802 0.633 0.442
*: Matthews Correlation Coefficient. +: Top two ranked methods for each index are presented using text formats:
first in boldface, second with underline.

Table 3. Comparison of ACP predictors trained and tested using the alternative data set. Results
were obtained from AntiCP2.0 [11] and ACPred [10], except AI4ACP.

Predictors Classifier Accuracy Sensitivity Specificity MCC *

AntiCP SVM 0.900 + 0.897 0.902 0.800
iACP SVM 0.776 0.784 0.768 0.550

ACPred SVM 0.853 0.871 0.835 0.710

PEPred-Suite ensemble
approach 0.575 0.402 0.747 0.160

ACPred-FL ensemble
approach 0.438 0.602 0.256 −0.150

ACPred-Fuse RF 0.789 0.644 0.933 0.600
AntiCP2.0 ETree 0.920 0.923 0.918 0.840

iACP-FSCM SVM 0.889 0.876 0.902 0.779
AI4ACP CNN 0.894 0.871 0.918 0.790

*: Matthews Correlation Coefficient. +: Top two ranked methods for each index are presented using text formats:
first in boldface, second with underline.

Table 3 shows the performance of ACP predictors trained and tested using Charoenkwan’s
alternative data set. AI4ACP was trained and tested in the alternative dataset to make a
fair comparison. The performance of most of the ACP predictors was more favorable than
those trained using the main data set. Among these predictors, AntiCP2.0 [11] exhibited
the best performance. Moreover, the performance of AI4ACP trained and tested by the
alternative data set is close to AntiCP2.0.

Most ACP predictors were unable to run for the new collection due to the codes
unavailable or the poor maintenance on web portals. Therefore, we picked AntiCP2.0 [11],
which performed the best using the alternative dataset shown in Table 3, to compare
AI4ACP through the web-based service by taking the testing set of the new collection
for validation. AI4ACP was also trained using both the alternative data set and the new
collection to make a fair comparison. As shown in Table 4, the performance of AI4ACP
was slightly better than AntiCP2.0 when AI4ACP was trained using the alternative set.
By training the model of AI4ACP in the new collection set, which is almost double the
alternative set, AntiCP2.0 demonstrates the most excellent performance on the accuracy,
specificity, sensitivity, and MCC in the testing set from the new collection.
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Table 4. Comparison of ACP predictors tested using the testing set of the new collection.

Predictors Classifier Training Set Accuracy Specificity Sensitivity MCC *

AntiCP2.0 ETree Alternative set 0.792 0.717 0.868 0.592
AI4ACP CNN Alternative set 0.802 + 0.750 0.854 0.607
AI4ACP CNN New collection 0.913 0.925 0.901 0.826

*: Matthews Correlation Coefficient. +: Top two ranked methods for each index are presented using text formats:
first in boldface, second with underline.

3. Discussions

The increasing number of publications, databases, and tools shows the importance of
peptide-based therapeutics nowadays. More and more ACPs were recognized and even
used as FDA-approved drugs. This result reveals the growth in demand for identifying
and predicting ACPs. The identification and screening novel ACPs in a wet lab is usually
time-consuming and expensive. Exploring the anticancer activity of peptides by using
ACP predictors can accelerate the development of new anticancer drugs. However, the
prediction of an ACP predictor is merely speculative. Laboratory experiments would still
be required to confirm whether a peptide sequence possesses anticancer activity.

There are already some existing ACP predictors, such as iACP, ACPred, and AntiCP2.0.
Most of the existing ACP predictors were constructed from protein-encoding methods
like amino acid composition (AAC), dipeptide composition (DPC), autocovariance (AC)
method, and traditional machine learning methods like SVM, random forest, or the ensem-
ble methods. This study used a novel protein-encoding method, the PC6 protein-encoding
method. The PC6 encoding method selected one property from the six subclusters of
physicochemical properties of amino acids, respectively. Four of the six chosen proper-
ties were based on the seven properties from the original autocovariance (AC) methods.
Moreover, two common physicochemical properties were selected from the remaining two
subclusters. It was speculated that the PC6 encoding method might capture more complete
features from the sequences of interest.

The data sets used in previous studies had not been updated for quite some time. In
addition to the positive data set with a few ACPs, AMPs as negative data set in previous
studies might be inappropriate since ACPs are a subset of AMPs. Such poor-constructed
data might reduce the accuracy of the prediction. With the up-to-date ACPs data set and an
unbiased negative data set collected from UniProt and randomly generated, the predictor
performed better under the same architecture.

To ensure the stability of the model and avoid overfitting during the model training,
five-fold cross-validation was also applied to the model (Table 5). All the sequences used in
our final model were randomly divided into five parts. In every training repetition, one of
the five parts would be left out as the testing set, and the other four parts as the training set.
The result showed that though the model’s performance had a slight decline as the number
of sequences of the training set in five-fold cross-validation was smaller than the original
training set, the average accuracy of the model is still about 89%. It showed that the model
could perform at a stable level with no worries about overfitting issues.

Table 5. Model performance of five-fold cross-validation.

Fold Accuracy Specificity Sensitivity MCC *

1 0.887 0.924 0.850 0.776
2 0.888 0.861 0.915 0.777
3 0.878 0.951 0.802 0.763
4 0.895 0.914 0.877 0.791
5 0.898 0.973 0.814 0.802

Average 0.889 0.925 0.852 0.782
*: Matthews Correlation Coefficient.
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The external testing set was used to test the model’s performance under the unknown
sequences. The result showed that only 7 of 43 ACP sequences were misidentified as
non-ACPs. The model’s accuracy under the external testing set is about 84%. Therefore,
we could presume that if a new-designed sequence is predicted as ACP by our model, it is
highly possible to be an effective anticancer peptide.

Tables 2–4 revealed that combining the PC6 encoding method and deep learning
model could efficiently predict ACPs. The PC6 encoding method could exactly preserve
the physicochemical properties of amino acids from original peptide sequences, and the
deep learning model could learn these preserved features. In addition, with an increase
in the number of peptide sequences confirmed as ACPs, we could build a predictor that
exhibited more favorable performance and higher accuracy than other state-of-the-art
ACP predictors. AI4ACP is a user-friendly web-based ACP predictor, and users can use
this tool to detect whether the query sequence is an ACP. This tool can be beneficial for
drug development for cancer treatment. AI4ACP will be continuously updated once
new ACPs are discovered in the future. Besides, the deep learning model is available at
https://github.com/yysun0116/AI4ACP, accessed on 6 March 2022.

4. Materials and Methods
4.1. Data Collection and Division
4.1.1. Positive Data Collection

We collected ACP sequences from four ACP and AMP databases: CancerPPD [12],
DBAASP [13], DRAMP [14], and YADAMP [15]. In addition, we included sequences from
the positive alternative set reported by Charoenkwan et al., 2021 [10]. We downloaded
all peptides with anticancer activity from the four databases and previous studies. After
excluding ACPs with unusual amino acids or a nonlinear structure, namely “B”, “Z”, “U”,
“X”, “J”, “O”, “i”, and “-”, and duplicates between different databases, we obtained 2839
positive ACPs. Figure 2a presents the length distribution of the 2839 ACPs; most of the
sequences were shorter than 50 amino acids in length. Therefore, we excluded ACPs longer
than 50 amino acids. Finally, 2815 ACP sequences were retained. Figure 2b depicts the
length distribution of the 2815 ACPs.
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Figure 2. Histogram of the length distribution of collected ACPs. (a) The length distribution of all the
2839 ACPs; (b) The length distribution of ACPs, after excluding ACPs longer than 50 amino acids.

To ensure that the characteristics of the ACPs learned by the model were balanced, we
filtered out the remaining ACPs sharing >99% sequence identity with existing ACPs by
calculating the sequence identity using CD-HIT [16]. A total of 2124 ACPs were included
as positive data. To evaluate the performance of our model and compare it with that of
other state-of-the-art predictors, we used 10% of all the positive data as the testing set after
excluding sequences from the positive set of other predictors. Figure 3 presents the detailed
positive data collection and division process.

https://github.com/yysun0116/AI4ACP
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4.1.2. Negative Data Collection

The negative data set consisted of 1062 non-ACP peptides from UniProt [17] and
1062 generated peptides. From UniProt, we collected peptides shorter than 50 amino acids
in length and without anticancer, antiviral, antimicrobial, or antifungal activities. Random-
generated peptides were derived using the same length distribution of the positive data set
and randomly filled with 20 essential amino acids. Accordingly, we obtained 2124 sequences
as the negative data set. We used 90% of the negative data set (1912 sequences) as the negative
training set and the remaining 10% (212 sequences) as the negative testing set. Figure 4
presents the detailed negative data collection and division process.
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4.2. Protein-Encoding Method

This study used the PC6 protein-encoding method [9] to convert a peptide sequence
into a computational matrix. PC6 is a novel protein-encoding method that can encode a
sequence based on both the order and physicochemical properties of the amino acids of the
sequence. After benchmarking with other encoding methods, the PC6 encoding method
exhibited the most satisfactory performance. Therefore, we applied PC6 in the encoding
stage in our final prediction model.

4.3. Developing a Deep Learning Model

We implemented Keras, a high-level API from Tensorflow, to construct and train a
deep learning model. We first applied the PC6 protein-encoding method [9] to all sequences.
PC6 would add an extra character, “X”, which would be 0 in all six properties, at the end of
the sequences for sequence padding to length 50 and convert them into 50 × 6 matrices.
Figure 5 presents the process of the PC6 protein-encoding method.

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 7 of 10 
 

 

 
Figure 5. PC6 protein−encoding method. A padded ACP will be transformed into a 50 × 6 matrix. 

Subsequently, we implemented the neural network using Keras 
(https://github.com/keras-team/keras, accessed on 30 March 2022) from Tensorflow2 
(https://www.tensorflow.org/, accessed on 30 March 2022). The model architecture con-
sists of three blocks composed of convolutional layers, batch normalization, max pooling, 
dropout layers, and two dense layers (Figure 6). The first dense layer contains 128 units 
with a 50% dropout rate. The last layer in the model is the output layer and is composed 
of a one-dimensional dense layer with the sigmoid activation function that produces a 
value ranging from 0 to 1; this value can indicate whether a peptide is an ACP. The con-
volutional layer in the three blocks in our model was built using 64, 32, and 8 one-dimen-
sional filters of length 20 with the ReLU activation function, respectively. After the con-
volutional layer was built, batch normalization and max-pooling were applied with a 25% 
dropout rate in every block. Binary cross entropy was implemented as the loss function. 
With a learning rate of 0.0001, the Adam optimizer was used as our optimizer. Using the 
validation data set (90%), we trained the model and evaluated its performance using the 
validation data set (10%). Finally, all available data, namely 2124 positive and 2124 nega-
tive data, were used to train the final model. 

 
Figure 6. Model architecture in this study. After PC6 encoding, protein sequences will go through 
every layer in this model. 

4.4. Data for the Final Model 
After confirming the most favorable model architecture and hyperparameters, we 

trained the model using all the available data (2124 positive and 2124 negative data). Even-
tually, we produced the final prediction model for the website. The data set used in this 
study can be found on our online HELP page. (https://axp.iis.sinica.edu.tw/AI4ACP/help-
page.html, accessed on 30 March 2022) The positive and negative data sets will be contin-
uously updated with the same criteria if new ACPs are discovered in the future. 

4.5. Performance Measure 
We evaluate the performance of our model using threshold-dependent parameters, 

which include Accuracy, Specificity, Sensitivity, and Matthews Correlation Coefficient 
(MCC). These parameters are calculated via the following equations: 

Figure 5. PC6 protein−encoding method. A padded ACP will be transformed into a 50 × 6 matrix.

Subsequently, we implemented the neural network using Keras (https://github.com/
keras-team/keras, accessed on 6 March 2022) from Tensorflow2 (https://www.tensorflow.
org/, accessed on 6 March 2022). The model architecture consists of three blocks composed
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of convolutional layers, batch normalization, max pooling, dropout layers, and two dense
layers (Figure 6). The first dense layer contains 128 units with a 50% dropout rate. The
last layer in the model is the output layer and is composed of a one-dimensional dense
layer with the sigmoid activation function that produces a value ranging from 0 to 1;
this value can indicate whether a peptide is an ACP. The convolutional layer in the three
blocks in our model was built using 64, 32, and 8 one-dimensional filters of length 20
with the ReLU activation function, respectively. After the convolutional layer was built,
batch normalization and max-pooling were applied with a 25% dropout rate in every
block. Binary cross entropy was implemented as the loss function. With a learning rate of
0.0001, the Adam optimizer was used as our optimizer. Using the validation data set (90%),
we trained the model and evaluated its performance using the validation data set (10%).
Finally, all available data, namely 2124 positive and 2124 negative data, were used to train
the final model.
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every layer in this model.

4.4. Data for the Final Model

After confirming the most favorable model architecture and hyperparameters, we
trained the model using all the available data (2124 positive and 2124 negative data).
Eventually, we produced the final prediction model for the website. The data set used
in this study can be found on our online HELP page. (https://axp.iis.sinica.edu.tw/AI4
ACP/helppage.html, accessed on 6 March 2022) The positive and negative data sets will be
continuously updated with the same criteria if new ACPs are discovered in the future.

4.5. Performance Measure

We evaluate the performance of our model using threshold-dependent parameters,
which include Accuracy, Specificity, Sensitivity, and Matthews Correlation Coefficient
(MCC). These parameters are calculated via the following equations:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100 (1)

Speci f icity =
TN

TN + FP
× 100 (2)

Sensitivity =
TP

TP + FN
× 100 (3)

MCC =
(TP × TN)− (FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
× 100 (4)

where TP represents the true positive predictions, TN represents the true negative predictions,
FP represents the false positive predictions, and FN represents the false negative predictions.

4.6. External Testing Set

We collected ACP sequences from the updating version of DBAASP and excluded
the sequences which were replicates of the 2124 ACP sequences we had collected. The

https://axp.iis.sinica.edu.tw/AI4ACP/helppage.html
https://axp.iis.sinica.edu.tw/AI4ACP/helppage.html
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sequence shorter than 10 amino acids, longer than 50 amino acids, or with amino acids out
of 20 usual amino acids were also excluded. Finally, 43 ACP sequences were filtered out as
an external testing set.

4.7. System Implementation and Workflow

For the intuitive user experience and easy understanding, we built AI4ACP composed
of the LAMP system architecture (Linux Ubuntu 16.04, Apache 2.04, MySQL 5.7, and
PHP 5.1) with the Bootstrap 3 CSS framework (http://getbootstrap.com/, accessed on
6 March 2022), jQuery1.11.1, and jQuery Validation version 1.17. Furthermore, the core
of the analysis process was implemented in the neural network by using Keras from
Tensorflow. AI4ACP runs as a virtual machine (CPU of 2.27 GHz, 20 cores, 32-GB RAM,
and 500-GB storage) on the cloud infrastructure of the Institute of Information Science,
Academia Sinica, Taiwan.

AI4ACP is a website service that allows users to predict whether a query peptide
sequence is an ACP. The input data should be in the FASTA format, and the query peptide
sequence should be composed of only 20 essential amino acids; sequences would not be
recognized if they contain unusual amino acids such as B, Z, U, X, J, or O. AI4ACP would
output a CSV file containing a prediction score ranging from 0 to 1 and the prediction
result as YES or NO for each input peptide sequence. The prediction score represents the
probability that the query peptide sequence is an ACP. The output file’s prediction results,
shown as a binary column, indicate the ACP sequence(s). The prediction result is based on
the prediction score with a threshold of 0.472, which is the average of thresholds calculated
by training the model five times. The workflow of AI4ACP is presented in Figure 7 and
explained as follows. First, the query peptide sequence is input in the FASTA format or
as a FASTA file, and a valid job title is provided (Figure 7A). After the query sequence is
submitted, the result appears in a three-column table composed of the input peptide’s name,
prediction score, and result (Figure 7B). In addition, a pie chart presents the prediction
result; this pie chart enables users to view the prediction results of the whole submission at
the same time (Figure 7C).

http://getbootstrap.com/
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5. Conclusions

ACPs are a special subset of short peptides which contain abilities to fight cancer.
Modeling the ACP properties is a crucial research topic for developing ACP-based cancer
therapy. This study collected up-to-date ACP data and then developed an online ACP
predictor, AI4ACP. By evaluating the external testing set, our approach builds a prediction
model based on the PC6 protein-encoding method, and deep learning outperforms other
predictors. AI4ACP can be an ideal filter to select potential peptides in the first step of new
ACP finding. Users can upload their peptide candidate sequences to our web server, get
predictions in a few minutes, and pick promising ones for further costing bench experiments.

The deep learning approach in the drug discovery pipeline is beneficial for promoting
and economizing the early drug development process. This study successfully transforms
peptides into a machine-readable format encoded with physiochemical information. Al-
though a large amount of data can improve model performance, it is necessary to conduct
data preprocessing to prevent garbage in and out carefully. We took special care on data
utilization and found that using a robust machine learning algorithm can improve model
performance in learning different peptides patterns.

Author Contributions: Y.-Y.S., T.-T.L. and C.-Y.L. collected the data, planned and implemented the
algorithm; Y.-Y.S., I.-H.L. and C.-Y.L. composed the whole infrastructure, conducted the experiments;
and drafted the manuscript was prepared together by Y.-Y.S., T.-T.L., C.-Y.L. and S.-H.C.; W.-C.C.,
I.-H.L. and S.-H.C. worked on constructing workflow and web platforms for data visualization and
analysis. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology, Taiwan, grant number
MOST 110-2320-B-038 -087 -, 110-2314-B-001-006 - and 110-2311-B-001-020 -.
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(webserver) with the dataset used is freely accessible at https://axp.iis.sinica.edu.tw/AI4ACP/,
accessed on 6 March 2022. Furthermore, the model with code is also available on Github at https:
//github.com/yysun0116/AI4ACP, accessed on 6 March 2022.
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