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Abstract

BACKGROUND.—Sarcopenia is associated with adverse clinical outcomes. CT-based skeletal 

muscle measurements for sarcopenia assessment are most commonly performed at the L3 

vertebral level.

OBJECTIVE.—The purpose of this article is to compare the utility of fully automated deep 

learning CT-based muscle quantitation at the L1 versus L3 level for predicting future hip fractures 

and death.

METHODS.—This retrospective study included 9223 asymptomatic adults (mean age, 57 ± 

8 [SD] years; 4071 men, 5152 women) who underwent unenhanced low-dose abdominal CT. 

A previously validated fully automated deep learning tool was used to assess muscle for 

myosteatosis (by mean attenuation) and myopenia (by cross-sectional area) at the L1 and L3 

levels. Performance for predicting hip fractures and death was compared between L1 and L3 

measures. Performance for predicting hip fractures and death was also evaluated using the 

established clinical risk scores from the fracture risk assessment tool (FRAX) and Framingham 

risk score (FRS), respectively.
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RESULTS.—Median clinical follow-up interval after CT was 8.8 years (interquartile range, 5.1–

11.6 years), yielding hip fractures and death in 219 (2.4%) and 549 (6.0%) patients, respectively. 

L1-level and L3-level muscle attenuation measurements were not different in 2-, 5-, or 10-year 

AUC for hip fracture (p = .18–.98) or death (p = .19–.95). For hip fracture, 5-year AUCs for 

L1-level muscle attenuation, L3-level muscle attenuation, and FRAX score were 0.717, 0.709, 

and 0.708, respectively. For death, 5-year AUCs for L1-level muscle attenuation, L3-level muscle 

attenuation, and FRS were 0.737, 0.721, and 0.688, respectively. Lowest quartile hazard ratios 

(HRs) for hip fracture were 2.20 (L1 attenuation), 2.45 (L3 attenuation), and 2.53 (FRAX score), 

and for death were 3.25 (L1 attenuation), 3.58 (L3 attenuation), and 2.82 (FRS). CT-based muscle 

cross-sectional area measurements at L1 and L3 were less predictive for hip fracture and death 

(5-year AUC ≤ 0.571; HR ≤ 1.56).

CONCLUSION.—Automated CT-based measurements of muscle attenuation for myosteatosis at 

the L1 level compare favorably with previously established L3-level measurements and clinical 

risk scores for predicting hip fracture and death. Assessment for myopenia was less predictive of 

outcomes at both levels.

CLINICAL IMPACT.—Alternative use of the L1 rather than L3 level for CT-based muscle 

measurements allows sarcopenia assessment using both chest and abdominal CT scans, greatly 

increasing the potential yield of opportunistic CT screening.
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Sarcopenia can refer to loss of skeletal muscle mass, function, or quality and is associated 

with many adverse clinical outcomes, including hip fractures and death [1, 2]. Objective 

muscle data from body CT scans can be obtained as an opportunistic assessment for 

sarcopenia, regardless of the clinical indication for imaging [2, 3]. CT can assess for 

loss of muscle mass and quality, indicating myopenia and myosteatosis, respectively [1, 

4, 5]. A wide variety of CT-based approaches for muscle assessment have been reported, 

ranging from manual to fully automated deep learning techniques and using multiple 

different anatomic levels [4]. A recent systematic review of 388 published studies of CT 

muscle measurements found that the most frequently used technique was assessment of 

skeletal muscle at the L3 vertebral level [4]. More recent studies using fully automated deep 

learning techniques have also favored the L3 level for CT-based muscle assessment [6-8]. 

However, if CT-based sarcopenia assessment at the L1 level was shown to be comparable 

to assessment at the L3 level, then both chest and abdominal CT scan data could be used, 

greatly increasing the overall yield of opportunistic sarcopenia screening.

The purpose of our study was to compare the utility of fully automated deep learning 

CT-based muscle quantitation at the L1 versus L3 vertebral levels for predicting future hip 

fracture and death. The performance of the CT-based muscle measurements is also compared 

with two validated clinical risk scores, the fracture risk assessment tool (FRAX) score and 

the Framingham risk score (FRS).
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Methods

Study Cohort and Adverse Clinical Outcomes

This HIPAA-compliant investigation was approved by the institutional review board at the 

University of Wisconsin School of Medicine and Public Health and the Office of Human 

Subjects Research Protection at the National Institutes of Health Clinical Center. The 

requirement for written informed consent was waived for this retrospective assessment. The 

study's patient group represents a cohort of patients with documented clinical outcomes that 

has been previously used for external validation of a variety of automated CT-based body 

composition tools and clinical outcomes [6-12]. The initially identified sample included 

9399 consecutive adult outpatients who were asymptomatic and who underwent low-dose 

unenhanced abdominopelvic CT for routine colorectal cancer screening between 2004 and 

2016 at a single medical center. Excluded were 63 patients with symptoms that prompted 

the CT colonography evaluation, 82 who had less than 1 year of clinical follow-up after the 

CT evaluation in the absence of an earlier defined adverse event, three with unavailable or 

corrupted CT DICOM data, and 28 with muscle tool failure. These exclusions resulted in a 

final included study cohort of 9223 asymptomatic adults (mean age, 57 ± 8 [SD] years; 5152 

women, 4071 men).

A dedicated search script of the electronic health record (EHR) was used to identify two 

potential clinical outcomes for all patients after the CT scanning: osteoporotic hip fractures 

and all-cause mortality. Manual per-patient data abstraction was not required.

CT Scanning Protocol

The low-dose unenhanced supine MDCT scans used for this investigation were performed 

using the same general protocol on scanners from a single vendor (GE Healthcare), with 

120 kVp and modulated tube current to achieve a noise index of 50, typically resulting in 

an effective dose of 2–3 mSv. The low-dose prone series was not used. The original supine 

series were all reconstructed to axial 3-mm slice thickness using a standard soft-tissue kernel 

for the automated body composition tools. The specific additional colonography-related 

techniques for bowel preparation and colonic distention have been previously described [13, 

14].

Deep Learning Quantitative Visualization Tool for Muscle Measurements

The muscle segmentation algorithm used in this study represents a fully automated deep 

learning system developed, trained, and tested using CT images from separate cohorts [15, 

16]. The initial processing step was a fully automated spine segmentation leveling tool 

that determines the endplates of the vertebral levels and labels the spine from T12 to L5 

[15, 16]. A U-Net neural network model was then used for rapid automated detection 

and segmentation of muscles (psoas, paraspinal, and abdominal wall musculature) at each 

vertebral level [17]. Prior training of the tool involved manual muscle segmentation using 

images distinct from the CT dataset used in this study. Cross-entropy was used for the loss 

function, and optimization was performed using the adaptive moment estimation (Adam) 

method [18]. Manual muscle segmentations at two axial levels for each lumbar vertebra 
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were used to train the model for the deep learning system. During testing, the trained model 

was deployed for muscle segmentations at multiple lumbar vertebral levels.

The Dice coefficient relative to manual skeletal muscle segmentation for this tool was 

previously shown to be highest at the L3 level (0.930–0.939), lowest at the L5 level (0.821–

0.850), and intermediate for the L1 level (0.879–0.890) [16]. The neural network model 

was subsequently upgraded to a 3D U-Net variant that provided a smoother segmentation 

in the longitudinal direction [19]. The upgrade was performed by running the 2D U-Net 

muscle segmenter on a dataset of 176 contrast-enhanced body CT scans that included the 

abdomen and their synthetic unenhanced CT counterparts [20]. The output of the 2D muscle 

segmenter on these cases was then used to train the 3D U-Net. The tool allows visual 

confirmation of the automated segmentation via single-slice display. Figure 1 shows an 

example of the tool's output.

This automated deep learning tool provides an analysis of both muscle density and bulk at 

the desired segmented level. Muscle density is measured by the mean of the CT attenuation 

values (in HU) of the segmented voxels. Muscle bulk is measured by the cross-sectional 

area of the segmented voxels (i.e., the ratio between the volume and slice thickness). The 

segmentation generally included intramuscular adipose tissue, which is anticipated to favor 

the performance of muscle attenuation over muscle cross-sectional area.

The same deep learning tool was applied to all CT scans in the patient cohort. The muscle 

tissue measurement algorithm used a Core i7 processor (Intel) with 4× Titan X GPUs 

(Nvidia) and required less than 1 minute to process the entire T12–L5 region. This research 

tool is currently not commercially available.

Clinical Risk Scores

The utility of the CT-based muscle measurements was compared with two multivariable 

clinical risk scores: FRAX and FRS [21, 22]. The FRAX score provides a 10-year risk 

estimate for hip fracture and a separate risk estimate for any fragility fracture. The FRS 

provides a 10-year risk estimate for major cardiovascular events. Consistent with prior 

research [7], we used the FRS as a proxy for risk of death. We constructed an EHR 

search script to extract all relevant available clinical data for each patient, using values 

closest in time to the CT scan. For FRAX score, this included patient age, sex, height, 

weight, smoking status, previous fracture, and femoral neck T-score from dual-energy x-ray 

absorptiometry, along with additional clinical variables [22]. For FRS, this included patient 

age, sex, blood pressure, cholesterol, lipids, diabetic status, and smoking status. The actual 

10-year risk estimates for FRAX score and FRS according to these values were then derived 

by a research assistant with 6 years of experience in medical research (P.M.G.).

Statistical Analysis

Summary statistics were compiled and compared between patients with and without 

subsequent hip fracture and between patients who survived versus those who died during 

the clinical follow-up interval using the Wilcoxon-Mann-Whitney test. To investigate the 

association between predictive measures and downstream adverse events, we used both 

logistic regression analysis to compute ROC curves and event-free survival analysis. For 
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ROC curve analysis, datasets were restricted to defined follow-up time intervals (2, 5, and 

10 years) to ensure fair comparisons between event and nonevent groups. AUCs with 95% 

CIs were calculated. For the time-to-event survival analysis, Kaplan-Meier curves were 

generated by splitting predictor variables into quartiles. Cox proportional hazards models 

were also used to derive concordance values and individual risk predictions. In addition, 

hazard ratios (HRs) with 95% CI were computed for each predictor, comparing the highest-

risk quartile against the other three quartiles. AUCs and Cox model concordance were 

compared between L1 and L3 measurements using the DeLong method. Separate thresholds 

were derived for the attenuation measures to achieve 80% sensitivity or 80% specificity for 

hip fracture and for death at 5 years. The time-to-event plots were visually assessed for 

differences between measures. R (version 3.6, R Project for Statistical Computing) was used 

for statistical analyses. Results for L1-level CT muscle markers have not been previously 

reported; the results for L3-level CT muscle markers, FRAX, and FRS have been previously 

reported [6, 7].

Results

Over a median clinical follow-up interval after CT of 8.8 years (interquartile range, 5.1–11.6 

years), a total of 219 (2.4%) patients had a hip fracture and 549 (6.0%) died. Table 1 

summarizes the CT markers and clinical risk scores stratified by the two patient outcomes. 

Patients with subsequent hip fracture compared with those without hip fracture exhibited 

significantly lower CT-based muscle attenuation at the L1 level (17.6 ± 15.3 vs 22.9 ± 15.3 

HU; p < .001) and L3 level (24.2 ± 12.7 vs 29.0 ± 12.1 HU; p < .001), significantly lower 

CT-based muscle area at the L3 level (145.8 ± 41.2 vs 154.6 ± 46.0 cm2; p = .006), and a 

significantly higher FRAX score (1.8% ± 3.3% vs 0.8% ± 1.8%; p < .001), though there was 

no significant difference in CT-based muscle area at the L1 level (107.5 ± 36.4 vs 110.6 ± 

37.9 cm2; p = .22). Patients who died during the study interval compared with those who 

survived exhibited significantly lower CT-based muscle attenuation at the L1 level (12.9 ± 

16.7 vs 23.4 ± 15.0 HU; p < .001) and L3 level (20.8 ± 15.3 vs 29.4 ± 11.7 HU; p < .001), 

significantly lower CT-based muscle area at the L1 level (110.2 ± 41.5 vs 114.4 ± 37.6 cm2; 

p = .005), and significantly higher FRS (6.7% ± 5.9% vs 3.4% ± 4.0%; p < .001), though 

there was no significant difference in CT-based muscle area at the L3 level (150.9 ± 46.5 vs 

154.6 ± 45.9 cm2; p = .13).

Table 2 presents the 2-, 5-, and 10-year AUCs and Cox model concordance coefficients 

for the two study endpoints for the various study measures. For hip fracture, the 5-year 

AUC was 0.717 (95% CI, 0.657–0.777) for L1-level muscle attenuation, 0.709 (95% CI, 

0.639–0.778) for L3-level muscle attenuation, 0.521 (95% CI, 0.449–0.594) for L1-level 

muscle area, 0.571 (95% CI, 0.495–0.647) for L3-level muscle area, and 0.708 (95% CI, 

0.629–0.787) for the FRAX score. For overall survival, the 5-year AUC was 0.737 (95% 

CI, 0.703–0.770) for L1-level muscle attenuation, 0.721 (95% CI, 0.683–0.759) for L3-level 

muscle attenuation, 0.536 (95% CI, 0.496–0.576) for L1-level muscle area, 0.554 (95% CI, 

0.513–0.596) for L3-level muscle area, and 0.688 (95% CI, 0.650–0.727) for the FRS. There 

was no significant difference (all p > .05) between the L1 and L3 measures for muscle 

attenuation for hip fracture (p = .18–.98) or for either muscle attenuation or muscle area 

for death (p = .19–.95) for 2-, 5-, or 10-year AUC. There was also no significant difference 
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between the L1 and L3 measures for muscle area for hip fracture (p = .08–.54) for 2- or 

5-year AUC. Figure 2 shows ROC curves for the CT-based measurements using the 5-year 

outcomes.

For predicting hip fracture, the L1-level muscle attenuation at a threshold of 24.7 HU 

achieved sensitivity of 80% (45/56) and specificity of 55% (3738/6812) at 5 years, whereas 

a threshold of 15.5 HU achieved 80% (5459/6812) specificity and 52% (29/56) sensitivity. 

The L3-level muscle attenuation at a threshold of 31.8 HU achieved sensitivity of 80% 

(45/56) and specificity of 49% (3314/6812), whereas a threshold of 21.4 HU achieved 

80% specificity (5439/6812) and 54% (30/56) sensitivity. For predicting death, the L1-level 

muscle attenuation at a threshold of 26.2 HU achieved sensitivity of 80% (173/216) and 

specificity of 52% (3454/6675), whereas a threshold of 12.9 HU achieved 80% (5340/6675) 

specificity and 53% (115/216) sensitivity. The L3-level muscle attenuation at a threshold of 

32.2 HU achieved sensitivity of 80% (172/216) and specificity of 48% (3195/6675), whereas 

a threshold of 21.8 HU achieved 80% (5340/6675) specificity and 53% (115/216) sensitivity.

The HR for future hip fracture comparing the highest-risk quartile with the remaining three 

quartiles was 2.20 (95% CI, 1.68–2.90) for L1-level muscle attenuation, 2.45 (95% CI, 

1.87–3.02) for L3-level muscle attenuation, 1.15 (95% CI, 0.86–1.54) for L1-level muscle 

area, 1.56 (95% CI, 1.18–2.07) for L3-level muscle area, and 2.53 (95% CI, 1.94–3.32) for 

the FRAX score. The HR for death comparing the highest-risk quartile with the remaining 

three quartiles was 3.25 (95% CI, 2.75–3.84) for L1-level muscle attenuation, 3.58 (95% CI, 

3.02–4.23) for L3-level muscle attenuation, 1.35 (95% CI, 1.12–1.62) for L1-level muscle 

area, 1.26 (95% CI, 1.05–1.51) for L3-level muscle area, and 2.82 (95% CI, 2.36–3.37) for 

the FRS score. Figures 3 and S1 (Fig. S1 can be viewed in the AJR electronic supplement to 

this article at www.ajronline.org) show time-to-fracture and time-to-death plots by quartile 

for L1 and L3 muscle attenuation and area measurements. These plots visually show better 

separation among quartiles using muscle attenuation than muscle area measurements, though 

similar separation is seen between L1 and L3 measurements.

Discussion

In this study, we show similar performance in predicting key clinical outcomes of hip 

fracture and death for CT-based muscle assessment between the L1 level and the standard 

L3 level. Further, CT muscle attenuation assessment at both the L1 and L3 levels compared 

favorably to the FRAX and FRS clinical risk scores. The practical implication of these 

findings is that L1-level muscle assessment would allow sarcopenia assessment using chest 

CT scans in addition to abdominal CT scans. Conversely, L1- and L3-level muscle cross-

sectional area measurements were not found to be useful markers for predicting hip fracture 

or death. We also show the utility of a fully automated deep learning tool for CT-based 

muscle assessment, which provides objective results that can be applied to large patient 

cohorts.

Sarcopenia can refer to loss of muscle mass, function, or quality and is closely associated 

with cachexia (involuntary wasting), frailty (physiologic decline), and aging in general 

[1, 5]. A wide range of clinical and imaging-based criteria for sarcopenia have been 
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applied, and a consensus definition has been proposed [23]; nonetheless, clear overarching 

definitions remain lacking [5]. A variety of manual, semiautomated, and fully automated 

approaches exist for CT-based skeletal muscle assessment [2, 5, 8]. The large volume of 

body CT scans performed for a wide variety of clinical indications may be leveraged to 

provide opportunities for muscle evaluation [2, 3]. A systematic review by Amini et al. [4] 

of 388 published studies that used CT to assess for sarcopenia found that measurements 

were most commonly performed at the L3 level, followed by the L4–5 level and the thigh. 

Relatively few studies outside of cohorts of patients with cancer have used the L1 level for 

muscle assessment or have used muscle attenuation rather than area [24, 25]. More recent 

works have used automated CT-based muscle assessment by a deep learning tool, though 

they have also primarily used the L3 level [6-8]. Lenchik et al. [26] found that automated 

CT-based muscle assessment at T12 correlated with survival in men undergoing lung cancer 

screening. Boutin et al. [27] showed that manual CT-based muscle assessment was slightly 

better at the T12 level than the L4 level in predicting mortality after hip fracture.

Muscle quality can be assessed at CT using mean attenuation values obtained by either a 

manual ROI or by a more comprehensive cross-sectional segmentation process. Some tools 

separate intermuscular adipose tissue from muscle. Muscle bulk or quantity is often reflected 

by the cross-sectional area of segmented psoas, paraspinal, and body wall musculature at 

a given level, which can be normalized according to patient height into a skeletal muscle 

index. The relative importance of muscle quantity (myopenia) versus quality (myosteatosis) 

is controversial [1]. Prior studies have generally focused on muscle area, commonly 

evaluated using the skeletal muscle index. Although the relative performance of these 

measures may depend in part on the segmentation methodology, CT-based myosteatosis 

appears to be an overall more powerful predictor of adverse outcomes [28]. A recent 

publication found that CT-based muscle attenuation measurement was the best predictor 

of mortality among patients with hip fracture compared with many other clinical and CT 

variables, whereas skeletal muscle index was not a significant predictor [29]. Our muscle 

tool generally includes within the segmented volume areas of intermuscular adipose tissue 

within the paraspinal and body wall musculature; such fat would also generally be included 

within a manually placed ROI. This inclusion of intermuscular fat lowers attenuation values 

but generally does not alter cross-sectional area. Consequently, muscle attenuation measured 

using this CT approach more rapidly decreases with increasing patient age than does muscle 

area [8]. Furthermore, muscle attenuation has been previously shown to be a useful marker 

for predicting adverse outcomes such as osteoporotic fractures and death [6, 7]. Other 

developed CT-based muscle tools specifically exclude these areas of fatty deposition, which 

may hinder the predictive ability of CT-based muscle attenuation measurements [5].

We acknowledge limitations to this study. We investigated a cohort of generally healthy 

outpatients without symptoms who were undergoing a screening examination. As such, 

fewer downstream adverse outcomes might be expected; nonetheless, our prolonged follow-

up interval, which was often greater than a decade, uncovered a considerable number of 

hip fractures and deaths within the cohort. We cannot exclude the possibility that some 

adverse outcomes may have been missed by the EHR search. The CT technique consisted 

of only unenhanced imaging, and small corrections may be needed to reflect the impact 

of IV contrast material on muscle and other body composition measures [30, 31]. Also, 
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we did not use thoracic CT scan data in our study. Although in our experience the L1 

level is generally included in the FOV of chest CT scans, it is possible that some chest 

CT protocols do not always include the L1 level. Our results should also be confirmed 

in different practice settings to show generalizability, including variation in CT scanners 

and technique, and in more diverse patient cohorts. Also, although we only evaluated 

hip fractures and death, CT-based muscle measures have proven useful for predicting any 

osteoporotic fracture [6], cardiovascular events [7], and postoperative complications and 

cancer frailty [32-34]. Finally, we conducted a focused comparison of univariable L1- and 

L3-level muscle measurements. However, predictive ability may be improved by combining 

these muscle measurements with other CT-based body composition measures (e.g., of bone 

and fat) [35].

In summary, an automated deep learning tool for quantitative visualization of body wall 

musculature at the L1 vertebral level compares favorably with the previously established L3 

level and clinical risk scores for predicting hip fractures and death. Assessment of muscle 

attenuation (myosteatosis) performed better than assessment of muscle area (myopenia), 

likely in part because of the automated tool's inclusion of intramuscular fat within the 

segmented areas. Because L1-level muscle measures can generally be derived from both 

chest and abdominal CT scans, use of the L1 level rather than the L3 level increases the 

overall potential yield of opportunistic CT screening for sarcopenia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

Key Finding

• Among 9223 asymptomatic adults who underwent abdominal CT, muscle 

attenuation measurements at the L1 and L3 levels obtained using a fully 

automated deep learning tool showed similar utility in predicting subsequent 

hip fracture and death; muscle attenuation measurements at both levels 

showed performance comparable with established clinical risk scores.

Importance

• Use of L1 (typically included on both chest and abdominal CT examinations) 

rather than L3 level expands the reach of opportunistic CT screening for 

sarcopenia.
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Fig. 1—. Sarcopenia (myosteatosis) at screening CT colonoscopy in 79-year-old woman with 
subsequent hip fracture.
A and B, CT images show L1 vertebral level without (A) and with (B) overlay of automated 

skeletal muscle segmentation (B, red). Intramuscular fat is present within paraspinal muscles 

(circle, A). Mean muscle attenuation is similar for manually placed ROI (1.8 HU) and 

automated tool (3.9 HU) and is markedly decreased for both approaches. Muscle cross-

sectional area is relatively preserved when intramuscular fat is included.

C and D, CT images at L3 level without (C) and with (D) muscle segmentation show similar 

findings.

E, Hip radiograph shows left intertrochanteric femoral fracture that occurred when patient 

fell 2 years after initial CT. Patient died 4 years after fall.
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Fig. 2—. Five-year ROC curves for prediction of hip fracture and death.
A and B, ROC curves show prediction of hip fracture with automated muscle attenuation 

measurements at L1 (A) and L3 (B) levels, with corresponding AUCs of 0.717 and 0.709, 

respectively.

C and D, ROC curves show prediction of death with automated muscle attenuation 

measurements at L1 (C) and L3 (D) levels, with corresponding AUCs of 0.737 and 0.721, 

respectively.
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Fig. 3—. Time-to-event plots by quartile (Q) using muscle measurements at L1 level.
A and B, Time-to–hip fracture plots for muscle attenuation (A) and muscle area (B) divide 

these CT-based measures into patient quartiles, which are then followed over time for 

adverse outcome. Quartile separation for predicting hip fracture is visually improved for 

attenuation compared with area.

C and D, Time-to-death plots for muscle attenuation (C) and muscle area (D) also show 

visually improved quartile separation for attenuation compared with area.
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