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Utilization of infrared light in photocatalytic water splitting is highly important yet challenging given its large proportion in
sunlight. Although upconversion material may photogenerate electrons with sufficient energy, the electron transfer between
upconversion material and semiconductor is inefficient limiting overall photocatalytic performance. In this work, a TiO2/
graphene quantum dot (GQD) hybrid system has been designed with intimate interface, which enables highly efficient transfer
of photogenerated electrons from GQDs to TiO2. The designed hybrid material with high photogenerated electron density
displays photocatalytic activity under infrared light (20mWcm-2) for overall water splitting (H2: 60.4μmol gcat.

-1 h-1 and O2:
30.0 μmol gcat.

-1 h-1). With infrared light well harnessed, the system offers a solar-to-hydrogen (STH) efficiency of 0.80% in full
solar spectrum. This work provides new insight into harnessing charge transfer between upconversion materials and
semiconductor photocatalysts and opens a new avenue for designing photocatalysts toward working under infrared light.

1. Introduction

The sun provides 173,000TW energy every year, 9,000 times
more than the annual world energy consumption. While the
energy proportion of infrared (IR) light exceeds 50% in sun-
light, the IR light has not been efficiently utilized for solar-
to-chemical energy conversion by now due to the lack of
related ideal materials to photogenerate electrons with suffi-
cient energy and density. As a typical example, solar-driven
water splitting, which can produce hydrogen with the energy
density of 141.9MJ/kg, possesses a 0.5 eV overpotential and
requires the energy input of at least 1.8 eV corresponding
to the photons at <688nm. To implement IR or near-IR
(NIR) (780~2526 nm) light in water splitting, two main
strategies have been developed including localized surface
plasmon resonance- (LSPR-) induced hot electron injection
and photon upconversion-induced electron injection. For

instance, a CdS/Cu7S4 photocatalyst was employed for water
splitting, in which LSPR-induced hot electrons from Cu7S4
were injected into CdS under NIR illumination (>800 nm)
[1–3]. Similarly, other photocatalysts were demonstrated
based on Au nanostructures with LSPR band in IR spectral
region [4–6]. In parallel, photon upconversion is another
strategy for utilizing NIR or IR light in solar energy storage
and conversion. For instance, core-shell Pt@MOF/Au com-
posites can convert NIR light to UV and visible light, driving
photocatalytic hydrogen production under NIR irradiation
[7]. Such an (N)IR-driven photocatalysis was also achieved
by rare-earth upconversion materials [8–12]. Nevertheless,
the energy conversion performance of the existing systems
using NIR or IR light is unsatisfactory through the two strate-
gies. The performance of two strategies relies on plasmonic
hot electron generation or photon upconversion and, more
importantly, their charge or energy transfer to semiconductor
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photocatalyst. As a matter of fact, the efficiency of these funda-
mental processes is relatively low, constituting the obstacle for
overall performance.

Recently, graphene quantum dots (GQDs), as a class of
zero-dimensional nanomaterials based on graphene, have
attracted extensive attention owing to their advantages includ-
ing low toxicity, high electron mobility (10,000 cm-2 s-1), high
carrier concentration (1,013 cm-2), low cytotoxicity, and fac-
ile surface grafting [13–16]. In addition, the quantum con-
finement and edge effect of GQDs endow them with more
active sites [17, 18], wide optical absorption range [19],
tunable band structure, and (N)IR upconversion photolumi-
nescence (PL) behavior [20]. In particular, a prevenient
work has demonstrated that the energy difference between
excitation light and emission light in the upconversion pro-
cess is close to 1.1 eV because the p electrons are excited to
a high-energy state (e.g., lowest unoccupied molecular
orbital, LUMO) and then transition back to the s orbital
[21]. We envision that such a upconversion material should
be an ideal candidate for forming intimate interface with
semiconductor given its facile surface chemistry, which
would allow the direct transfer of multiphoton-generated
electrons from upconversion GQDs to semiconductor
photocatalyst (instead of emitting higher-energy photons)
toward (N)IR-driven chemical reactions. Certainly, this
opportunity based on upconversion GQDs remains largely
unexplored in photocatalysis.

In this work, we demonstrate the concept that the elec-
trons NIR-generated in GQDs through a multiphoton pro-
cess can be directly transferred to semiconductor toward
photocatalytic overall water splitting. As a model system,
the surface of 2~3 layered GQDs is modified by reduction
treatment and forms intimate bonding with TiO2 nanotube
photocatalyst, enabling efficient interfacial electron transfer.
As a result, the GQDs can offer energy-sufficient electrons
under IR irradiation for the photocatalyst to drive water
splitting. While the composite displays a strong light absorp-
tion form UV region to IR region, the IR activity enhances
the photocatalytic performance of overall water splitting to
the solar-to-hydrogen (STH) efficiency of 0.80%.

2. Results

The GQDs are prepared through evolution from glucose and
are further treated to remove surface oxygen-containing
groups through reduction with NaBH4, producing r-GQDs.
To demonstrate the importance of interface to charge trans-
fer, the GQDs and r-GQDs with different surface conditions
are both used for integration with TiO2 nanotubes through
the same hydrothermal process. Figure 1(a) shows the
XRD patterns of pure TiO2, TiO2/GQDs, and TiO2/r-GQDs
composites. After integrated with TiO2, the intensity of the
peaks corresponding to TiO2 is evidently reduced. This sug-
gests that the crystallinity of TiO2 is lowered by the addition
of GQDs (r-GQDs) or/and the TiO2 is largely covered by the
GQDs (r-GQDs). In addition, the average grain size of
TiO2is calculated to be about 12nm using Scherrer formula
according to its XRD pattern. To gain surface information,
Fourier transform infrared spectroscopy (FT-IR) is employed

to characterize the samples. As shown in Figure 1(b), the oxy-
gen groups such as OH (~3400cm-1) and C=O (~1400 cm-1)
in GQDs are obviously reduced after NaBH4 reduction. In
the meantime, it creates abundant dangling bonds of carbon,
which then are bonded with oxygen atoms in TiO2 [23, 24].
As a result, the Ti-O-C chemical bonds at 950 cm-1 are
observed in TiO2/r-GQDs [25–27].

The formation of such Ti-O-C chemical bonds is also
confirmed by X-ray photoelectron spectroscopy (XPS). As
shown in Figure 1(c), the XPS survey spectrum of TiO2/
r-GQDs composite demonstrates the existence of O, Ti,
and C elements. The C1s peaks at 284.6 eV, 285.6 eV,
and 288.7 eV are attributed to C-C, C=C and C-O-Ti
bonds, respectively (Figure 1(d)) [28]. The Ti-O-C bond
is also detected by the peaks at 531.6 eV of O1s
(Figure 1(e)) and 457.8 eV of Ti2p (Figure 1(f)) XPS spec-
tra [21]. In comparison, the peaks for Ti-O-C bond have
not been found for TiO2 and TiO2/GQDs (fig. S1). As
such, the peak intensity change of TiO2 in XRD should
also be partially associated with the formation of Ti-O-C
chemical bonding between TiO2 and r-GQDs. This chem-
ical bonding at the interface of TiO2/r-GQDs surely will
facilitate the interfacial electron transfer by lowering the
potential barrier between TiO2 and r-GQDs [29, 30]. It
is known that most composites are formed without inti-
mate connection between two different components to
leave gaps or defects at the interface, which forms a deple-
tion layer to hinder the charge transfer to a large extent. A
chemically bonded interface in the composite undoubtedly
provides a better charge transfer path and enables efficient
charge transfer from interface to surface.

To reveal the morphologies and microstructures, the
samples are examined by transmission electron microscopy
(TEM). Figure 2(a) shows that the as-prepared GQDs have
the size of about 2~3nm.As indicated byRaman spectroscopy
(Figure 2(b) and fig. S2), both GQDs and r-GQDs are 2~3 lay-
ered thick. Meanwhile, the TiO2 nanotubes that are used for
integration with GQDs and r-GQDs have a width of
~7.4 nm and a length of several micrometers (Figure 2(c)).
High-resolution TEM (HRTEM, Figure 2(d)) reveals that
the TiO2 nanotubes possess relatively smooth surface. Raman
spectroscopy also confirms that the TiO2 nanotubes are of
anatase phase (fig. S3). After uniformly integrated with GQDs
or r-GQDs, the one-dimensional morphology is well main-
tained as indicated by TEM and elemental mapping
(Figures 2(e)–2(i)). Despite the remained nanotubes, the sam-
ples display interesting characteristics in Brunauer-Emmett-
Teller (BET) surface areas (the insets of Figures 2(c), 2(e),
and 2(g)). The TiO2 nanotubes and TiO2/GQDs exhibit sim-
ilar BET surface areas (93.8m2/g and 97.2m2/g) and pore size
distributions (fig. S4). However, the BET area of TiO2/r-
GQDs reaches up to 275.3m2/g (Figure 2(g)). Most likely, this
feature is associated with the Ti-O-C chemical bonding
between TiO2 and r-GQDs, which induces the electronegati-
vity change in both TiO2 and r-GQDs promoting N2 polar-
ization and adsorption. The integrated composite structure
of TiO2/r-GQDs has also been resolved by HRTEM
(Figures 2(j)–2(l)), showing that hexangular r-GQDs are
loaded on the surface of TiO2 nanotubes. Aberration-
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corrected TEM (AC-TEM, Figures 2(m) and 2(n)) further con-
firms the existence of r-GQDs and TiO2 at atomic resolution.

The addition of GQDs and r-GQDs broadens the light
absorption of TiO2 nanotubes to visible region as shown in
fig. S5. To determine band structures, valence-band spectra
are measured by XPS (Figure 2(o)). As depicted in
Figure 2(p), GQDs lower the conduction band (CB) edge
from -0.18 eV to +0.21 eV, which is unfavorable for hydro-
gen evolution through water splitting. However, r-GQDs
can elevate the CB and valence band (VB) edges to
-0.26 eV and +2.38 eV, respectively, which enable overall
water splitting for hydrogen and oxygen production simulta-
neously. This highlights that the surface modification on
GQDs has a significant impact on band structures, which
may in turn alter charge dynamics.

To look into charge dynamics, we closely examine the PL
behavior of samples. It is known that the capture centers for
excitons are formed by surface oxidation, leading to surface-
state-related fluorescence [31]. As shown in Figure 3(a), after
reduction of GQDs, the PL emission of graphene quantum
dots exhibits an obvious blue-shift from 433 to 418. This
observation is similar to the finding in literature that the
bandgap is widened as a decreasing number of oxygen atoms
are present in the structure, resulting in a PL blue-shift [32].
More importantly, multiphoton upconversion-induced
emissions at 546nm and 663nm are detected for the
GQD-based samples under a 980 nm IR light excitation as

shown in Figure 3(b). This upconverted PL property of
GQDs should be attributed to the multiphoton active pro-
cess similar to the previously reported carbon dots [33],
indicating that GQDs should be a powerful energy-transfer
component in photocatalyst design. The unchanged emis-
sion positions between GQDs and r-GQDs demonstrate that
the emission should originate from carbon core rather than
surface state. After GQDs are anchored on TiO2, the sample
displays the strengthened upconverted PL emission, suggest-
ing that more active electrons are formed on surface. The
time-resolved PL spectra (Figure 3(c)) show that the average
PL lifetimes of r-GQDs, TiO2/GQDs, and TiO2/r-GQDs are
0.3 ns, 1.17 ns, and 9.06 ns, respectively, proving that the
photogenerated electrons of r-GQDs can be timely extracted
by coupling with TiO2.

This argument is also supported by photocurrent mea-
surements as displayed in Figure 3(d). The photocurrents
by TiO2/r-GQDs are dramatically higher than those by
TiO2/GQDs and TiO2, demonstrating that charge separation
and transfer are better harnessed in TiO2/r-GQDs. As a sup-
plementary experiment, electrochemical impedance spec-
troscopy (EIS) measurements (Figures 3(e) and 3(f)) are
carried out at a 4 kHz frequency in dark and under 420nm
illumination. It shows that the arc radius under light irradi-
ation is smaller than that in dark. As compared with TiO2
and TiO2/GQDs, the Nyquist plot of TiO2/r-GQDs displays
a substantially smaller radius under irradiation, which further
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Figure 1: (a) XRD patterns and (b) FT-IR spectra of the obtained GQDs, TiO2, TiO2/GQDs, and TiO2/r-GQDs. XPS spectra of the TiO2 and
TiO2/r-GQDs: (c) survey, (d) C1s, (e) O1s, and (f) Ti2p.
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proves the improved separation efficiency of electron-hole
pairs in TiO2/r-GQDs [34]. The enhanced charge separation
inTiO2/r-GQDs is also demonstrated by surface photovoltage
spectroscopy (SPS) (fig. S6). It is known that distinct SPS sig-
nal can reflect the enhanced separation rate of photo-induced
charge pairs [35]. Among these features, the high conductivity
and strong electron transfer ability of r-GQDs facilitate the
access to electrons and the electron diffusion process, effec-
tively improving the charge transfer in the photocatalyst.
Taken together, the r-GQDs possess the upconversion prop-
erties for harvesting IR photons and the electronic properties
for efficient charge transfer, which should be a good candidate
to offer high photocatalytic activity.

We are now in a position to evaluate the photocatalytic
overall water splitting performance of the samples. The mea-
surements are first carried out under ultraviolet light without
the addition of precious metal cocatalyst and sacrificial
agent. As shown in Figure 3(g), pure TiO2 and TiO2/GQDs
do not have the ability for overall water splitting due to their
mismatched energy level structure or unsuitable bandgap
(Figure 2(p)). In contrast, TiO2/r-GQDs show excellent pho-
tocatalytic performance for overall water splitting under UV
light with the H2 production rate of 358.8μmol gcat.

-1 h-1 and
the O2 production rate of 175.9μmol gcat.

-1 h-1. More
importantly, TiO2/r-GQDs also exhibit photocatalytic activ-
ity for overall water splitting under IR light. As shown in
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Figure 3(h), the photocatalyst offers the values of H2
(60.4μmol gcat.

-1 h-1) and O2 (30.0μmol gcat.
-1 h-1) produc-

tion under IR light (>800 nm, 20mWcm-2). As such, the
H2/O2 production rates of 128.3/64.1μmol gcat.

-1 h-1 are
achieved in full spectrum (100mWcm-2). To better assess
the overall performance, the STH efficiency is determined

to be 0.80%. In addition, the apparent quantum efficiency
(AQE) of TiO2/r-GQDs under different illustration wave-
lengths (365 nm: 61mWcm-2, 455 nm: 45mWcm-2, and
850 nm: 15mWcm-2) is measured, respectively, as shown
in Figure 3(i). The sample displays a 0.26% AQE even
under 850nm infrared light, which further confirms its
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outstanding ability for overall water splitting. The TiO2/r-
GQD photocatalyst also shows high stability in cycling tests
as shown in fig. S7-S9.

Upon recognizing the performance, a question naturally
arises how the upconversion r-GQDs participate in water
splitting after harvesting IR light. To decode the mechanism,
we employ in situ XPS to characterize the sample with trace
water. As shown in Figure 4(a), the peaks located at 458.0
and 460.6, 455.3, and 463.7 eV are attributed to the Ti4+

and Ti2+ oxidation states, respectively. The peaks belonging
to Ti2+ show an increasing trend with the extension of
irradiation time. At the same time, the common Ti3+ peaks,
such as that around 457.0 eV for Ti2p1/2, are not distinct [36,
37]. In comparison, only Ti3+ is observed for TiO2-based
photocatalysts under light irradiation [38, 39]. This indicates
that the electrons generated from the upconversion of r-
GQDs can be directly transferred to TiO2. In addition, a shift
of C1s peaks toward lower binding energies is observed in
Figure 4(b), which should be due to the lowered electron
density in carbon atoms after the electron transfer process
and further demonstrates the electron transfer from
r-GQDs to TiO2 under illumination. In the meantime, the
O1s peaks assigned to TiO2 and Ti-O-C (Figure 4(c)) are
unchanged. The water splitting process is also characterized
by in situ FT-IR spectroscopy. As shown in Figure 4(d), once
the light is turned on, the peaks corresponding to C-H
(1458 cm-1), C-O stretching in carboxyl (1364 cm-1), H-C-H
(1340 cm-1), and C-O-O-H (1148 cm-1 and 878 cm-1) are

gradually strengthened [40, 41]. The appearance of these
transient oxygen-containing species confirms the fact that
the oxygen evolution reaction (OER) takes place on CQDs.
Simultaneously, the crucial C-O-O-H intermediate detected
in water splitting points out a single-site process of OER
[36], which is known as the rate-limiting step. In this
single-site process, firstly a -OH is bonded with carbon atom
of CQD and then loses its hydrogen atom to form a C-O spe-
cies. Further another -OH is added on C-O for -COOH for-
mation, which finally releases an O2 molecule. In addition,
the peaks attributed to Ti-H are also found in the measure-
ment (Figure 4(e) and fig. S10), suggesting that hydrogen is
produced at the Ti sites in TiO2 [42, 43]. The efficient transfer
of upconversion-generated electrons from r-GQDs to the Ti
sites in TiO2 is responsible for the IR-driven overall water
splitting as illustrated in Figure 4(f).

It should be noted that such efficient transfer of upconver-
sion electrons can also trigger photocatalytic CO2 reduction
with IR light. As shown in fig. S11-15, the TiO2/r-GQD sample
shows 19.49μmol gcat.

-1 h-1 CO and 3.13μmol gcat.
-1 h-1 CH4

production rates under full-spectrum light (100mWcm-2) as
well as 0.45μmol gcat.

-1 h-1 CO and 0.03μmol gcat.
-1 h-1 CH4

production rates under weak IR light (>800nm, 20mWcm-2).

3. Discussion

In summary, reduced graphene quantum dots are integrated
with TiO2 photocatalyst by forming intimate interface,
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Figure 4: Electron transfer from r-GQDs to TiO2 investigated by (a–c) in situ XPS, (d) in situ FT-IR, and (e) in situ Raman measurements.
(f) Illustration of the electron transfer process in TiO2/r-GQDs.
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allowing the direct transfer of multiphoton-generated elec-
trons from r-GQDs to TiO2 toward IR-driven photocataly-
sis. The high electron density induced by such a direct
electron transfer invests the sample with prominent photo-
catalytic abilities under infrared light for not only overall
water splitting but also CO2 reduction. Remarkably, the
designed hybrid material achieves photocatalytic overall
water splitting for H2 at 60.4μmol gcat.

-1 h-1 and O2 at
30.0μmol gcat.

-1 h-1 under infrared light (>800nm,
20mWcm-2). Such an IR activity makes an important con-
tribution to the STH of 0.80%. This work provides new
insights into photocatalyst design for harnessing low-
energy photons.

4. Materials and Methods

4.1. Preparation of TiO2 Nanotubes. All the chemicals were
of analytical grade. TiO2 nanotubes were synthesized using
an alkaline hydrothermal process according to the litera-
ture [22].

4.2. Preparation of GQDs and r-GQDs.Glucose was dispersed
in 40mL pure water. The solution was stirred in a magnetic
stirrer for 10min, then transferred to a Teflon lined autoclave
(50mL), and heated at 190°C for 3 h. After the reaction, the
autoclave was naturally cooled to room temperature. The
brown solution was centrifuged for 20min to remove the
precipitate and retain the supernatant, namely, GQDs. The
aqueous suspension of GQDs (0.1-1mg/mL) was added with
50mg NaBH4, and the reaction was under stirring at room
temperature for 4 h. The resulted product was named as
r-GQDs.

4.3. Preparation of TiO2/GQDs and TiO2/r-GQDs. The TiO2/
GQDs or TiO2/r-GQD composites were obtained by the hydro-
thermal method. 0.2 g TiO2 and 40mL GQDs or r-GQD
suspension were mixed. The mixture was continuously stirred
at room temperature for 4h to obtain a uniform suspension.
TiO2/GQDs or TiO2/r-GQD was collected by centrifugation,
washed three times with distilled water, and dried in vacuum
overnight at 60°C.
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