Table 6.
Comparison results of different transfer learning strategies
Method | Backbone model | ACC | AUC | SENS | SPEC |
---|---|---|---|---|---|
Train from scratch | ResNet-50 | 0.746 | 0.835 | 0.719 | 0.752 |
Transfer learning | VGGNet-16 | 0.768 | 0.840 | 0.781 | 0.765 |
MobileNetV2 | 0.757 | 0.835 | 0.750 | 0.758 | |
DenseNet-121 | 0.774 | 0.845 | 0.750 | 0.779 | |
AlexNet | 0.762 | 0.828 | 0.75 | 0.765 | |
Inception-v3 | 0.780 | 0.836 | 0.750 | 0.785 | |
ResNet-18 | 0.774 | 0.854 | 0.813 | 0.765 | |
ResNet-50 (proposed) | 0.796 | 0.844 | 0.813 | 0.792 |