Skip to main content
. 2022 Apr 22;54(4):466–482. doi: 10.1038/s12276-022-00748-6

Table 2.

Diagnostic models using microbiome data derived from EVs.

Patient group Sample type Genera Diagnostics Ref.
Enriched in case Enriched in control Method Performance
Colorectal cancer Feces Faecalibacterium, Eubacterium, Ruminococcus, Bifidobacterium Escherichia-Shigella, Pseudomonas, Methylobacterium, Molicutes, Proteus Logistic regression using age, sex and metagenomic biomarkers selected by statistical analysis AUC: 0.95, Sen: 0.90, Spe: 1.00, Acc: 0.93 Kim et al.90
Logistic regression using age, sex and metagenomic and metabolomic biomarkers selected by statistical analysis AUC: 1.00, Sen: 1.00, Spe: 1.00, Acc: 1.00 Kim et al.90
Atopic dermatitis Blood Escherichia-Shigella, Enterococcus, Alistipes, Klebsiella, Veillonella, Bifidobacterium, Akkermansia, Bacteroides Acinetobacter, Pseudomonas, Parabacteroides, Proteus, Prevotella, Dialister, Rhizobium, Sphingomonas, Staphylococcus Logistic regression using biomarkers selected by LEfSe AUC: 1.00, Sen: 1.00, Spe: 1.00, Acc: 1.00 Yang et al.89
Urine Pseudomonas, Alicyclobacillus, Propionibacterium, Corynebacterium Lactobacillus, Leuconostoc, Lactococcus, Bradyrhizobium Kim et al.107
Skin washing fluid Staphylococcus, Pseudomonas, Streptococcus, Acinetobacter Alcaligenaceae, Sediminibacterium, Lactococcus, Phaeospirillum, Rhodococcus, Lactobacillus, Methylobacterium Kim et al.122
Asthma Blood Klebsiella, Bacteroides, Alistipes, Subdoligranulum, Bifidobacterium, Faecalibacterium, Veilonella, Eubacterium, Parabacteroides, Prevotella Pseudomonas, Akkermansia, Citrobacter, Staphylococcus, Micrococcus, Acinetobacter, Lactobacillus, Corynebacterium, Sphingomonas, Propionibacterium, Cupriavidus, Streptococcus Logistic regression using biomarkers selected by LEfSe with age and sex as covariates AUC: 0.97, Sen: 0.92, Spe: 0.93, Acc: 0.92 Lee et al.88
Logistic regression using antibacterial EV IgG, IgG1, and IgG4 with smoking status as a covariate AUC: 0.78, Sen: 0.65, Spe: 0.88, Acc: 0.71 Yang et al.96
Autism Urine Halomonas, Streptococcus, Rhodococcus, Bacteroidales S24-7, Akkermansia, Pseudomonas, Sphingomonas, Agrobacterium, Achromobacter Lee et al.123
Bipolar depressive disorder Blood Faecalibacterium, Dialister, Klebsiella, Bacteroidales S24-7, Escherichia-Shigella, Ruminococcus, Alistipes, Prevotella Rhee et al.124
Major depressive disorder Blood Dialister, Faecalibacterium, Prevotella, Alistipes, Bacteroidales S24-7, Corynebacteriaceae, Escherichia-Shigella Pseudomonas Rhee et al.124
Brain tumor Blood Turicibacter, Lactococcus, Lactobacillus, Staphylococcus, Peptoclostridium, Diaphorobacter, Klebsiella, Propionibacterium, Acinetobacter, Salmonella Stenotrophomonas, Sphingomonas, Actinomyces, Streptococcus, Bifidobacterium, Knoellia, Pseudomonas, Corynebacterium, Veillonella Logistic regression using biomarkers selected by LEfSe AUC: 0.97, Sen: 0.93, Spe: 0.90, Acc: 0.91 Yang et al.82
Machine learning algorithm based on the gradient boosting machine (GBM) model AUC: 0.99, Sen: 1.00, Spe: 0.94 Yang et al.82
Tissue Bacteroides, Erysipelatoclostridium Bactroidales S24-7, Prevotella Yang et al.82
Chronic rhinitis Urine Propionibacterium, Methylobacterium, Enhydrobacter Achromobacter, Enterobacteriaceae Samra et al.125
Allergic rhinitis Urine Methylobacterium Agrobacterium, Achromobacter, Enterobacteriaceae Samra et al.125
Atopic asthma Urine Methylobacterium, Sphingomonadaceae Enterobacteriaceae Samra et al.125
Hepatocellular carcinoma Blood Staphylococcus, Acinetobacter Pseudomonas, Streptococcus Logistic regression using age, sex and biomarkers selected by statistical analysis AUC: 0.88, Sen: 0.73, Spe: 0.85, Acc: 0.82 Cho et al.91
Biliary tract cancer Blood Ralstonia Corynebacterium, Comamonas Logistic regression using stepwise selection with age and sex as covariates AUC: 1.00, Sen: 1.00, Spe: 1.00, Acc: 1.00 Lee et al.94
Preterm birth Blood Bacteroides, Lactobacillus, Sphingomonas, Rhizobium Delftia, Pseudomonas, Stenotrophomonas You et al.126
Alcoholic hepatitis Feces Veillonella, Lactobacillales Eubacterium, Oscillibacter, Christensenellaceae Kim et al.127
COPD Blood Logistic regression using antibacterial EV IgG, IgG1, and IgG4 with smoking status as a covariate AUC: 0.79, Sen: 0.90, Spe: 0.61, Acc: 0.81 Yang et al.96
Gastric cancer Urine Corynebacterium 1, Neisseria, Fusobacterium, Diaphorobacter, Actinomyces, Porphyromonas, Cloacibacterium, Peptoniphilus Acinetobacter, Staphylococcus, Bifidobacterium, Sphingomonas Logistic regression using metagenomic biomarkers selected by statistical analysis AUC: 0.82, Sen: 0.68, Spe: 0.85, Acc: 0.76 Park et al.92
Lung cancer Blood Logistic regression using antibacterial EV IgG, IgG1, and IgG4 with smoking status as a covariate Auc: 0.81, Sen: 0.85, Spe: 0.61, Acc: 0.80 Yang et al.96
Lung cancer (from COPD) Blood Logistic regression using antibacterial EV IgG, IgG1, and IgG4 with smoking status as a covariate AUC: 0.74, Sen 0.69, Spe: 0.69, Acc: 0.69 Yang et al.96
Ovarian cancer (from benign ovarian tumor) Blood Acinetobacter Logistic regression using biomarkers, age, serum CA-125 levels, and Acinetobacter EVs selected by statistical analysis AUC: 0.85, Sen: 0.82, Spe: 0.68 Kim et al.95
Pancreatic cancer Blood Ruminococcaceae UCG-014, Lachnospiraceae NK4A136 group, Akkermansia, Turicibacter, Ruminiclostridium, Lachnospiraceae UCG-001 Stenotrophomonas, Sphingomonas, Propionibacterium, Corynebacterium 1 Logistic regression using age, sex and biomarkers selected by statistical analysis AUC: 1.00, Sen: 1.00, Spe: 0.92 Kim et al.93

AUC area under curve, Sen sensitivity, Spe specificity, Acc accuracy.