Skip to main content
. 2022 Apr 12;23(8):4263. doi: 10.3390/ijms23084263

Table 3.

Performance comparison with other predictors on training and independent datasets.

Residue Methods 10-Fold Cross-Validation Test (P.ELM) Independent Dataset Test (PPA)
Sn Sp MCC AUC Sn Sp MCC AUC
S GPS 2.1 33.07 93.29 0.201 0.741 22.20 95.26 0.135 0.670
NetPhos 34.14 86.73 0.123 0.702 28.55 87.23 0.081 0.643
PPRED 32.27 91.64 0.169 0.751 21.32 94.00 0.107 0.676
Musite 41.37 93.66 0.249 0.807 28.60 95.21 0.182 0.726
PhosphoSVM 44.43 94.04 0.298 0.841 34.01 95.90 0.237 0.776
SKIPHOS 78.50 74.90 0.521 0.845 46.20 68.60 0.265 0.691
DeepPhos 81.81 75.30 0.572 0.859 66.43 75.89 0.425 0.775
TransPhos 80.56 75.80 0.564 0.858 67.16 75.89 0.432 0.787
T GPS 2.1 38.10 92.30 0.201 0.695 13.48 94.51 0.067 0.572
NetPhos 34.32 83.65 0.090 0.655 27.02 80.66 0.038 0.554
PPRED 30.31 90.99 0.134 0.726 26.43 83.51 0.052 0.578
Musite 33.84 94.76 0.221 0.785 15.56 95.36 0.098 0.622
PhosphoSVM 37.31 94.99 0.251 0.818 21.79 93.41 0.115 0.665
SKIPHOS 74.40 78.80 0.547 0.844 65.80 58.60 0.197 0.643
DeepPhos 77.63 73.58 0.512 0.826 46.02 76.04 0.231 0.674
TransPhos 76.54 74.70 0.512 0.834 47.32 76.22 0.246 0.672
Y GPS 2.1 34.49 78.86 0.083 0.611 47.93 60.83 0.043 0.552
NetPhos 34.66 84.45 0.132 0.653 63.91 46.10 0.048 0.554
PPRED 43.04 82.65 0.169 0.702 42.01 65.08 0.064 0.539
Musite 38.42 86.74 0.182 0.720 28.85 81.71 0.064 0.587
PhosphoSVM 41.92 87.34 0.209 0.738 28.55 84.39 0.084 0.595
SKIPHOS 71.10 69.10 0.396 0.700 65.80 58.60 0.197 0.634
DeepPhos 69.01 64.22 0.332 0.714 49.93 66.37 0.165 0.621
TransPhos 61.99 65.11 0.271 0.695 38.52 72.30 0.115 0.601

The left half is the result of 10-fold cross-validation on the training dataset, and the right half is the result on the independent test set. Sensitivity (Sn), Specificity (Sp), Matthews correlation coefficient (MCC) and Area under curve (AUC) were calculated to measure the performance of models. Data in bold indicates that the model performs best for that evaluation metric.