Skip to main content
. 2022 Mar 11;30(2):323–336. doi: 10.3233/THC-212847

Table 2.

The details of layers and parameters

No. Layers Filter*kernel size Unit size Parameters Trainable parameters Output size
1 Dense 300 Relu, strides = 1 9300 (N,200,300)
2 Conv1D 64*3 Relu, strides = 1 57664 (N,198,64)
3 Conv1D 128*3 Relu, strides = 1 24704 (N,196,128)
4 MaxPool 2 Strides = 2 0 (N,98,128)
5 Conv1D 128*5 Relu, strides = 1 82048 (N,94,128)
6 Conv1D 256*5 Relu, strides = 1 164096 (N,90,256)
7 MaxPool 2 Strides = 2 0 (N,45,256)
8 Dropout Rate = 0.5 0 (N,45,256)
9 LSTM 300 668400 (N,45,300)
10 LSTM 300 721200 (N,45,300)
11 LSTM 300 721200 (N,300)
12 Dropout 300 Rate = 0.4 0 (N,300)
13 Dense 5 Softmax 1806 (N,5)