
����������
�������

Citation: Albelwi, S. Survey on

Self-Supervised Learning: Auxiliary

Pretext Tasks and Contrastive

Learning Methods in Imaging.

Entropy 2022, 24, 551. https://

doi.org/10.3390/e24040551

Academic Editor: Gholamreza

Anbarjafari

Received: 18 March 2022

Accepted: 11 April 2022

Published: 14 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Review

Survey on Self-Supervised Learning: Auxiliary Pretext Tasks
and Contrastive Learning Methods in Imaging
Saleh Albelwi 1,2

1 Faculty of Computing and Information Technology, University of Tabuk, Tabuk 47731, Saudi Arabia;
sbalawi@ut.edu.sa

2 Industrial Innovation and Robotic Center (IIRC), University of Tabuk, Tabuk 47731, Saudi Arabia

Abstract: Although deep learning algorithms have achieved significant progress in a variety of
domains, they require costly annotations on huge datasets. Self-supervised learning (SSL) using
unlabeled data has emerged as an alternative, as it eliminates manual annotation. To do this, SSL
constructs feature representations using pretext tasks that operate without manual annotation, which
allows models trained in these tasks to extract useful latent representations that later improve
downstream tasks such as object classification and detection. The early methods of SSL are based
on auxiliary pretext tasks as a way to learn representations using pseudo-labels, or labels that were
created automatically based on the dataset’s attributes. Furthermore, contrastive learning has also
performed well in learning representations via SSL. To succeed, it pushes positive samples closer
together, and negative ones further apart, in the latent space. This paper provides a comprehensive
literature review of the top-performing SSL methods using auxiliary pretext and contrastive learning
techniques. It details the motivation for this research, a general pipeline of SSL, the terminologies
of the field, and provides an examination of pretext tasks and self-supervised methods. It also
examines how self-supervised methods compare to supervised ones, and then discusses both further
considerations and ongoing challenges faced by SSL.

Keywords: self-supervised learning (SSL); auxiliary pretext tasks; contrastive learning; pretext tasks;
data augmentation; contrastive loss; encoder; downstream tasks

1. Introduction

Deep learning algorithms have obtained state-of-the-art performance in broad applica-
tions of computer vision, such as image classification [1,2], object detection [3], and image
segmentation [4,5]. These methods have succeeded due to the prevalence of large-scale,
readily available datasets with manual annotations. However, collecting these input–output
pairs for training is expensive, time-consuming, and labor-intensive. In some domains,
such as the medical field, collecting data is even more difficult because appropriate datasets
are limited or unavailable. Even when these datasets exist, they often require annotations,
the addition of which requires knowledge of the medical field and can be time-intensive.
Supervised learning is also susceptible to generalization errors, adversarial attacks, and
spurious correlations, which all cause additional bottlenecks [6].

Because of this, most current research focuses on adaptable systems that account
for new conditions without requiring extensive supervision. This has led to advances in
subfields such as transfer learning; semi-supervised, weakly supervised, and unsupervised
learning; and self-supervised learning [7].

Transfer learning [8] is a popular approach to counteract the lack of annotated datasets.
This technique uses research, which focuses on the storage and application of problem-
solving information in different-but-similar domains. Transferring data in this way can
help reduce usage costs while also improving performance. Despite this benefit, this type
of learning only works well if the original and target tasks are from the same domain [9].
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There has been growing interest in unsupervised learning as a strategy for learning
useful feature representations in order to avoid the complexity of manually annotating
a dataset. Using unsupervised learning, a system could learn rich features using unla-
beled data. Currently, there are two ways to learn feature representation via unsupervised
learning: generative or SSL. In the former, latent embedding, in the form of image repre-
sentations, is used for learning feature representations. These approaches typically utilize
auto-encoders [10,11], adversarial learning [12,13], or jointly modelled representations and
data [14] to achieve this. The downside of generative approaches is that they work in pixel
space—this is expensive in terms of resources as it necessitates in-depth detail, which may
not be needed for the actual process of representation learning [15].

In addressing these challenges, self-supervised learning, or SSL, has emerged to utilize
unlabeled data for training, as it eliminates manual annotation as a requirement for learn-
ing representations [16]. SSL is particularly popular in the computer vision and natural
language-processing fields. Research has demonstrated that self-supervised representations
can compete with their supervised counterparts. In SSL, a feature extractor completes a pre-
text task on an unlabeled dataset. This extractor then computes generic representations for
other downstream tasks, such as object classification and detection. Recent research in this
area has found similar accuracy levels between SSL and supervised classifications [17,18],
especially when the size of the labeled training set is small. SSL has attracted researchers
for its data efficiency and improvements in model generalization.

There are two types of SSL: auxiliary pretext tasks and contrastive learning [19]. Early
methods of SSL primarily defined auxiliary pretext tasks as a way to learn representations
using pseudo-labels, or labels that were created automatically based on the dataset’s at-
tributes. These were then used for tasks such as classification, detection, and segmentation,
among others. Auxiliary pretext tasks can include predicting the rotation degree [20], filling
in a missing part of an image [21], colorizing a grayscale image [22–24], predicting the
relative position of a patch [25], and more.

Contrastive learning is a discriminative model that currently achieves state-of-the-art
performance in SSL [15,18,26,27]. Unlike auxiliary pretext tasks, which learn using pseudo-
labels, contrastive learning uses positive or negative image pairs to learn representations.
It does this by discriminating between augmented views of images. For example, in one
image, the representations may appear to be close, while in another the representations
appear far away; noting this difference in perspective helps the model learn a useful
representation. Contrastive learning has proven its usefulness in data augmentation [28],
contrastive losses [26,29], momentum encoders [18,30], memory banks [31,32], and via the
number of negative samples [32]. It is worth noting that recent SSL frameworks are heavily
based on contrastive learning [28].

This paper surveys self-supervised feature-learning methods drawn from images. It
details the motivation for this research and the terminologies of the field, and also provides
an examination of pretext tasks and SSL methods, as well as contrastive learning. It further
examines state-of-the-art SSL methods and compares these results to those obtained by
supervised learning. Finally, this paper discusses both further considerations and ongoing
challenges faced by SSL.

The reminder of the survey is structured as follows: Section 2 describes feature
representation learning schemes. Section 3 introduces the pipeline and motivation of
auxiliary pretext learning, while Section 4 describes the framework of contrastive learning.
Sections 5 and 6 outline the different categories of SSL and review recent research on these
techniques. Section 7 compares the performance of different SSL methods on multiple
datasets and downstream tasks. Section 8 explores potential challenges and possible future
directions. Section 9 concludes the survey.
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2. Feature Representation Learning Schemes
2.1. Transfer Learning

Transfer learning (TL) has been presented as an effective solution for constructing
robust feature representations when the training set for a given problem is small. As its
name suggests, TL aims to transfer knowledge and learned features from one task (the
source task) to another related target task, just as a person can utilize the same knowledge
across different projects. To do this, TL trains the model on a large labeled dataset and
then treats this model as a starting point in the target task’s training, without learning
from scratch. This dataset creates the target task’s representation model, using the same
architecture as the source task. The initialized representation network in the target task is
then further trained on the target dataset. TL workflow is presented in Figure 1b.
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Figure 1. The workflows of SSL and TL. The workflows of SSL and TL are similar, with only slight
differences. The key difference between TL and SSL is that TL pre-trains on labeled data, whereas
SSL utilizes unlabeled to learn features, as shown in the first step. In the second step, SSL and TL are
the same: both techniques are further trained on the target task, but we need only a small number of
labelled examples.

It has been demonstrated empirically and theoretically that TL provides performance
improvements and also enhances generalization in target tasks. Several deep learning
models—such as AlexNet [33], VGG16 [1], Inception [2], and ResNet [2]—are publicly
available as pre-trained models for transfer learning; these models have been trained on an
ImageNet [34] dataset containing 1.2M high-resolution images belonging to 1000 classes.
Thus, previously obtained knowledge is transferred to new tasks. This process is the
foundation of TL in computer vision [35].

Despite these successes, one drawback to TL is its utilization of labels to learn network
weights. While these labels may be accurate in the source task, they may not generalize
well in the target task [36].

2.2. Unsupervised Learning: Generative Modeling

Often, unsupervised learning utilizes reconstruction. The most promising are autoen-
coders [10,37] and generative adversarial nets (GANs) [12]. Autoencoders use an encoder
network to create feature representations with appropriate annotations, so that they can
be reconstructed by a paired decoder. Variants, such as those described in [10,11], include
variational auto-encoders and denoising autoencoders, but each of these use a similar
model in which input data is reconstructed as an output, thereby earning them the name
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“auto-encoded data”, or AED. A successful feature representation, then, should include the
data needed to recreate its input.

GANs, on the other hand, use adversarially trained generators and discriminators
to learn feature representations via input noises, which are essentially the feature rep-
resentations of the output. These input noises contain the data needed to produce the
corresponding image. To create these feature representations, an auto-encoder architecture
trains an encoder and then uses the generator as the decoder, which allows the encoder to
produce the original image through the generator [14,38]. This method captures the best of
both AED and GAN systems, leading to improved feature representations and increased
popularity in both supervised and semi-supervised tasks [39].

2.3. Self-Supervised Learning

Recently, SSL has emerged as another popular approach. SSL is different from other
techniques because it does not require manual labels. SSL is a hybrid approach, meaning
that, in the pre-training fine-tuning stage, it utilizes both supervised and unsupervised
learning [30]. To do this, SSL generates a supervisory signal from unlabeled data that it
then uses to learn representations when annotated data is unavailable [40]. This eliminates
the need for annotated data. Supervised learning in SSL can be used to train models using
annotations created directly from the raw data itself [41].

SSL can be separated into two task types, pretext and downstream. The former learns
representations through supervised learning, generating labels from the data itself. Once
this learning is complete, the model takes learned representation from the pretext task
and fine-tunes them to the downstream task [42]. Figure 1a delineates SSL’s workflow
approach [41]. SSL can be further classified into two types of learning: auxiliary pretext
tasks learning and contrastive learning.

Figure 1 shows the difference between TL and SSL workflows. Both TL and SSL consist
of two steps: pre-training on a source task and then fine-tuning on the target/downstream
task. The pre-trained weights are used to initialize the weights of the model in the target
task, where the architecture of the source and target tasks are the same. The key difference
between TL and SSL is that TL pre-trains on labeled data, whereas SSL utilizes unlabeled
data to learn features.

In the field of SSL, convolutional neural networks (CNNs) [43] and ResNet are widely
used as the backbone through which most SSL methods learn representations. CNNs consist
of a stack of convolutional and pooling layers followed by a fully connected layer; the
output is a softmax classifier. CNNs are often used in image recognition, object detection,
recommender systems, and sentiment analysis. They can also detect features without
human supervision, which makes them popular among researchers. ResNet [2] is often
used in conjunction with CNN frameworks. Originally proposed by He et al., ResNet
sends the feature map to the next convolution. Following that, the CNN extracts image
representations from each layer to compile and recognize this image. This strategy is
particularly effective to learn features via contrastive learning.

2.4. Contrastive Learning

Contrastive learning has shown great success in unsupervised learning. It pulls
samples with the same class (a positive pair) close to each other, while driving diverse
samples (or negative pairs) apart in the latent embedding space through contrastive loss.
In doing this, contrastive loss minimizes the latent embedding distance between positive
pairs while also simultaneously maximizing the distance between negative pairs [44].
Contrastive learning, as a concept, stems from human learning patterns, because humans
can identify objects without remembering every small detail about the object. Important
elements in this type of learning include: a large batch size for negative data, accurate data
augmentation, and a learnable, nonlinear transformation between the contrastive loss and
the representation [45,46]. Contrastive learning has demonstrated great performance in
both computer vision and natural language-processing applications.
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To achieve that performance, contrastive learning focuses on the similarities between
different views of the same image. These images may be learned either directly or indirectly,
or through instance discrimination or cluster prototypes, respectively. Instance discrimi-
nation compares pairs of images to identify which are most similar; it then moves those
together while pushing dissimilar images apart [47]. To do this, SSL contrastive approaches
utilize contrastive loss, encoder networks, and data-augmentation methods.

Learning representations by contrastive learning can be divided into different classes:
instance discrimination, clustering-based discrimination, momentum contrast, and con-
trastive learning with only positive samples.

3. Auxiliary Pretext Task Learning Frameworks

Auxiliary pretext tasks typically operate as follows.

3.1. Unlabeled Data

The main goal of SSL is to avoid costly and time-consuming data annotations. Per-
forming SSL, then, first requires the collection of unlabeled data. This step is easy, since the
world is full of unlabeled, free data, such as images, videos, and texts.

3.2. Pretext Tasks

In the second step, SSL learns representations through pretext tasks. In auxiliary
pretext methods, the model learns automatically by obtaining supervision signals directly
from the data, without manual annotation. An enhanced objective function assists with this,
teaching the model robust feature representations, which are needed to solve downstream
tasks such as object detection and classification [48,49].

Designing an appropriate pretext task requires domain-specific knowledge. This
is a key element of SSL, as pretext tasks can be designed for any data type, including
audio, text, image, and video [48]. As shown in Figure 2, this can range from grayscale
images [23], predicting a missing pixel [21], exemplar-based methods [12], rotation [20],
and patch context and jigsaw puzzles [25,50], among others. Models using these different
pretext tasks have, then, accomplished higher performance on various downstream tasks, a
success which has been linked to pretext task design. The drawback of this method is that
while good representations do emerge, they are handcrafted and may, therefore, lose their
generalizability [41].
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The pretext tasks in contrastive learning are data augmentations. This helps the model
learn invariant representations by using distorted images to learn similarities between
the representations.

3.3. Downstream Tasks

Pretext tasks allow the model to learn useful feature representations or model weights
that can then be utilized in downstream tasks. These tasks apply pretext task knowledge,
and are application-specific. In computer vision, they include image classification, object
detection, image segmentation, pose estimation, etc. [48,49]. Learned feature representa-
tions and model weights should be evaluated to ensure quality. This can be accomplished
in one of two ways, through either fine-tuning or using a linear classifier. To fine-tune, the
model weights obtained from the pretext task are used as an initialization for which to
train a new model, thereby updating all weights. To use a linear classifier, a small, labeled
dataset is trained via a pretext task to perform a downstream task, freezing the weights of
the rest of the model [51]. The downstream task still requires a labelled dataset, but only
a small one, to achieve a good performance. If we train the deep learning model using
a small number of labeled examples, and try to solve the downstream task without this
pretext task, the model will produce a low accuracy.

4. Contrastive Learning Framework
4.1. Data Augmentation

The purpose of data augmentation in contrastive learning is different than in super-
vised learning tasks. Data augmentation aims to map an image into different views via
stochastic transformations [52], which can be considered a handcrafted pretext task. The
most important components for the success of contrastive learning are data-augmentation
methods, as evaluated in [26], as many of the highest-performing contrastive methods use
data augmentation.

The data-augmentation technique T(.) maps the given input image x into different
views, such as positive pairs x+1 and x+2 . Doing this changes the image’s visual appearance
without altering its semantic meaning. Heavily augmented data is key, because it models
the complicated nature of identifying data without labels. In order for data augmentation
to succeed, it must challenge the model. If, for example, the model pairs images too
quickly, it has not learned, and the augmentations may be too simple [52,53]. There are
several examples of augmentation, such as random cropping and resizing, random flipping,
translation, color distortion, Gaussian blurring, color jitters, and multi-crop augmentation,
etc., as shown in Figure 3. The research in [26] has shown that combining multiple data-
augmentation techniques yields an effective representation [49].
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4.2. Encoder f (.)
The encoder f (. ) aims to extract feature representations. To do this, it uses two

augmented images, x+1 and x+2 , and then extracts embedding vectors hi and hj. ResNet-50
is often used as the encoder, and its variants are typically chosen as the CNN encoder. The
more layers that a network has, the richer the extractions. These deeper networks contain
more features, which themselves contain more semantic information than those obtained
from shallower networks [26,54]. Contrastive learning is a pre-training technique in which
an image encoder operates as a feature extractor in downstream tasks [55]. There are
three major types of encoders in contrastive learning, as proposed in [30]: image encoders
(denoted as h), momentum encoders (denoted as hm), and dictionaries (denoted as hd). The
first uses either an input or an augmented input and outputs a feature vector. Similarly,
the second also outputs a vector, this time called a key vector, but the difference is that
the architecture is updated more slowly than the image encoder. Finally, the dictionary
method queues key vectors from the momentum encoder. Unlike the other two methods,
the dictionary updates dynamically during pre-training [55].

4.3. Base Header g(.)
After extraction, embedding vectors hi and hj pass through a multilayer perceptron

(MPL) called g(h). This base header g(.) maps and then passes the representations to
a contrastive loss function [56]. Though this is an extra step, it has been proven to help
achieve better results. Recently, refs. [18,26,57] have all shown that adding an MLP alone can
increase the learned representations’ quality. On ImageNet, it improved top-1 classification
accuracy by more than 10% in [26], and by 5.6% in [18].

4.4. Contrastive Loss

Contrastive loss functions minimize the latent embedding distance between positive
pairs while also simultaneously maximizing the distance between negative pairs. Different
functions have been utilized for contrastive learning, including NCE loss [58], InfoNCE
loss [59], and NT-Xent loss [60]. Typically, these employ the noise-contrastive elimina-
tion (NCE) method to learn datasets. This method helps the model pull similar images
together and push dissimilar ones apart. To do this, NCE uses nonlinear logistic regres-
sion, as described in [59]; this helps the model identify data from artificially generated
noise. SimCLR [26] is then used to normalize loss (NT-Xent) and find positive pairs [60].
Given a mini-batch of unlabeled samples (x1, x2, . . . , xN), stochastic augmentation T(.)
is implemented to generate two different views, x+i and x+j , of the given sample x; the
different views are then fed through encoder f (.) to obtain the embedding vector extract,
denoted as (zi, z+), as a positive pair extracted from base header g(.). This is expressed
mathematically as follows:

LNCE = −log
exp

(
sim

(
zi, zj

)
/ τ

)
)

∑2N
k=1 I[k 6=i]exp(sim(zi, zk)/ τ)

where I[k 6=i] ∈ [0, 1] is an indicator function equal to 1, if k 6= i and τ are temperature
hyperparameters (which assist in regulating penalties on hard-negative samples [61]), and
where N is the number of examples in which, for each example, two augmented views
(positive pair x+1 and x+2 ) are generated from each given example x. The total number of
augmented pairs is 2N, and there are 2(N − 1) negative augmented examples from other
examples in the dataset.

The sim
(
zi, zj

)
is a function that measures the similarity between embedding repre-

sentations zi and zj. Generally, a cosine function is the most common, defined as follows:

sim
(
zi, zj

)
=

zi.zj

‖ zi ‖ . ‖ zj ‖
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where the notation ‖ . ‖ is the Euclidean norm of the vector. The cosine function measures
the angle between two non-zero vectors in a d-dimensional space. At zero degrees, the
cosine similarity is one. At any other angle, the cosine similarity ranges from one to
negative one.

InfoNCE [59] is widely applied as contrastive loss when training contrastive mod-
els. In these instances, InfoNCE is commonly used for contrastive loss because it cor-
responds to cross-entropy loss, which estimates the information shared by a pair of im-
ages. It discriminates a positive pair (zi, z+) from its related k negative pairs, written as
(zi, z−1 ), (zi, z−2 ), . . . , (zi, z−k ) [62]. The InfoNCE formula is defined as follows:

Lin f oNCE = −log
exp(sim(zi, z+)/ τ)

exp(sim(zi, z+)/ τ) + ∑k
j=1 exp(sim(zi, z−j )/ τ)

When the labels are clean and an appropriate number of negative samples are used,
the lower bound of the mutual information estimate is higher. This typically generates
better performance [62]. The formula for calculating this lower bound between zi and z+ is
as follows:

I
(
zi, z+

)
≥ log(k + 1)−Lin f oNCE

5. Approaches to Auxiliary Pretext Tasks
5.1. Context Prediction

Context prediction is a class of SSL in which the model can predict the approximate
position of image patches; to be able to do this, the model must learn spatial context to
understand where these image patches belong. For example, the model developed by Do-
ersch et al. [25] predicts the relative position between the central patch and a second patch
selected randomly from its eight neighboring locations; these are numbered sequentially
from 1 to 8, as depicted in Figure 4a. Each patch is fed into a convolutional neural network
that follows the AlexNet architecture, where weights are shared between corresponding
layers in both architectures, which then fuse into a fully connected layer. The final layer is
a softmax that can predict the probability of each spatial configuration. In order to avoid
overfitting, a gap was added between patches; this jittered each patch location randomly
by up to seven pixels, which scaled down some images and dropped color channels, which,
therefore, prevented chromatic aberrations.

Noroozi et al. [50] expanded this idea to tackle more complicated issues. They pro-
posed a context-free network (CFN) to solve jigsaw puzzles with 3× 3 patches by estimating
which transformations were used when reordering the puzzles. Each patch passed through
a Siamese convolutional layer independently, as shown in Figure 4b. Then, the features
were concatenated into a fully connected layer. The output estimates the index of the chosen
permutation from 64 classes, with these classes chosen from 9 permutations. The learned
features were then transferred to object detection and recognition tasks, and their results
beat unsupervised methods. Gidaris et al. [20] rotated an input image randomly by one of
four angles (0, 90, 180, or 270 degrees), and they trained CNN on a four-class classification
problem to predict the correct rotation (see Figure 4c). The authors found that the training
was significantly improved by feeding four rotated images into the CNN simultaneously,
instead of a single, randomly rotated image. Learning the rotation angle in this manner
allowed the model to learn objects such as eyes, noses, and heads. The learned sematic
features have proven useful in object detection, segmentation, and image classification.
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The trained model restores full information about the color to each pixel. Many works 
based on colorization have been proposed [22–24]. For example, Zhang et al. [26] pro-
posed a CNN that learns to colorize grayscale images as a pretext task. As shown in Figure 
5, the architecture of this proposed CNN is similar to an autoencoder, though it uses sep-
arate image channels for both the input and the output. The experimental results have 
shown that learning feature representations via colorization as a pretext task is effective 
for solving object detection and segmentation problems; it is also more useful in image 
classification as compared to other self-supervised methods. Further image manipulation 
was suggested by Larsson et al. [24], whose ColorProxy employed a VGG-16 [1] network 
architecture that was pre-trained on ImageNet and fine-tined for colorization; their model 
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Figure 4. Different models of context prediction. (a) A pair of patches extracted randomly from each
image train the CNN to identify a neighboring patch’s position in contrast to the initial patch. The
weights between both CNNs are shared. (b) Learning representation by solving jigsaw puzzles with
3 × 3 patches. (a) is the original image; (b) is the puzzle created by shuffling the tiles using a pre-
defined permutation; (c) is the feeding of shuffled patches into a CNF network trained to recognize
permutations. (c) An illustration of SSL using the rotation of an input image. The model learns to
predict the correct rotation from four possible angles (0, 90, 180, or 270 degrees). (d) proposes object
counting as a pretext task for learning feature representation, thereby training a CNN architecture
to count.

Noroozi et al. [63] employed object counting as a pretext task for improving learned
representation through scaling and tiling. The former takes advantage of the fact that
visual primitives are invariant to scaling and rotation, while the latter exploits the fact that
the number of visual primitives in each tile should equal the number in the entire image.
By doing this, models enforce the notion that the counting feature between any pair of
randomly chosen images will always be different; this lessens contrastive loss and allows
the model to learn representations successfully.

5.2. Colorization

In SSL, colorization is a helpful pretext task that functions as a cross-channel encoder.
The trained model restores full information about the color to each pixel. Many works
based on colorization have been proposed [22–24]. For example, Zhang et al. [26] proposed
a CNN that learns to colorize grayscale images as a pretext task. As shown in Figure 5, the
architecture of this proposed CNN is similar to an autoencoder, though it uses separate
image channels for both the input and the output. The experimental results have shown
that learning feature representations via colorization as a pretext task is effective for solving
object detection and segmentation problems; it is also more useful in image classification as
compared to other self-supervised methods. Further image manipulation was suggested
by Larsson et al. [24], whose ColorProxy employed a VGG-16 [1] network architecture that
was pre-trained on ImageNet and fine-tined for colorization; their model could extract,
from each convolutional layer, a hyper-column descriptor from each individual pixel. This
allowed Larsson et al.’s model to successfully manipulate images further. Learned feature
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representation via colorization allows users to obtain state-of-the-art results on PASCAL
VOC semantic segmentation while improving performance from 50.2% to 60.0% mIU.
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Figure 5. Colorization as a pretext task for learning representation. The CNN is trained to produce
real-color images from a grayscale input image.

5.3. Generative Modelling

Donahue et al. [14] proposed an extension of the generative adversarial network
(GAN) called Bidirectional Generative Adversarial Networks (BiGAN). Its architecture is
illustrated in Figure 6. BiGAN encoders can learn feature representation for visual tasks.
To do this, the authors of [12] included the generator G from a GAN as well as additional
encoder neural networks (E) that map the data (x) to latent representation (z), while the
generator maps the arbitrary latent distribution (z). to data (x), similar to a standard
generator in GANs. The discriminator in BiGAN discriminates between the joint space of
input data and latent presentation (x, E(x)) versus (G(z), z) from the generator (G), where
the latent representation is either an encoder output E(z) or a generator input z. Their
results show learning feature representations improves auxiliary supervised discrimination
tasks, as their results are competitive with other approaches.
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Figure 6. The architecture of a BiGAN. Using this technique, both (z and E(x)) and (G(z) and x)
have the same dimensions. The concatenated pairs [G(z), z] and [x, E(x)] are the two inputs of the
discriminator D. Both the generator G and encoder E are optimized using the loss created by the
discriminator D.

Pathak et al. [21] presented context encoders to generate missing regions within an
image. To do this, the image with missing regions is inserted into the context encoders
as an input; the output is the missing pixels. The overall architecture of context encoders
is depicted in Figure 7, a straightforward encoder-to-decoder pathway. Using the input
with missing pixels, the encoder creates a latent feature representation; the decoder then
uses this representation to produce the missing pixels. In order for this to be effective, the
context encoder needs to understand the content of the image and then create a reasonable
prediction of the missing pixels. The model is taught to do this through a combination of
reconstruction (L2) loss and adversarial loss. Reconstruction (L2) loss aims to capture the
overall structure of the missing content and context, while adversarial loss works similar
to GANs, which predict realistic, missing-image content by choosing one particular mode
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from the distribution. In addition to producing semantic inpainting tasks, the context
encoder is a powerful technique for learning feature representations for CNNs pre-training
on classification, detection, and segmentation tasks.
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Figure 7. The architecture of the context encoder. It is a simple encoder–decoder pipeline.

Zhang et al. [37] proposed a split-brain autoencoder that consists of two disjointed sub-
networks trained as cross-channel encoders (see Figure 8). Each sub-network aims to pro-
duce a data subset. The first network (F1) is trained to predict X2 from X1 (X̂2 = F1(X1)),
and another network (F2) predicts X1 from X2 ( X̂1 = F2(X2)), as shown in Figure 8.
This means that the two sub-networks F1 and F2 are trained to hypothesize in a way that
complements the other. This difficult task allows the model to learn high-level abstractions
or semantics in comparison to traditional autoencoders and other SSL methods.
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Figure 8. A split-brain autoencoder architecture. Comprised of two sub-networks, F1 and F2,
the model is trained to predict data using the other network’s hypothesis to complement its own.
Combining both hypotheses predicts the full image.

5.4. Future Prediction

Oord et al. [59] proposed a model called contrastive predictive coding (CPC) to learn
effective representations from any type of data presented as an ordered sequence, including
speech, text, video, and even images, viewed as a sequence of pixels. CPC generates a rich
representation by predicting future samples in the latent embedding space, using powerful
autoregressive models. Contrastive loss is employed to incentivize the latent embedding
space to capture information that then maximizes the mutual information between the
current and future samples.

5.5. Clustering as Pretext Task

Clustering can also be employed for learning deep feature representation. For example,
Caron et al. [17] used k-means assignments to learn feature representations. The general
structure of DeepCluster, as shown in Figure 9, is a large-scale, end-to-end learning method
that iteratively clusters the features of images into groups using the k-means algorithm.
Cluster assignments are then used as “pseudo-labels” to optimize the weights of the CNN
by predicting cluster assignments.
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6. Contrastive Learning Methods for Learning Visual Representation
6.1. Instance Discrimination

Many recent works on contrastive learning have studied instance discrimination [18,26,30],
an approach that classifies each image separately and then uses data augmentations to
train the model. Top-performing contrastive learning methods, such as SimCLR [26] and
MoCo [30], utilize instance discrimination as a pretext task, which has been demonstrated
to outperform its supervised counterparts on downstream tasks. Instance discrimination
methods train the network so that two augmented versions of a sample should have com-
parable representations. Likewise, two augmented versions of two different images should
have incomparable representations. Formally, this approach generates two augmented
images (a positive pair) x+1 and x+2 from any given x. Therefore, for N images in the
batch, 2N augmented views are generated. Pairing each image xi in the batch with all
other images (indexed j) will maximize the number of negative images. This generates
2(N − 1) negative augmented images from other images in the dataset. The positive and
negative images then pass through an encoder to obtain latent representation. Afterwards,
contrastive loss is implemented to improve the likeness in positive pairs and unlikeness in
negative pairs [59,64].

When using instance discrimination, self-supervised methods utilize two key elements:
one is contrastive loss [59], and the second is data augmentation [28]. The former compares
image features directly, while the latter delineates features’ invariances.

6.2. SimCLR

Chen et al. [26] proposed SimCLR, a framework for learning useful presentations based
on contrastive learning by maximizing the similarity between the original data image and
different, augmented views of it. This method also minimizes connections between altered
views of different images in latent space using contrastive loss. As shown in Figure 10, the
SimCLR architecture contains a base encoder using a ResNet architecture that produces
an embedding representation from augmented images hi = f

(
x+i

)
= ResNet

(
x+i

)
. The

output is taken after the average pooling layer. Then, the projection head is built using
MLP, with one hidden layer containing an ReLU activation function, where contrastive
loss is applied to take the embeddings hi and produce latent space zi = g(hi). When the
parameters are updated in this way, comparable representations attract each other, and
incomparable ones are repelled. Research has shown that increasing the architecture’s depth
and width, batch size, and epochs makes contrastive loss extraction better at achieving
high performance. Increasing the batch size specifically is beneficial for SimCLR to ensure
the presence of enough negative pairs. For data augmentation, the accuracy was highest
when both random cropping and random color distortion were applied after examining the
composition of each data-augmentation operator. The downside, however, is that while a
large batch size has improved the performance, it also leads to higher computational costs.
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Figure 10. The structure of SimCLR. Data augmentation T(.) is applied on the input image x to
generate two augmented images x+1 and x+2 . A base encoder network f (.) and a projection head g(.)
are trained to maximize the similarity between the augmented images using contrastive loss. After
completing the training process, the representation h is used for downstream tasks.

The same team released an improved version of SimCLR based on semi-supervised
learning, called SimCLRv2 [29], that involves self-supervised pre-training (in a task-agnostic
way), followed by supervised fine-tuning in which only 1% or 10% of the labeled images
were available. They demonstrated that using fewer labels improved accuracy. In addition,
re-labelling the data allowed task-specific predictions to be transferred into a smaller
network. Doing this can improve smaller ResNet-50 networks while maintaining accuracy,
as the negative pairs in SimCLR can be used as the positive pairs.

According to [65], instance discrimination leads to class collision problems. This
means that instance similarities will need to be pushed apart, which can hurt representation
quality [65]. Identifying and using these similar instances, then, is important for achieving
high performance in learned representations.

6.3. Memory Bank

Recent work has shown that generating a robust visual feature representation requires
comparing the current sample with a large number of negative samples in contrastive loss.
In a mini-batch stochastic gradient descent optimizer, however, including an appropriate
number of negative samples may overly increase the mini-batch size, which can create
resource challenges. To address this, a memory bank has been proposed as an effective
technique for storing the feature representations of large negative samples without increas-
ing the size of the mini-batch. Using this technique, the memory bankM is comprised of a
feature representation mI for each sample I. The representation mI is key to this method,
as it is an exponential moving average of feature representations f (vI), all of which were
previously calculated. Negative samples such as f

(
v′I
)

can then be exchanged for their
memory bank representations, mI′ ; doing this does not increase the size of the training
batch, which eliminates the need for additional computational resources.

One such example is PIRL [66], which uses a memory bank comprised of the moving
averages of all learned representations, providing significant negative samples for training.
To do this, the model must generate data representations of any images that are covariant
to the pretext tasks, particularly jigsaw or rotation-degree prediction tasks. To do this, PIRL
creates an image representation that is, one, similar to transformed representations, and two,
different from other samples’ representations. The results obtained by PIRL outperformed
supervised pretraining in object detection. Some works [18,30] further suggested the use
of a momentum contrast mechanism in which the query encoder learns representations
from a slow key encoder; it then maintains a memory buffer to store high quantities of
negative samples.
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He et al. [30] utilized a different approach, called momentum contrast (MoCo), which
uses and updates a memory bank. This method splits each image into a query, and then
creates a key by performing two different augmentations. Figure 11 shows how the query
and all keys are then passed through an encoder, which creates embeddings. The similarity
is then calculated between query/key pairs. To update the momentum encoder, the model
computes the contrastive loss and backpropagates it through the encoder. These weights
are updated at every iteration for the highest accuracy. The model and encoder rely on the
memory bank, but this update scheme allows it to instead pursue the exponential moving
average, or momentum update. Though this was a self-supervised model, its success rate
was similar to those of supervised models.
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MoCo v2 [18] is an improved version of MoCo with simple modifications, including
replacing a two-layer MLP head with ReLU for the unsupervised training stage and blur
data augmentation. Because of these changes, MoCo has outperformed the best SimCLR,
despite having fewer epochs and a smaller batch size.

6.4. Contrastive Learning without Negatives

Some recent works [15,67] have achieved remarkable results by only using positive
examples. Grill et al. [15] proposed a new method called BYOL for learning feature
representations without ever contrasting negative pairs. Instead of focusing on dissimilarity,
this method focuses only on the similarity of samples and representations. They did this via
bootstrapping, using the outputs as targets for enhanced representations. Using both target
and online networks, BYOL interacts and learns from itself. The online network consists of
three main components, as illustrated in Figure 12: the encoder fw, which is Res-Net-50, the
projector gw, and the predictor qw. The target network has same architecture as the online
network but with different weights (ξ). To train the online network, the target network
supplies regression targets; it uses an exponential moving average of the online weights w
to define the parameters ξ. BYOL then feeds the input image x and its augmented image x+

to the online network and target network, respectively, to extract embedding vectors from
each network. The loss of BYOL is the mean squared error rather than contrastive loss,
which aims to minimize the similarity distance between the embedding vectors, where w
represents the trained weights and ξ represents an exponential moving average of w. The
image representation corresponds to the output of the final average pooling layer of the
online network encoder fw, where a moving average of the online network updates the
target network.
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represents the trained weights, ξ represents an exponential moving average of θ, and sg means the
stop-gradient. After training, everything but fθ is discarded. yθ represents the image representation.

Other methods include Chen and He’s research [67], which demonstrated that a
high-quality representation can be obtained without using either negative samples or a
momentum encoder. They proposed a simple Siamese network (SimSiam) with a stop-
gradient operation to learn feature presentation. SimSiam (Figure 13) takes two augmented
views, x+1 and x+2 , which are generated randomly from image x, and then passes each view
through encoder f , which shares the weights between the two views. The encoder network
is comprised of a backbone, in this case ResNet, and a projection MLP. A prediction MLP
(h) is used on one side, and a stop-gradient strategy is employed on the other to avoid
collapse. The SimSiam method was effective on both ImageNet and downstream projects.
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Figure 13. The architecture of SimSiam. Two augmented images passed through the same encoder,
which is comprised of a backbone (ResNet) and a projection MLP. A prediction MLP (h) is used
on one side, and a stop-gradient strategy is employed on the other to avoid collapse. The model
aims to maximize the similarity between both views. SimSiam does not use negative pairs or a
momentum encoder.

6.5. Clustering-Based Methods

Clustering-based methods in contrastive learning [17,68,69] enforce consistency when
cluster assignments are obtained from different augmented views of the same image; this
is conducted instead of comparing embedding features directly, as in contrastive learning.
Once this is complete, the model is trained on the cluster assignments, which are handled
like pseudo-labels, similar to supervised learning.

SwAV [17] is an online clustering method which trains features to produce reliably
similar cluster assignments when given various views of the same image, as presented
in Figure 14. In mining the invariant clusters of these data augmentations, the model
learns rich feature representations. This is accomplished by comparing and contrasting
the features of the same image, using their intermediate cluster assignments from multiple
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views. If the information presented is similar, then it can be used to predict feature
assignments from other views. A set of K clusters is associated with a d-dimensional
prototype vector vk. Each image i is transformed into two different views: xi1 and xi2. Each
of these views is featurized with ResNet, which provides two sets of features: ( f 11, . . . , f B1)
and ( f 12, . . . , f B2). Each set is then allocated to cluster prototypes using an optimal
transport solver, which ensures that features are split evenly across the clusters [70]. The
resulting data are then switched so that the cluster assignment yi1 of the view xi1 has to
be predicted from the feature representation f i2 of the view xi2. Loss is minimized for all
examples i via the following equation:

L( f i1, f i2) = l( f i1, yi2) + l( f i2, yi1).
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To calculate cluster prediction loss, l( f , y) represents the cross entropy between a
cluster assignment as well as the softmax of the dot products of f and all prototypes vk.

However, doing this can lead to degenerate solutions. This is prone to happen
when the solutions of the k-means algorithm are all mapped to one cluster. SeLa [68]
addressed this by including constraints that prevent this, using equipartitions and a simpli-
fied Sinkhorn–Knopp algorithm. PCL [69] further noted class collision and used instance
discrimination and unsupervised clustering, in tandem, to address this. Though it achieves
the same linear classification accuracy as MoCo v2, this method performs better on down-
stream tasks [65].

7. The Performance of Image Feature Learning

The goal of solving pretext tasks in SSL is to learn a discriminative representation
that then improves downstream tasks. A common approach to evaluating the quality of
learned features is either a linear classifier or fine-tuning. In both approaches, the model is
trained to solve pretext tasks on a large dataset, such as ImageNet, which does not include
label information. Next, a linear classifier or fine-tuner will focus on solving the pretext
tasks, whose solutions will then be used to improve downstream performance. To do this,
both approaches suspend the network. Finally, the image classification performance must
be assessed. ImageNet [34], VOC07 [71], and Places205 [72] are common datasets for this
purpose. Similarly, the Pascal VOC12 [73] dataset is often used to evaluate both object
detection and semantic segmentation.

Table 1 illustrates the top-1 classification performance on different SSL methods that
pre-trained on ImageNet without labels, utilized supervised linear classification on a
suspended network, and were then evaluated on ImageNet, VOC07, and Place205 testing
sets. ResNet is the backbone for most SSL methods. The accuracy performance is based
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on the number of parameters and the experimental setup. As shown in Table 1, SwAV
outperforms MoCo v2 by 4.2% and closes the gaps with supervised training to less than
1%. In addition, contrastive learning methods perform better than the auxiliary pretext
learning techniques on image classification.

Table 1. Image classification with linear models on ImageNet, VOC07, and Place205 testing sets. All
models are pre-trained on ImageNet without labels, using different SSL methods.

Method Architecture # of Param
(Million) ImageNet VOC07 Place205

Supervised ResNet-50 24 M 76.5 - -
Colorization [23] ResNet-50 24 M 39.6 - -

Jigsaw [50] ResNet-50 24 M 45.7 64.5 41.2
Rotation [20] ResNet-50 24 M 48.9 63.9 41.4

NPID [32] ResNet-50 24 M 54 - -
BigBiGAN [74] ResNet-50 24 M 56.6 - -

MoCo [30] ResNet-50 24 M 60.6 79.2 48.9
PCL [69] ResNet-50 24 M 61.5 82.3 49.2
PIRL [66] ResNet-50 24 M 63.6 81.1 49.8

CPC v2 [59] ResNet-50 24 M 63.8 - -
SimCLR [26] ResNet-50 24 M 69.3 - -
MoCo v2 [18] ResNet-50 24 M 71.1 - -

SwAV [17] ResNet-50 24 M 75.3 88.9 56.7

Different Architectures and Setups

Supervised ResNet-50 25.6M 75.9 87.5 51.5
Colorization [23] ResNet-50 25.6M 39.6 55.6 37.5

Rotation [20] ResNet-50 25.6M 48.9 63.9 41.4
DeepCluster [17] VGG16 15 M 48.9 63.9 41.4

NPID [32] ResNet-50 25.6 M 54 - 45.5
PCL v2 [69] ResNet-50-MLP 28 M 67.6 85.4 50.3
BYOL [15] ResNet-50-MLP 35 M 74.3 - -

DeepCluster [17] AlexNet 61 M 54 - 37.5
AMDIM [57] Custom-RN 670 M 68.1 - 55.1

The quality of the learned representations is evaluated by transferring them to other
downstream tasks, including Pascal VOC 2007 [71] object classification and detection and
VOC12 [73] instance segmentation. The model is first pre-trained on VOC07 without
labels using Faster-CNN [75] and then fine-tuned on the target datasets. Then, it proceeds
to the classification, detection, and segmentation tasks, which are defined as follows:
classification is multi-class task, and predicts the presence of 20 object classes. Detection
tasks require the locating of objects in a sample and surrounding them with a bounding
box. Finally, segmentation labels each pixel in an image with its object class. As illustrated
in Table 2, the results show that contrastive learning methods outperformed supervised
fusion and auxiliary pretext methods. In auxiliary pretext task methods, learning features
using colorization is suitable for segmentation, while predicting the context works well
for detection.

Figure 15 shows the accuracy of the ImageNet Top-1 linear classifiers, which were
trained on feature representations created via self-supervised techniques with different
widths. As shown in the figure, increasing the parameters of SimCLR obtains the same
performance as ResNet-50 trained on supervised learning. SwAV also beats supervised
learning. It is shown empirically, then, that more complex models learn more effectively,
and create better feature representations, using unlabeled data.
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Table 2. Evaluation of transfer learning on downstream tasks using PASCAL: object classification
and detection is evaluated on PASCAL VOC 2007 [71]. Segmentation is evaluated on PASCAL VOC
2012 using Faster-RCNN. The results were obtained from [26,63,76].

Method VOC07
Classification VOC07 Detection VOC12

Segmentation

Supervised [33] 79.9 56.8 48.0
Context [25] 55.3 46.0 -
Jigsaw [50] 67.6 53.2 37.6

ContextEncoder [21] 56.5 44.5 29.7
BiGAN [14] 58.6 46.2 34.9

Colorization [22] 65.9 46.9 35.6
Split-Brain [37] 67.1 46.7 36.0
ColorBroxy [24] 65.9 - 38.0
Counting [63] 67.7 51.4 36.6

PIRL [66] 81.1 80.7 -
Barlow Twins [77] 86.2 - -

MoCo [30] - 81.4 -
SwAV [17] 88.9 82.6 -
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8. Discussion of Self-Supervised Learning

The existing self-supervised methods learn representations just as well as supervised
methods [17,27,67,77]. However, the best SSL algorithms require training on computation-
ally expensive devices. Even the smallest architectures, such as ResNet-50 [2], require large
mini-batches, often with thousands of images, while utilizing specialized hardware [17,26],
all of which is difficult in a setting with limited resources. In some cases, it may be
downright impossible, as SSL does not always work on lighter models such as MobileNet-
V3-Larger. To address these constraints, we must focus on networks: they should be strong
and small, and they must be compatible with a system on a chip, or SoC [78].

Self-supervised models learn through pretext tasks. These tasks are not primary,
but they are intended to be solved. By doing so, the model learns complicated feature
representations that later assist with downstream tasks and allow for high performance,
even with limited data annotations. To create the best scenario, the pretext task must be
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selected with care, and it must work in tandem with the model’s downstream tasks. The
process of designing a proper pretext task for a given downstream task still needs more
exploration. Numerous pretext tasks have been proposed, but research has not yet been
conclusive. For example, in a classification scenario, rich image representations may create
clusters of lower-quality embeddings, a situation in which those clusters are image classes
for labelling. On the other hand, for a localization task, rich representations can create
clusters of clusters, a situation in which the biggest cluster represents an approximation of
an object’s location within an image [79]. Future research should focus here.

The success of contrastive learning is highly dependent on the design of its positive
and negative samples. They must be designed carefully, particularly positive pairs, because
data augmentations can improve representations. As demonstrated in [26,76], data aug-
mentation has played a critical role in obtaining discriminative representations. On the
other hand, in terms of negative pairs, researchers have found many ways to augment them
as well. One such augmentation is InstDisc [32], which utilized a memory bank to store
previous batches’ feature embeddings, a strategy that allowed for a large pool of negatives
and led to greater performance. MoCo [18,30] then added a momentum encoder to further
augment the data. SimCLR [26] improved its negative pairs via large-batch online training,
using other pairs in the same dataset to prevent contrastive loss.

Contrastive learning methods suffer from a mode collapse problem, in which the
model maps all of its input data to the same representation [80]. Different approaches have
been presented to address this problem. One is the use of methods such as MoCo [26],
where the loss function treats pairs of positive and negative samples differently. BYOL [15]
and SimSiam [67], on the other hand, employ stop-gradient strategies as well as an extra
predictor to counteract the lack of negative pairs. Refs. [17,76], furthermore, add clustering,
and Barlow Twins compares two branches to reduce repetitive information [81].

9. Conclusions

Recent research has shown that SSL can offer high-quality visual representations
without labels and, thereby, eliminate manual annotation processes. Advancements in
this field have allowed researchers to obtain a better feature representation from differ-
ent perspectives, which dovetails well with SSL, thanks in no small part to contrastive
learning methods. This paper provided a comprehensive overview of top-performing
SSL methods. It delineated the different categories of SSL and reviewed recent research
into these techniques. It also presented performance analyses on the different ways to
approach downstream tasks, all of which points to the importance of contrastive learning
in SSL models.
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