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Abstract: It is now well recognized that the production of petroleum-based packaging materials has
created serious ecological problems for the environment due to their resistance to biodegradation. In
this context, substantial research efforts have been made to promote the use of biodegradable films as
sustainable alternatives to conventionally used packaging materials. Among several biopolymers,
poly(lactide) (PLA) has found early application in the food industry thanks to its promising properties
and is currently one of the most industrially produced bioplastics. However, more efforts are
needed to enhance its performance and expand its applicability in this field, as packaging materials
need to meet precise functional requirements such as suitable thermal, mechanical, and gas barrier
properties. In particular, improving the mass transfer properties of materials to water vapor, oxygen,
and/or carbon dioxide plays a very important role in maintaining food quality and safety, as the
rate of typical food degradation reactions (i.e., oxidation, microbial development, and physical
reactions) can be greatly reduced. Since most reviews dealing with the properties of PLA have mainly
focused on strategies to improve its thermal and mechanical properties, this work aims to review
relevant strategies to tailor the barrier properties of PLA-based materials, with the ultimate goal of
providing a general guide for the design of PLA-based packaging materials with the desired mass
transfer properties.

Keywords: PLA; barrier properties; food packaging; nanoconfinement; biocomposites; clay nanopar-
ticles; copolymers; molecular dynamics

1. Introduction

The increasing use of petroleum-based plastics has raised serious environmental issues
closely related to their resistance to biodegradation. In the specific case of materials used
in packaging, food-contaminated plastics cannot be recycled, so significant amounts of
non-degradable material are constantly accumulating in the natural environment and
landfills [1]. In this context, growing research interest is directed toward a greater use
of renewable resources for the production of bio-based polymers with certain desired
functionalities that are, at the same time, fully biodegradable and recyclable [2]. Among a
large number of biopolymer candidates, environmentally friendly thermoplastic polylactide
(PLA), derived from renewable agro-resources, has certainly attracted much attention due
to its promising attributes for packaging applications. These include biotic and non-
biotic degradability, clarity, stiffness, low-temperature heat sealability, GRAS (Generally
Recognized as Safe) status as well as suitable barrier properties to flavors and aromas, which
have made PLA the most widely produced bioplastic at present for certain biological food
contact applications [3]. For instance, BiotaTM PLA-bottled water, NobleTM PLA-bottled
juices, and DannonTM yogurts are the main PLA-based packaging examples available on
the market.
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In this context, however, it should be noted that not all PLA grades are suitable for
packaging applications, as the properties of PLA strongly depend on the physical state of
the polymer, which in turn is primarily influenced by the stereochemistry, composition, and
molecular weight of PLA. In fact, lactide (the cyclic dimer of the chiral lactic acid moiety)
exists in three diastereoisomeric forms such as L-lactide, D-lactide, and meso-lactide, whose
polymerization via a ring-opening reaction (ROP) affords several different PLA grades [4].
Optically pure PLA such as isotactic poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) are
crystalline in nature with a melting point around 180 ◦C, while atactic poly-(meso-lactide)
(PDLLA) is a fully amorphous material with a glass transition temperature of 50–57 ◦C.
Depending on the ratio of optically active L- and D,L-monomers, it is possible to tune the
amorphous and crystalline content of PLA and thus its properties. Detailed information
on this subject can be found by interested readers in [5,6]. In addition, it has been widely
reported that other factors such as the chain orientation and crystal packing of PLA also
affect the crystallinity content, crystal thickness, spherulite size, and morphology, which in
turn can strongly influence the final polymer properties [7].

PLA samples with the highest content of amorphous regions and low molecular
weight (MW) are not used in packaging as they are less thermally stable and degrade
much faster than their enantiomerically pure counterparts with high MW PLA (PLDA
or PLLA) [8]. However, as shown in Table 1, even the highest performing PLA grades
with the highest degree of crystallinity (typically PLA with 96–99% L-lactide) are not good
enough to extend the applicability of PLA in packaging. They show relatively poor barrier
performance as well as poor heat resistance and brittle fracture behavior compared to
conventional petroleum-based plastics [9–11]. In terms of mass transfer properties, PLA
exhibits moderate permeability (P) values for oxygen (O2) and carbon dioxide (CO2), which
are higher than those of polyhydroxy butyrate-co-valerate (PHBV), polyvinylidene chloride
(PVDC), ethylene vinyl alcohol (EVOH), polyethylene terephthalate (PET), and polyvinyl
alcohol (PVOH), but mostly lower than those of the other polymers. However, with the
exception of PVOH and EVOH, PLA has a very high PWater compared to the other polymers,
which also limits applications that require a high barrier to water vapor.

While most recent review articles have focused on the functional properties of PLA
materials (i.e., mechanical and thermal properties) [12–16], there are no studies that have
provided a comprehensive understanding of PLA barrier performance and reported the
available methods to improve it. Therefore, this review provides a critical overview of
recent strategies to improve the barrier properties of PLA-based plastics, focusing on the
approaches that have the least environmental impact. These include crystallization and
orientation, crystal modifications, blending with other impermeable biopolymers and/or
nanofillers, and co-polymerization. In addition, this review presents several models for
predicting the permeability of PLA-based plastic films through a molecular dynamics
simulation approach (MD). To provide an overview of the strategies used by researchers,
this review begins with a brief introduction to the key parameters used to characterize gas
transport properties in polymer films and ends with a summary and outlook on the design
of PLA-based packaging materials with the desired mass transfer properties.
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Table 1. Comparison of the main barrier (permeability coefficient for O2, water, and CO2 in
Kg·m·m−2·s−1·Pa−1) and the thermal and mechanical properties of polymers used in food packaging.

Polymer * Crystallinity
Content (%) PO2

a PWater
b PCO2

c Tdeg
d Onset

(◦C)

Tensile
Strength

(MPa)

Young
Modulus

(GPa)
Elongation

at Break (%) Ref.

PLA 0–40 310 ± 150 161 ± 41 2811 ± 842 270 20–70 3.1–4.8 3.6–8.8 [9,12,13,17–20]
PHBV 40–60 1.1–3.2 15–24 14–40 230 35–40 3.6–5.2 4–970 [21–23]

PP 30–60 1790 312 10,500 335–450 31–48 0.2–1.4 550–1000 [20,24,25]
PET 17–40 35.9 7.8 35.9 406 45 2.7–4.1 335 [20,24–29]
PVC 10 449 16.5 247 250 4–23 2.7–3.0 200–240 [20,30–33]

PVDC 40–50 0.1–0.3 1.2–7.3 2.3–12 130 25–110 1.2–1.8 30–80 [34–36]
PVOH 15 0.7–9.5 430–840 18.2 200 31 0.08–0.7 57–122 [20,37–42]
EVOH 58–70 0.5–7.1 320–560 5.1–14.3 397 55–65 0.4–1.2 100–225 [38,43,44]
LDPE 47 3100 5.5 18,600 395 33 0.3–0.6 1075 [20,45–49]
HDPE 74 424 2.1 538 389 16–21 0.5–1.2 10.7–13.7 [20,48,50,51]

* PHBV, polyhydroxy butyrate-co-valerate; PP, polypropylene; PET, polyethylene terephthalate; PVC, polyvinyl
chloride; PVDC, polyvinylidene chloride; PVOH, polyvinyl alcohol; EVOH, ethylene vinyl alcohol; LDPE, low-
density polyethylene; HDPE, high-density polyethylene. a Oxygen permeation coefficient (P): P× 10−20 Kg m

m2s Pa ;
b Water vapor permeation coefficient (P): P × 10−16 Kg m

m2s Pa ; c Carbon dioxide permeation coefficient (P):

P× 10−20 Kg m
m2s Pa ; d Onset of degradation temperature measure by thermogravimetric analysis.

2. Concept of High Gas Barrier Material: Fundamentals of Permeation and Diffusion

The term ‘barrier’ refers to the inherent ability of a material to allow the exchange
or permeation of low molecular weight chemical species such as gases, water vapor, and
certain organic compounds (aroma molecules) [52]. This capability is extremely important
in the food packaging industry, as the most important function of any packaging system is
to maintain the quality and safety of the contents. In fact, foods are chemically unstable
by nature and therefore need to be protected from various spoilage possibilities, lipid
oxidation, and microbial contamination being the main causes of their deterioration [53].
Therefore, polymeric materials intended for use in many packaging applications must form
a “high barrier” (i.e., they must prevent the penetration of substances from the packaging
environment into the food and vice versa) as much as possible. The gases typically involved
in food packaging are oxygen, water vapor, and carbon dioxide, and the corresponding
permeability rates are known as O2TR, WVTR, and CO2TR, respectively.

It is well-known that permeation of low molecular weight chemicals through a non-
porous polymer matrix occurs via a combination of two processes (e.g., solution and
diffusion). Figure 1 shows that gas molecules are first dissolved on one side of the polymer
film, followed by molecular diffusion to the other side (postulated by Thomas Graham
in 1866) [54]. These processes, can therefore be described by a simple solution–diffusion
mechanism using Henry and Fick’s laws, which can be formally expressed in terms of
permeability P, solubility S, and diffusion D, according to Equation (1):

P = D·S =
J·d
∆p

=
amount · material thikness

sur f ace area · time · pressure di f f erence
=

[cm3] (SATP) [cm]

[cm2] [s] [Pa]
(1)

where J is the amount of material transported per unit time through a unit area with
thickness d at standard ambient temperature and pressure (SATP; 298.15 K and 105 Pa) and
∆p is the constant partial pressure difference between both sides of the polymer matrix [55].
Therefore, the magnitude of permeability is determined by the diffusion rate (D), which
is a kinetic parameter, and the solubility (S), a thermodynamic parameter related to the
amount of permeate sorbed by the polymer membrane. In the specific field of packaging,
it is worth noting that the permeability p values at different locations in a package can
vary greatly and are only an approximate estimate of the actual overall permeability. This
could be attributed to different material thicknesses of the walls and seals, multilayer
compositions, and/or the presence of defects (i.e., pores or leaks). Therefore, it is critical
to more accurately calculate the overall permeability Q of the package using the flux J,
according to Equation (2) [36]:

Q = ∑n
i Pidi = ∑n

i Ai Ji (2)
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Figure 1. Schematic representation of the general mechanism of the permeation of small molecules
through semicrystalline polymers.

Q is thus the sum of the permeability values Pi for each individual packaging com-
ponent i relative to its wall thickness di. Based on Equation (1), this is equal to the sum of
the corresponding flux Ji multiplied by the surface area Ai of the component. In practice,
there are several methods for measuring the permeability of plastics in the form of films,
sheets, laminates, co-extrusions, or plastic-coated materials, all of which are published by
standards organizations such as the American Society for Testing Materials (ASTM Interna-
tional) and the International Organization for Standardization (ISO) [56]. These include the
isostatic method [20] (also known as the continuous-flow method) and the quasi-isostatic
method [57] (also known as the lag-time or constant-volume/variable-pressure method).
In the latter method, a polymer film is exposed to the permeant on one side and the concen-
tration is accumulated to values below 5 wt% on the other side. The samples are quantified
at specific time intervals to produce a graph showing the amount of permeant versus time.
The intercept of the x-axis is taken from the steady-state portion of the graph. This is the
lag time (tθ) used to estimate D as follows:

tθ =
L2

6D
(3)

when the permeation is in a steady-state, P can be estimated from the slope of the linear
part of the permeation plot.

For semicrystalline polymers (e.g., PLA), transport properties are generally evaluated
using a two-phase model that identifies an impermeable crystalline phase and a permeable
amorphous matrix [58]. According to this model, sorption can only occur in the amorphous
regions as the denser crystalline organization makes it difficult for the permeant molecules
to reach the sorption sites due to limited mobility. However, deviations from this simpli-
fied model have been reported [59–63] because, in addition to crystallinity/amorphous
fraction, permeation can be influenced by other intrinsic and/or extrinsic factors such as
crystal architecture, polarity, polymer microstructure, chain packing, amorphous phase
morphology, presence of additives, and environmental conditions (i.e., temperature and
relative humidity) [64,65].

In light of developing highly efficient and economically viable PLA-based packaging
materials, the main approaches to optimize the transport properties of PLA including
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molecular dynamics simulations are presented below to identify the main factors that
determine the permeability performance of the material.

3. PLA Morphology Modifications
3.1. Degree of Crystallinity and Crystal Polymorphism

It is well-established that the degree of crystallinity affects a variety of polymer prop-
erties including gas and/or water vapor permeability behavior. In fact, the crystalline
phase is highly ordered, aligned, and denser than the amorphously oriented phase, which
does not exhibit repeating patterns in the solid state. Common film-forming polymers
used in packaging are semi-crystalline polymers (e.g., PET, PP, polyethylene (PE), PVDC,
polyamide (PA), and EVOH), in which both the amorphous and crystalline regions coexist
within the polymer matrix. Since gas diffusion through polymers is primarily controlled by
the packing mode of the molecular chain segments, it is generally assumed that ordered
crystalline domains should act as an effective barrier to the diffusion of gases and small
molecules, making the amorphous phase the only pathway available for permeation [66].
Moreover, penetrants cannot sorb in crystalline structures because their solubility coef-
ficients are lower compared to those of their amorphous counterparts [67,68]. For this
reason, a high degree of crystallinity is particularly desirable for polymers intended for the
food packaging industry [69,70]. Therefore, in a similar way to many other semicrystalline
polymers, an increase in the degree of crystallinity in PLA should result in a decrease in
the permeability of most low molecular weight compounds. As previously mentioned, the
degree of crystallinity of PLA can be easily tuned by polymerizing a controlled mixture
of the L-, D-, and meso-lactide. Depending on the isomer ratio, PLA can be fully amor-
phous or semicrystalline and the more optically pure polymers display higher crystallinity
fractions because of higher chain symmetry. In particular, the degree in crystallinity (Xc)
increases as L-lactide increases, except for PLA 50% L-lactide and 80% L-lactide, which both
present 0% of Xc [9]. Alternatively, a higher degree of crystallinity can also be obtained by
post-processing corona treatment and drawing (i.e., uniaxial or biaxial orientation of amor-
phous PLA samples) [71–73]. Xc in polymers is commonly measured using the differential
scanning calorimetry (DSC) technique by dividing the enthalpy of fusion of the studied
samples with the reference enthalpy value for 100% crystalline PLA (93 J/g) [12]. The gas
permeability performance of several PLA grades as a function of crystallinity content has
been widely investigated over the last couple of decades, and a large body of data can be
found in the literature in this regard [73–79]. However, contrary to expectations, there did
not appear to be a clear relationship between PLA barrier performance and its degree of
crystallinity. In particular, the decrease in the gas permeability and water sorption did not
occur linearly or specifically, not to the expected extent, with increasing crystallinity of PLA.
For example, Tsuji and coworkers [78] conducted an in-depth investigation of the effect of
the Xc of various PLA films on their water vapor permeation coefficient (Pwater). PLA raw
polymers were supplied or synthesized by ROP and the resulting samples were solution-
cast to form thin films (thickness of ~50 µm). Films were subsequently made amorphous
by melt quenching and recrystallized at different time and temperature to obtain samples
with Xc ranging from 0 to 35%. Results showed (summarized in Table 2) that the Pwater of
PLLA films decreased monotonically from 2.18 to 1.14×1014 Kg/m/m2/s/Pa as a function
of increasing Xc from 0 to 20%. However, at higher Xc a plateau in the Pwater values was
reached, reporting no further reductions.

Similarly, Drieskens et al. [74] subjected compression-molded (amorphous) PLA sam-
ples to cold crystallization at different temperatures and times to obtain samples with
various Xc and morphologies. They found that at low level of crystallinity (~30–35%), the
oxygen permeability coefficients decreased almost linearly with increasing crystallinity,
while at higher Xc (>40%), the opposite trend was observed. An analogous observation
was reported in the work conducted by Guinault et al. [75], whereby the analysis of mea-
sured oxygen and helium permeability values showed that for crystallinity degrees higher
than around 35%, the diffusion coefficient increased with increasing Xc, confirming the
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poor relationship between crystallinity and barrier properties for PLA. As a last example,
Colomines et al. [79] obtained, from oxygen and helium permeation measurements, com-
parable permeability coefficients between amorphous PLA and semicrystalline PLA film
samples prepared by compression molding, showing that the degree of crystallinity does
not appear to have any effects on PLA permeability behavior.

Table 2. Water vapor permeation coefficient (Pwater) of PLA films measured at 25 ◦C as a function of
degree of crystallinity (Xc) and crystallization time. Data taken from [78].

XL
a (%) Crystallization Time b (min) XC

c (%) P × 1014 (Kg m/m2/s/Pa)

72.2 0 0 1.90
50 0 0 1.95

99.7 0 0.6 2.08
99.4 0 0.7 2.18
99.4 0 1 1.91
99.4 5 5.7 1.90
99.4 7.5 19.1 1.14
99.4 10 32 0.99
99.4 12.5 34.9 1.04

a L-lactyl unit content XL of P(LLA-DLA). b Crystallization time equal to 0 means that the specimens were
melt-quenched. c Crystallinity content obtained from the DSC first run.

These studies and other similar ones suggest that the barrier properties of PLA might
be less dependent on the crystalline content than expected and the effect of the resulting
post-processing PLA microstructures should be further explored in relation to their different
permeability behaviors. In this context, some investigations have attempted to find a
correlation between the barrier properties and potential PLA crystal structure modifications.
In fact, depending on processing conditions, PLA can crystallize in up to four polymorphs:
α, β, γ, and the more recently reported α′ (or otherwise known as δ) form [80]. Among all,
the α form, obtained by simple crystallization from the melt at high temperature, is the most
stable polymorph. β and γ forms are obtained in more extreme or special conditions such as
employing high energy stretching of the α form at high temperature (β form) or conducting
crystallization on the hexamethylbenzene substrate (γ form) [81]. However, the α′ form
reported by Zhang et al. [82] was obtained at low crystallization temperature and the
resulting crystal structure was found to differ only slightly from the α structure. By simply
changing the crystallization temperature from low to high values, it is therefore possible to
obtain samples containing PLA in either the pure α form or α′ form, or a mixture of the
two polymorphs in the same system. Differences between the α and α′ forms lie only in
their chain packing mode, whereby the larger lattice dimension and the weaker interchain
interactions make the α′ form somewhat more disordered compared to the α form. This
peculiar difference in the packing conformation between the two crystal microstructures
may affect the barrier properties of processed PLA samples. Cocca et al. [83] undertook
this investigation by subjecting a series of compression-molded PLA samples to different
crystallization temperatures ranging from 85 up to 165 ◦C. Based on the wide angle X-ray
(WAXD) results, the heating treatment afforded PLA samples with different α/α′ ratios:
samples in the pure α form (Tc > 145 ◦C), samples in the pure α′ (Tc < 95 ◦C) form, and
samples containing a mixture of both crystal structures (105 ◦C < Tc < 125 ◦C). Figure 2A–C
shows the estimated fractions of the α form in PLA compression-molded films and the
related optical micrographs after cold crystallization as well as the corresponding water
vapor permeability of crystallized films as a function of Xc. The water vapor permeability
behavior of PLLA films showed a clear dependence on the crystal conformation. In
particular, samples uniquely containing the α′ form showed the maximum permeability
value, which started to progressively decrease with larger ratios of α to α′ content until the
minimum value was reached for samples containing only the α form. Similar results were
also observed in another following study [75]. This clearly indicates that the molecular
packing mode strongly influences the permeability behavior of PLA and caution should be
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paid in choosing appropriate crystallization conditions to favor the formation of the more
impermeable α crystal structure.
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3.2. Amorphous Phase Conformation

Besides the crystallinity content and crystal conformations, the amorphous phase dynamics
and particularly its degree of coupling with the crystalline phase have been reported to play
an important role in the barrier properties of many polymeric materials [68,84–87]. In fact, as
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displayed in Figure 3, the amorphous regions in semicrystalline polymers (i.e., PLA) are
typically affected by constraints imposed by the crystalline regions, which identify two
different amorphous phases: the “free” mobile amorphous fraction (MAF) and the more
rigid amorphous fraction (RAF) [88–90].
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amorphous fractions.

The latter does not relax as it is confined by crystalline lamellas in such a way that the
amorphous phase chain mobility is greatly reduced. This creates an excess of free volume
attributed to a de-densification effect [91]. For this reason, this particular constrained
amorphous region appeared to have a more important role on PLA permeability behavior
compared to the crystalline fraction content [61,74,77,87]. For example, Drieskens et al. [74]
investigated the potential correlation between the morphology of isotropic PLA (mod-
ified by cold crystallization at different temperatures and times) and changes in PLA
oxygen transport characteristics (permeability, diffusion and solubility). Amorphous PLA
samples were obtained by direct quenching from the melt and subsequently annealed
at the corresponding crystallization temperature (Tc) for different times (from 10 min up
to 24 h). Following isothermal crystallization, different PLA crystal morphologies were
reported, and the resulting microstructures characterized using DSC, electronic, and op-
tical microscopy. In accordance with previous results, at low crystallinity increment, gas
permeability was reduced due to an increase in the number and size of crystals, which
in turn, increased the tortuosity of the transport path. However, at higher crystallinity
contents, when the polymer matrix was completely filled with crystals, the glass transition
fully shifted to higher temperatures, indicating that a constrained amorphous phase (RAF)
was formed during PLA crystallization. By measuring the thermodynamic gas solubility
component, it was observed that samples containing increasing amounts of the RAF frac-
tion showed much higher gas solubility values. This was ascribed to be the major cause
of plateauing in the permeability behavior at higher crystallinity levels. In line with these
results, Guinault and coworkers [77] undertook an in-depth study to further elucidate the
relationship between gas properties, crystallinity (ranging from ~2 to 61%), and RAF con-
tent (ranging from ~0 to 20%) in twenty PLA film samples. The permeability performance
was analyzed using two model molecular probes: oxygen (‘red sea mechanism’ transport)
and helium (‘fluid like mechanism’ transport). In the first mechanism, the gas transport is
dependent on the volume accessible based on the microstructure of the polymer matrix,
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while the second one, having a much smaller size, behaves more like a “liquid” through the
polymer microvoids. In both the PLLA and PDLA samples, a significant drop in helium
permeability was observed upon crystallization of the fully amorphous extruded samples.
However, when oxygen transport was analyzed, which is more sensitive to the polymer
microstructure, there was only a small reduction in the permeability with increasing crys-
tallinity up to approximately 35% for both sample groups. At higher crystallinity levels, the
permeability to oxygen was observed to increase as a function of increasing RAF fraction.
This anomalous behavior was ascribed to an increase in the overall free volume due to poor
coupling between RAF and the crystalline fraction. This observation was also found in
accordance with a previous study conducted by Del Rio et al. [92], whereby the evolution
of the free volume was measured upon annealing of an amorphous PLLA sample using
positron annihilation lifetime spectroscopy (PALS). This technique allowed for the identifi-
cation of an increase in the free volume within the annealed PLLA matrix due a change in
conformation of the amorphous regions occurring during crystallization: from a folded or
coil conformation in the quenched samples containing exclusively MAF to a more open
conformation in samples containing greater content of RAF and crystalline fraction. While
this change in conformation caused a decrease in the average hole size from 95.7 to 86.5 Å3,
the number of holes significantly increased with higher RAF content, which could explain
a greater overall free volume available for the diffusion of gas molecules after a certain
level of crystallinity is reached in PLA samples. More recently, these results have been fur-
ther investigated and clarified by other authors [61,87]. For example, Fernandes et al. [61]
prepared a set of PLA samples with well-defined microstructures, spherulite size, and RAF
content as a function of crystallization temperature and annealing time. It was observed
that the extent of the formation of RAF in the samples was the preponderant factor gov-
erning the oxygen permeability as the solubility and diffusion coefficients were seen to
increase as a function of higher RAF content. Moreover, it was interesting to note that
samples that were highly nucleated prior to crystallization provided the best results in
terms of oxygen barrier properties, indicating that a pre-nucleation step and the short
crystallization times hinder the formation of RAF. To close the loop, Sangroniz et al. [87],
via a combination of techniques (i.e., PALS, DSC, and density tester), clearly confirmed that
the formation of de-densified RAF in annealed PLA samples increased the free volume as
the polymer chains had a more rigid conformation than in MAF. Moreover, they found that
due to the higher solubility of RAF in water, the overall free volume was further increased
due to the plasticization effect of the water molecules, and therefore both factors would
contribute together to the increase in the permeability values. Overall, all of these studies
reported thus far indicate that an increasingly higher amount of RAF has a detrimental
effect on the PLA barrier properties. To minimize the conversion of MAF into RAF with
time, a pre-nucleation step and short crystallization time at high temperature may be used.

3.3. Polymer Drawing

Another common way to improve the polymeric materials’ barrier properties is
through molecular orientation, whereby a polymer is stretched in either one (uniaxial) or
two (biaxial) predetermined directions (i.e., by extrusion or injection molding). In other
words, orientation involves the use of mechanical and thermal energy to rearrange the
polymer in an oriented position at the molecular level. The reduced gas and vapor per-
meation of oriented semicrystalline polymers is well documented [66,86,93–96], and the
main mechanism involves the transformation from a spherulitic structure (the lamellar
crystals propagate radially from the nucleation site) to a densely packed microfibrillar
conformation (growth of lamellar crystals perpendicular to the direction of strain). This
transformation induces an effective reduction in the diffusion coefficients by increasing
the tortuosity of gas transport paths [66]. In the specific case of PLA, while the use of
molecular orientation has been widely implemented for improving its thermal and mechan-
ical properties, a limited number of papers could be found on how the drawing process
affects its permeability behavior [62,97–99]. One relevant example is the study conducted
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by Delpouve and co-workers [62], whereby the effects of three different drawing modes on
the water permeability properties were investigated on compression-molded PLA films
(Table 3). Samples were subjected to uniaxial constant width (UCW) drawing (films are
drawn only in one longitudinal direction (LD), simultaneous biaxial (SB) drawing (films
are drawn in two perpendicular directions), and sequential biaxial (SEQ) drawing (films
are first drawn in LD then in the transversal direction). The permeability behavior of
the drawn samples was compared to those of fully amorphous and thermally unoriented
crystallized samples. As shown in Table 3, results showed that the water permeability
coefficient (P) of the drawn materials were in all cases lower than the amorphous and the
thermally unoriented crystallized samples, regardless of the drawing modes used. Among
all of the drawn samples, a significant decrease in the permeability coefficient was obtained
with the SB drawn samples, followed by the UCW and SEQ ones. In particular, the water
permeability was observed to decrease from 2.15 ± 0.07 × 10−12 for the amorphous film
(maximum p value) to 1.63 ± 0.07 × 10−12 mol m−1 s−1 Pa−1 for the SB sample (minimum
p value), accounting for about 35% of reduction.

Table 3. Values related to samples’ crystallinity degree (Xc), mobile amorphous phase degree (Xam),
rigid amorphous fraction degree (Xar) as well as permeability coefficient P. Data taken from [62].

PLA Sample XC
a (%) Xam

b (%) Xar
c (%) Pwater

d

Amorphous film 0 100 0 2.15
Thermally crystallized film 31 41 28 2.04

UCW drawn (3 × 1) 28 66 6 2.04
SEQ drawn (3 × 3) 27 70 3 1.97
SB drawn (2 × 2) 13 86 1 1.76
SB drawn (3 × 3) 25 66 9 1.63
SB drawn (4 × 4) 31 62 7 1.63

SB drawn (3 × 3) thermos-fixed 31 59 10 1.70
a Crystallinity degree. b Mobile amorphous phase degree. c Rigid amorphous fraction degree. d Water permeability
coefficient (10−12 mol m−1 s−1 Pa−1).

As shown in Figure 4 (WAXD patterns), the best performance of SB compared to
those obtained via uniaxial or sequential drawing modes was ascribed to the resulting
homogeneous orthotropic structures of the SB drawn films, whereby PLA macromolecules
were oriented perpendicularly to the water diffusion path. Between UCW and SEQ, the
resulting worse performance of SEQ compared to UCW samples was linked to partial
destruction of the crystallites because of the two sequential chain orientations. Likewise,
Dong et al. [99] investigated both the oxygen and water vapor permeability of two types of
uniaxial drawn PLA samples, one simply stretched with a twin-screw extruder system and
the other one was first stretched and then annealed at 90 ◦C for two hours. All samples
were stretched at different draw ratios, namely R = 1, 2, 3.5, 5, and 6.5. While the sample
crystallinity content was seen to increase as a function of draw ratio, the morphological
analysis of the samples’ surfaces indicated that too high a stretching strength (higher than
R = 3.5) promoted the formation of cracks and a porous structure with high permeability
to both gas and water vapor. However, samples with draw ratios up to 3.5 showed
smooth surfaces. Compared to the undrawn PLA films, both the stretched and annealed
samples (at R = 3.5) showed a significant reduction (~25%) in the oxygen and water vapor
permeability. A slightly better performance was obtained with the annealed samples, and
this was attributed to the annealing process, which increased the density of the annealed
PLLA films relative to the simply stretched one. These results confirm that the drawing
process does promote higher barrier properties in PLA films compared to the corresponding
undrawn samples. However, care must be taken in order not to exceed the maximum
tolerated stretch, as this could have a negative impact on both film morphology and
permeability performance.
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3.4. Nucleating Agents

As widely discussed in the previous paragraphs, the crystallization process and the
resulting crystal size, orientation, and morphology can have a drastic effect on a wide
range of polymer physical properties including the gas and water vapor permeability.
PLA crystallization has been shown to be very slow [100–102], making common polymer
processing operations (i.e., injection molding, extrusion, fiber spinning, melt blowing, etc.),
time-consuming steps for industrial production [103]. One way to speed up these processes
involves the use of effective nucleating agents, which will lower the surface free energy
barrier toward nucleation and thus promote faster crystallization rates. Moreover, depend-
ing on the type, size, and aspect ratio of nucleant particles, preferential crystal orientation
and/or specific crystal superstructures with tailored properties can be obtained [104–108].
Typical nucleating agents for PLA include talc, lactide, montmorillonite, boron nitride,
calcium carbonate, magnesium carbonate, titanium oxide, or graphene oxide, to name
a few. While these have all shown to significantly increase PLA crystallization rate to
a greater or lesser extent [102,109–111], only a few of them have also been found to be
particularly effective in improving its barrier properties through different mechanisms. For
example, Ghassemi et al. [105] demonstrated that the addition of 3 wt% of talc resulted
in a 25–30% decrease in the gas permeability and diffusion coefficients of extruded PLA
films to five different gases (hydrogen, oxygen, dioxide carbon, nitrogen, and methane).
This was ascribed to the plate-like structure of talc that limited gas motion within the PLA
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matrix (increase in the tortuosity). Likewise, Buzarovska et al. [112] demonstrated that the
addition of 5 wt% of talc lowered the water vapor permeability from 6.71 × 10−12 (neat
PLA) to 2.96 × 10−12 mol m/m2 sPa in solution-casted PLA films, resulting in up to 55%
decrease in the overall water permeability compared to neat PLA. Additionally, in this case,
the resulted lower permeability was ascribed to an increase in the diffusion distance and
tortuous path for the permeants and this was correlated to an even distribution of imperme-
able platelet talc particles within the PLA matrix. Another relevant example to tailor PLA
properties is through the stereocomplex (SC) crystallite formation between enantiomeric
PLLA and PDLA, which can be prepared by a simple physical blending route. As shown in
Figure 5A,B, depending on the ratios of PLLA/PDLA, the resulting mix acts as a proper
nucleating agent by promoting simultaneous folding of the two enantiomeric chains in
triangular (for non-equimolar blends) or hexagonal (equimolar mix) shapes [113–116].
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These peculiar conformations offer favorable positions for the polymer loops during
the crystal growth, which in turn, leads to a significant reduction in the induction period
for the formation of highly dense spherulites. Given the advantageous crystallization
process, the potential effects of stereocomplexation on PLA barrier properties were also
investigated [117–121]. For example, Tsuji and Tsuruno [117] found that the water vapor
permeability values of PLLA/PDLA solution-casted stereocomplex-based films (SC-PLA)
were significantly reduced compared to those of the corresponding homopolymers. In
particular, the WVP of SC-PLA was reduced by 14–23% than those of pure PLLA and
PDLA with Xc in the range of 0–30%, indicating that superior barrier properties were
achieved, even for fully amorphous SC-PLA. In a more detailed study, Varol et al. [121]
conducted an in-depth investigation into the effect of PLA stereocomplexation on the
transport properties toward a wider range of permeants (water, nitrogen, oxygen, and
carbon dioxide). The water permeation data revealed a drastic barrier improvement of
up to 70% for SC-PLA with respect to the corresponding homopolymers with the same
Xc content. Moreover, it was interesting to note that the water permeability coefficient
of fully amorphous SD-PLA at 25 ◦C was comparable with those of pure semicrystalline
PLLA and PDLA (Xc = 48%). More interestingly, the gas barrier properties of SC-PLA
toward all gases were exceptionally enhanced compared to both the parent homopolymers.
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For example, the permeability coefficient of pure PDLA and PLLA was seen to decrease
from 339 ± 44 and 71 ± 25, respectively, up to 0.14 ± 0.02 (Barrer) in SC-PLA measured
at the same conditions. Similar trends were observed toward N2 and CO2. The overall
significant improvement in the barrier properties of SC-PLA was attributed to a change
in the crystal conformation from the common α type (pseudo-orthorhombic unit cell with
103-helical chain conformation) of the pure homopolymers to the triangular-like crystal
shape (triclinic unit cell with 31-helical chain conformation) for SC-PLA, which resulted in
a smooth and non-porous polymeric matrix. These results clearly highlight the importance
of the crystal superstructure on the barrier performance of semicrystalline PLA. In line with
this research direction, many authors have reported that the addition of specific nucleating
agents could manipulate the crystal superstructure of polymers [103,122–124]. In particular,
it was recently shown that 1,3,5-benzenetricarboxylamide derivatives (known family of
amide nucleating agents for polypropylene) can tailor the crystal superstructure of PLA,
affording three distinct crystal morphologies by melt crystallization such as cone-like,
shish-kebab, and needle-like structures [103]. As demonstrated by in situ polarized op-
tical microscopy (POM) and rheological measurements, the nucleant easily dissolves in
PLA melt and can self-organize into fine fibrils prior to PLA crystallization. These fibrils
act as shish, from which the peculiar PLA crystal structures are formed, depending on
the amount of nucleant added (0–0.5 wt%). Among all structures, the shish-kebab-like
structure obtained at 0.3–0.5 wt% was further explored (by the same author) as a potential
ideal conformation to enhance the barrier properties of PLA [125]. In fact, as shown in
Figure 6A,B, the epitaxial growth of crystals occurred orthogonally to the long axis, which,
in turn, could form a densely packed wall structure along a vertical direction of the gas
diffusion path. The oxygen permeability results shown in Figure 6C display a drastic im-
provement in the barrier properties of PLA crystallized with increasingly higher amounts
of N,N′,N”-tricyclohexyl-1,3,5-benzene-tricarboxylamide (trade name TMC-328), an ac-
tive model nucleating agent belonging to the 1,3,5-benzenetricarboxylamide derivative
family. The best oxygen permeability value was observed for the PLA sheet containing
0.5 wt% of nucleant (p = 1.989 × 10−20 m3·m/m2 sPa), exhibiting a reduction of about
300× compared to the corresponding parent PLA sheet with isotopic spherulitic crystals
(p = 5.244 × 10−18 m3 m/m2 sPa). In a similar study, comparable results of enhanced bar-
rier properties for PLA due to a shish-kebab-like structure were obtained using a different
active nucleating agent belonging to the benzhydrazide family, namely octamethylene
dicarboxylic dibenzoyl hydrazide (TMC-300) [126]. Like TMC-328, TMC-300 fibrils induced
epitaxial growth of the PLA lamellae orthogonally to their fibrillary direction, affording
“lamellae-barrier walls” stacked perpendicular to the direction of gas diffusion. By em-
ploying a series of layer-multiplying elements at the end of the extrusion setup, multilayer
samples with up to 64 layers were produced. The oxygen permeability coefficient showed
a gradual reduction with increasing layer number of the dense and impermeable “lamellae-
barrier walls”, reaching the lowest value (up to 85.4% decrease) with the 16-layer sample
compared to the control one. This particularly high resistance to gas permeation was asso-
ciated with the highest content of branch fibrils in the 16-layer sample that contributed to a
more regular in-plane arrangement of PLA lamellae. The impact of multilayer formation
on the barrier properties of PLA-based films is further discussed in the following section.
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3.5. Nanoconfinement Approach

Another way to improve the performance of packaging materials is based on the
formation of coatings or multilayers [127,128]. In this context, the use of nanotechnology
has recently shown that the formation of nanoscale layers (i.e., nanolayers) can result in
unique crystalline morphologies that can have a profound impact on the barrier properties
of the packaging films [129]. Common technologies for developing these nanostructured
multilayer films include the layer-by-layer (LbL) technique [130], the electrohydrodynamic
processing (EHDP) [131], and the layer-multiplying “forced assembly” coextrusion (Lm-
FAC) method [132]. The latter method, introduced 40 years ago by Dow and recently
updated by Baer’s group, has attracted particular attention because it can control the
crystallization habits of polymers and improve properties not possible with the bulk [129].
Briefly, this technique consists in combining two or three polymers into a continuous al-
ternating layered structure with hundreds or thousands of layers of nanometric thickness.
The molecular and chain organization of the polymers in a confined nanometer-scale space
(ultrathin films) prevents isotropic spherulitic growth of the lamellar crystals, resulting in
unique crystal orientations. As can be seen in Figure 7, these are “on-edge”, where the poly-
mer chains are oriented parallel to the substrate plane, and “in-plane”, where the polymer
chains are oriented perpendicular to the substrate plane [133]. Due to the high-aspect ratio
and peculiar orientation of the highly ordered interlayer lamellae, the latter has led to a
substantial reduction in the gas permeability by several orders of magnitude compared
to their bulk film controls for a wide range of confined/confiner polymers [118,134–136]
including PLA, albeit in a very limited part [137–139]. The general principles of mass
transport in polymeric multilayers have been carefully summarized elsewhere, so we refer
readers to the following articles: [140,141].

The orientation of crystals is undoubtedly a crucial parameter for tailoring barrier
properties and is directly affected by crystallization temperature, film thickness, chain
mobility, and substrate–polymer interactions. However, when PLA was chosen as a model
semicrystalline polymer to study the impact of confinement on barrier properties, the
results showed that the dynamics of the amorphous phase (i.e., the occurrence of RAF in the
multilayer samples) also plays a crucial role in the overall barrier performance [133–137].
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For example, Messin et al. [137] provided new insights into the relationships be-
tween microstructure implying RAF and barrier performances of a 2049-layer film of
poly(butylene succinate-co-butylene adipate) (PBSA) confined against PLA prepared using
LmFAC technology. The content of the multilayer was 80 wt% PLA and 20 wt% PBSA. The
continuity of the PLA/PBSA layers can be clearly seen in Figure 8A using an atomic force
microscopy (AFM) image. The confinement effect caused by the PLA resulted in a slight
orientation of the crystals in both the transverse and extrusion views and an increase in RAF
in PBSA with densification of this fraction. As shown in Figure 8B, these structural changes
significantly improved the water vapor and gas barrier properties of the PBSA layer by up
to two decades in the case of CO2 gas, mainly due to the reduction in solubility. However,
it is important to note that the results of these authors contradict recent findings from other
studies (see Section 3.2) that RAF is responsible for a de-densification of the amorphous
phase and a decrease in the overall barrier performance. In this context, Nassar et al., in
a more recent study [138], investigated the barrier properties of PLA in multinanolayer
systems with two amorphous polymers (polystyrene, PS; and polycarbonate, PC), probing
the effect of confinement, the compatibility between the confiner and the confined polymer,
crystal orientation, and amorphous phase properties. WAXD measurements showed that
the PLLA lamellae between PS layers had a mixed in-plane and on-edge orientation, while
the PLLA lamellae between PC layers were clearly oriented in-plane. More importantly,
the RAF content of semicrystalline PLLA was about 15% in PC/PLLA, whereas it was
negligible in PS/PLLA. Oxygen permeability results showed that the occurrence of RAF in
PC/PLLA samples had a detrimental impact on the barrier properties of the multilayer
films, which could not be compensated by the presence of in-plane crystals. Moreover,
annealing PS/PLLA films to minimize RAF content allowed for a barrier improvement
of the PLLA layers by a factor of two compared with semicrystalline bulk PLLA. Over-
all, it can be pointed out that work conducted thus far in this regard is still limited and
contradictory. Therefore, further investigation is recommended to elucidate the effects of
amorphous-phase dynamics and nanoconfinement on the barrier properties of PLA-based
multilayer films.
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4. Bio-Blends and Composites

Blending is a well-established low-cost technology to develop next generation plastics
with enhanced properties compared to the single components. Polymer blending is indeed a
straightforward and user-friendly process, whereby materials are easily and rapidly mixed
either in co-solution or in the molten state. It is therefore not surprising that this approach
has been largely applied for improving PLA performance in many applications [142–144]
including food packaging [12,145–147]. Among the uncountable number of co-additives
employed, bio-fillers and other biodegradable polymers have recently attracted a great deal
of attention, viewed in the context of minimizing environmental impacts and encouraging
greater use of sustainable and renewable sources [148–153]. Those materials include natural
fibers, especially as reinforcing agents (i.e., wood, cellulose, sisal, kenaf, flax, and hemp)
and common biodegradable polymers (lignin, starch, polycaprolactone (PCL), polybutylene
succinate (PBS), and polyhydroxyalkanoates (PHAs)). Moreover, the implementation of
nano-additives (i.e., nanoclay, nanowhiskers, and 3D-isodimensional nanoparticles) for the
formation of bionanocomposites in the field of food packaging have rapidly increased over
the last decade due to their exceptional ability to improve PLA film properties [154–159].
However, as for all blends and composites (polymer–filler, polymer–polymer, polymer–
nanomaterial), the resulting properties may vary widely as they do not depend only on the
intrinsic nature of the components, but they are also highly affected by the final morphology.
As shown in Figure 9, common morphologies of blends include laminar, ordered, fibrillar,
droplet-type, and co-continuous. Each structure has its own advantages in terms of me-
chanical, thermal, and barrier properties. However, among all, laminar and co-continuous
microstructures are the most desired ones for barrier improvement as the two phases are
complementary reversed and the surface of each phase is an exact topological replica of the
other, both contributing equally to the blend properties [160]. To obtain these structures,
besides the degree of miscibility between components, the volume fraction and the choice
of appropriate compatibilizers play a fundamental role in the achievement of a high degree
of dispersion, which in turn, determines the overall end-product quality [161–164]. In the
following paragraphs, the most relevant PLA-based bio-blends and composites are briefly
reviewed in terms of the morphology–property relationship to give an update on the
progress made in the improvement of PLA barrier properties.
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4.1. Bio-Based Reinforcing Agents

The use of bio-based reinforcing agents to produce PLA-based biocomposites with
improved properties has become one of the key investment trends [165–170]. In this context,
low-cost bio-renewable fibers such as cellulose, wood, kenaf, sisal, flax, and hemp have
received increasing attention due to their reinforcing ability, non-toxicity, low-density, and
large availability. As the name implies, these materials are commonly introduced into the
polymer matrix as a reinforcement, thus enhancing its mechanical properties and stability.
Concerning the barrier properties, little work has been conducted so far, as these materials
are hydrophilic in nature with aa high tendency to adsorb water from the environment [171].
Moreover, the very low affinity with hydrophobic polymers (i.e., PLA) further hinders
the formation of a well-dispersed system, which is one of the key factors for an efficient
barrier. In light of the foregoing, Sanchez-Garcia et al. [172] investigated the morphology
and transport properties of solvent-casted PLA biocomposites loaded with different ratios
of purified alfa micro-cellulose (MC) fibers. Scanning electron microscope (SEM), AFM, and
Raman imaging investigations showed that a good degree of dispersion was obtained only
for samples with the lowest MC content (1 wt%), while at higher fiber incorporation (i.e.,
10 wt%), clear presence of fiber agglomerates and phase discontinuity was reported to in-
crease as a function of loading. As a matter of fact, water permeability data showed that the
barrier properties of PLA biocomposites was only reduced by 10% in the sample containing
1 wt% of fiber content and at higher content, the permeability was seen to increase by
80%. Likewise, Luddee et al. [173] prepared a series of PLA biocomposite films containing
grounded bacterial cellulose (BC) as a reinforcement and the water permeability behavior
was studied as a function of filler particle size. Results showed that the incorporation of
BC led to an increase in the water vapor permeability for all biocomposites compared to
neat PLA. Moreover, the permeability coefficients increased linearly with the BC particle
size, suggesting that BC particle sizes greatly affected the filler dispersability and their
tendency to agglomerate within the PLA matrix, as also confirmed by SEM images. In order
to improve compatibility between components, natural fillers (with free OH groups) can be
chemically surface-modified with coupling agents. Those involve alkaline and peroxide
treatment [174,175], vinyl grafting [176], acetylation [177], bleaching [170], and organosi-
lane coating [178], to name a few. These types of treatments aim to increase the interfacial
bonding strengths between the natural fibers and the polymeric matrix either through the
formation of covalent bonds or mechanical interlocking. For instance, D. Kale et al. [179]
carried out surface acylation of microcrystalline cellulose (MCC) to reduce the overall filler
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polarity. The resulted acylated MCC (AMCC) was loaded into the PLA matrix and the
barrier performance of the resulting PLA biocomposites investigated. As expected, results
showed that the addition of untreated MCC in the PLA matrix increased the water vapor
permeability coefficients due to the low degree of dispersion and particle agglomeration
compared to neat PLA. In contrast, the addition of AMCC resulted in a better filler-PLA
dispersion and the overall water permeability was reduced by up to 10% compared to
pure PLA. On the other hand, Tee et al. [180] investigated the barrier properties to water
vapor and oxygen of the PLA biocomposite containing silane-grafted cellulose (SGC) as a
filler. While water permeability coefficients increased for all biocomposites tested (with
treated and untreated cellulose), oxygen permeability values decreased by up to 50% for
biocomposites containing 30 wt% SGS compared to pure PLA. This was attributed to the
improvement in interfacial adhesion between the filler and matrix and the higher degree of
affinity after silane treatment.

4.2. Biodegradable Polymers Blends

Except for a few cases (i.e., PCL and PHAs), most of the biodegradable polymers
that have been co-blended with PLA are highly polar in nature. Similar to the above
case of hydrophilic reinforcing agents, blending immiscible polymers results in poor in-
terfacial adhesion and phase-separated systems, which typically show very low overall
performance; thus, appropriate compatibilization must be accomplished to obtain the
desired end-properties. Among all compatibilization strategies, the use of reactive coupling
agents and catalysts is considered the most viable solution for industrial application. As
an example, there has been a great research interest in blending PLA with several types
of starch (i.e., granular and thermoplastic) for many applications including food packag-
ing due to its good food contact compatibility, suitable barrier properties, and low cost.
However, the hydrophilic nature of starch leads to the formation of a two-phase system
with very poor properties [181–183]. Many compatibilizers have been used and those
include glycerol [184], polyethylene glycol [185], citric or stearic acids [186–190], maleic
anhydride [187], lignocellulosic materials [188], methylenediphenyl diisocyanate [189], and
adipate or citrate esters [190]. In most of the works conducted in this regard, thermoplastic
starch (TPS) has been preferred over naturally granular starch as it can be deformed and
dispersed to a much finer state, which in turn, greatly improves material processability. For
instance, Shirai et al. [191] investigated the barrier properties of PLA/TPS biodegradable
sheets with citric (CA) and adipic (AA) acids as additives (in the range of 0–1.5 wt%),
prepared by a calendering–extrusion process at pilot scale. Prior to mixing, PLA and TPS
were separately plasticized with 10 wt% of diisodecyl adipate (DIA) and 30 wt% of glycerol,
respectively, as this pre-plasticization step has been reported to significantly improve the
blend processability (extrusion). As shown in Figure 10A, all formulations could be pro-
cessed continuously and the resulting sheets containing CA had a much smoother surface,
homogeneous distribution, and compact structure compared to the other formulations,
which, in contrast, revealed rough surfaces due to partial phase separation. The water
vapor permeability studies showed that sheets containing CA exhibited the lowest WVP
value, which accounted for about 70% of reduction compared to the plasticized reference
sample. This was associated with a more effective interaction between starch and PLA
(increases the interfacial adhesion), which in turn promoted mobility reduction over poly-
meric chains. The higher CA concentration (1.50 wt%) did not improve the evaluated
property, suggesting that this component is efficient at lower concentrations (0.75 wt%).
Comparatively, AA did not exhibit the same performance, even when mixed with CA, the
WVP values were even increased in the presence of AA, probably due to partial degra-
dation through acidolysis. In another interesting study, Muller et al. [192] studied the
effect of cinnamaldehyde incorporation on the properties of the amorphous starch-PLA
bilayer films intended for packaging applications. The particular compatibilizer was chosen
as it is classified as GRAS (Generally Recognized As Safe) by the FDA (Food and Drug
Administration) and offers antibacterial, antifungal, anti-inflammatory, and antioxidant
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activity to the resulting packages. The PLA/starch bilayer films were successfully obtained
by compression molding followed by thermo-compression and the barrier performance
studied in the presence and absence of cinnamaldehyde. Despite the lower ratio of the
PLA sheet in the bilayer assembly (1/3 of the film thickness), a significant improvement in
the gas barrier properties was achieved in the absence of the compatibilizer, specifically,
a 96% decrease in WVP with respect to the neat starch films and a 99% decrease in OP
compared to the amorphous PLA films. Surprisingly, when cinnamaldehyde was added,
films exhibited lower mechanical resistance due to relevant plasticization of the amorphous
regions, and WVP and OP did not notably change.

PHAs represent another relevant class of polymers that offer great potential in the
food packaging industry due to good thermomechanical and barrier properties [193–202].
PHAs are derived from renewable resources and due to their bacterial origins, this class
of polyesters shows good degradability features [197]. Poly(3-hydroxybutyrate) (PHB) is
a homopolymer of 3-hydroxybutyrate and is the most common type of the PHA family,
together with its copolymer with polyhydroxyvalerate (PHV), PHBV, which shows su-
perior flexibility and processability. Due to the great potential of this class of polyesters,
PLA-PHAs blends have attracted increasing interest in the last two decades [196,198–200].
Although both PLA and PHAs are compatible polyesters, several studies have shown
that they form miscible blends only when low molecular weight (MW) fraction polymers
are mixed and/or low polymer ratios (up to about 25 wt%) are incorporated into one an-
other [21,193,201,202]. As an example, Boufarguine et al. [21] demonstrated that blending
PLA with only 10 wt% PHBV using a multilayer co-extrusion process resulted in well
dispersed films (up to 17 layers) and the gas barrier properties significantly improved
compared with neat PLA. In particular, the helium permeability showed a reduction of
about 35% with respect to pure PLA. In another study conducted by Zembouai et al. [193],
it was shown that PHBV/PLA blends prepared by melt mixing in different ratios (100/0,
75/25, 50/50, 25/75, and 0/100 wt%) were not miscible, forming a two-phase system at all
compositions (see Figure 10B). On the other hand, the water and oxygen barrier properties
of PHBV/PLA blends were significantly improved with increasing PHBV content. At a
PHBV content of 75 wt% in the blend, a reduction of about 75% and 81.5%, respectively,
was achieved compared to pure PLA. However, even at a PHBV content of only 25 wt%, a
reduction in the permeability coefficients for oxygen and water of about 35.3% and 22.7%,
respectively, was obtained. This apparently anomalous behavior was further investigated
in a comprehensive study reported by Jost and Kopitzky [202], whereby the miscibility
of PLA-PHBV cast films and the resulting barrier properties were reviewed under ther-
modynamic aspects and correlated to their experimental results. In addition, blends were
produced with different polymer molecular weight fractions and the final properties were
studied in the presence and absence of selected compatibilizers. It was found that the
incorporation of PHBV into the PLA matrix in the range between 20 and 35 wt% resulted in
miscible blends. The reference blend (PLA:PHBV 75:25; MW: 10–40 kDa) with or without
compatibilizers showed lower permeability values (to water vapor and oxygen) than the
calculated values for the corresponding system. In agreement with previous findings
(miscibility, crystallization, and melting of PHBV/PLA blends), this phenomenon was
ascribed to the quick formation of interpenetrating PHBV spherulites, which interlock with
the PLLA structures, leading to a reduction in the overall free volume. This may explain
why, even for immiscible blends, the incorporation of PHBV into the PLA matrix enhances
the barrier properties of PLA.



Polymers 2022, 14, 1626 20 of 44Polymers 2021, 13, x FOR PEER REVIEW 21 of 48 
 

 
 

Figure 10. SEM images of (A) PLA/TPS sheets with CA (including WVP values), adapted from [191]
and (B) fracture surface of neat PHBV, neat PLA, and their blends (including WVP and oxygen
permeability values), adapted from [193] with permission from Elsevier. Copyright © 2013.
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5. PLA-Based Nanocomposites

Nanocomposites are multicomponent systems, whereby the major constituent is typi-
cally a polymer and the minor one consists of a material with a length scale below 100 nm,
referred to as nanofiller or nanoload. Nanoparticles can be classified into three major
categories according to their particle geometry:

(i). layered nanoparticles that are characterized by one dimension ranging from several
angstroms to several nanometers (i.e., layered silicates);

(ii). elongated particles that consist of fibrils with a diameter ranging between 1 and
100 nm and length up to several hundred nanometers (i.e., cellulose nanofibers); and

(iii). isodimensional particles that have the same size in all directions and an aspect ratio
close to unity (i.e., metal oxide nanoparticles).

Due to clear evidence of their outstanding performance in many applications [203–205],
it is no wonder that these systems have attracted a great deal of research interest worldwide
in recent years. In the packaging field, introducing impermeable nanofillers with high
aspect ratio and large surface area in the polymer matrix has appeared to be a promising
approach to enhance the barrier properties of polymers [206,207]. As shown in Figure 11,
this can be achieved by two specific mechanisms [208]: first, a tortuous path for gas
diffusion is created though the polymer matrix as the evenly dispersed nanofillers are
impermeable inorganic particles and act as an obstacle; and second, the nanoparticulate
fillers may positively interact with the polymer matrix, “immobilizing” the polymer strands
at the polymer–nanofiller interface and thus decreasing the overall free volume available
for the gas molecules to diffuse through the polymer surface. It is therefore clear that
nanocomposites offer encouraging opportunities for the food packaging industry. In the
following paragraphs, the progress made in the development of PLA-based nanocomposites
as high barrier materials are briefly reviewed.
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perpendicular to the film orientation); (B) non-interacting nanocomposite (impermeable platelets
hinders direct diffusion); (C) interacting nanocomposite (the polymer strands are “immobilized” at
the polymer–nanofiller interface and the overall free volume available is reduced.

5.1. Layered Nanofillers

Among all available nanosystems, nanoplatelets of layered silicate clay are by far the
most researched nanofillers [209–212]. As shown in Figure 12, layered silicates consist of
very thin films associated with counterions (exchangeable cations) [212]. Based on the types
and relative content of the unit crystal lamellae, they can form three different structures:

(i). 1:1 clay types: the unit lamellar crystal consists of only one crystal sheet of silica
tetrahedra in combination with an octahedral sheet, i.e., single crystal lamellae of
alumina octahedra;
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(ii). 2:1 clay types: consist of two crystal layers of silica tetrahedra forming the unit
lamellar crystal bounded by a crystal layer of alumina octahedra located in the middle
of the two layers; and

(iii). 2:2 clay types: consist of four crystal layers, alternating crystal layers of silica tetrahe-
dra and alumina (or magnesium) octahedra.
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Typically, the layer thickness does not exceed 1 nm and the adjacent dimensions can
vary from 300 Å up to several micrometers, depending mainly on the clay types and prepa-
ration methods [213]. For this reason, the aspect ratio (values > 1000) and the surface area
(~700–900 m2/g) are particularly high. These particular morphological features usually
lead to impressive improvements in barrier properties when the nanoclays are uniformly
distributed in the polymer matrices. Several studies have focused on the preparation of
PLA-based layered silicate nanocomposites with improved barrier properties [148,214–217].
Among all types, the impermeable 2:1 layered phyllosilicate montmorillonite (MMT) is
certainly the most commonly used prototype clay for this application [216,217]. The par-
ticular layered structure of MMT, consisting of an octahedral layer (mainly composed of
Al4(OH)12) intercalated between two tetrahedral layers (composed of SiO4 units), allows for
the formation of multilayered polymer arrays with a high barrier. However, MMT, similar
to most other clays, is inherently hydrophilic and has a high surface energy. This leads
to a high segregation tendency and agglomeration of clay nanoplatelets, especially when
dispersed in non-polar polymer materials (e.g., PLA) [218,219]. Agglomeration of clay
platelets leads to the formation of tactoid structures with lower aspect ratios and thus lower
barrier properties. To circumvent this problem, nanoclay surfaces are organically modified
with cationic surfactants (usually quaternary alkylammonium compounds) by an ion ex-
change process with the inorganic cations naturally present in clay minerals [220–222]. Such
a process reduces the surface energy of the silicates and the intercalated cationic surfactants
act as compatibilizers between the hydrophilic clay and the hydrophobic polymer. The most
common commercially available organically modified MMT clays include Cloisite (CH)
20A (with dimethyl dihydrogenated tallow ammonium chloride) and 30B (with methyl
tallow bis-2-hydroxyethyl ammonium chloride), which have been shown to provide the
greatest interlayer spacing and improved interactions with nonpolar polymers [223–225].
Moreover, to ensure homogeneous dispersion and delamination of the nanoclays in the
polymer matrix, appropriate processing conditions should be applied. These may include,
but are not limited to, high-pressure homogenization [226], a pre-sonication step [227]
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to disaggregate the clay platelets, and/or two-stage extrusion masterbatch processing to
obtain a fine dispersion. The barrier performance of PLA-based nanocomposites containing
CH has been studied by several authors [228–233]. Figure 13A,B shows two examples of
successful CH 30B/PLA-based nanocomposites in terms of barrier performance [231,234].
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oxygen permeability of nanocomposites with different volume fraction of clays (CNa:CH Na+,
CRDP:Fyrolflex, and C30B:CH 30B). Adapted from [234] with permission from Elsevier. Copyright
© 2016.

Other examples include the work of Najafi et al. [233], in which the effects of different
processing conditions on the dispersion of 2 wt% CH 30B in PLA-based nanocomposites
were studied and the resulting film morphologies were subjected to the oxygen permeability
test. PLA–clay mixtures were prepared with and without the chain extender Joncryl® to
further improve blend compatibility. Nanocomposites were prepared using a twin screw
extruder with different methods. The preparation methods consisted of either simultaneous
extrusion of all components together or a two-step extrusion masterbatch approach, with
the chain extender added in either the first or second pass. In addition, the effect of
multiple extrusion passes was also examined. According to the morphological observations
conducted by SEM, TEM, and XRD, the best clay–PLA dispersions were obtained in the
presence of Joncryl® when processed in the extrusion masterbatch approach, while multiple
extrusion passes led to the formation of large clay aggregates due to the longer extrusion
residence time. As expected, the good dispersion and distribution of clay platelets in PLA–
Joncryl-based nanocomposites resulted in the lowest measured oxygen permeability, which
accounted for 37% of the reduction compared to pure PLA. However, it was interesting
to note that simple addition of the chain extender into pure PLA increased the oxygen
permeability of the corresponding blend. This was explained by the formation of long
chain branches, which reduced the crystallinity of pure PLA from ~7% to ~1%. In another
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study, Tenn et al. [230] investigated the incorporation of various concentrations (from
0 to 20 wt%) of CH 30B (both in the hydrated and pre-dried states) into PLA films by
two-step extrusion masterbatch processing. The transport properties (water and oxygen
permeability) of the resulting systems were correlated with the degree of dispersion and
orientation of the nanoplatelets in the polymer matrix. To investigate the effect of the
hydration state of the clays on the quality of the dispersion, CH 30B was added both in
partially hydrated form (as received) and in a pre-dried state (80 ◦C in a vacuum oven for
12 h). For both systems of PLA–CH (hydrated and anhydrous), a decrease in water and
oxygen permeability values was observed as a function of increasing nanoclay content.
This is generally due to the well-known tortuosity effect, which improves the diffusion
path of the permeants in the PLA matrix. However, comparing the two nanocomposites
at the same nanoclay content, it was found that the system containing the hydrated form
of CH had a higher barrier effect than the corresponding systems containing the dried
clay form (CD). In terms of water permeability (Pw), PLA films containing 15 wt% CH
showed the best performance, achieving a 95% reduction in Pw compared to the pure PLA
film. The difference in water barrier performance between the two systems was ascribed
to the presence of water molecules in the untreated clay component, which favored the
formation of water clusters that hindered water diffusivity. Additionally, in terms of oxygen
permeability, the best performance was obtained with PLA–CH systems, which achieved
a reduction of up to 74% compared to the PLA-only film. The overall better performance
of the PLA–CH nanocomposites was further investigated in terms of dispersion quality
and it was found that in all systems, there was a coexistence of intercalated and aggregated
structures depending on the clay content. However, when CH was incorporated, the
TEM images showed relatively higher intercalation of clay platelets, likely due to better
compatibility between CH and PLA, as observed by DSC and XRD. In addition, CH
nanoplatelets were found to preferentially arrange perpendicular to the diffusion pathway,
confirming the fundamental role of structural orientation in the permeation behavior of
materials. These and similar studies have shown that the uniform distribution of organically
modified MMT layers in the PLA matrix is the key factor for significantly improving the
barrier properties of PLA.

5.2. Nanofibers or Whiskers

With the raising environmental awareness and concerns over sustainability and end-of-
life disposal challenges, the interest in exploiting nanomaterials from renewable resources is
rapidly increasing [235,236]. In the packaging field, nanofibers derived from natural sources
have attracted a great deal of attention, not only for their environmental friendliness over
traditional nanofillers, but also due to their outstanding ability to decrease the permeability
of various polymeric films [237–240]. These include all the nanofibrous materials derived
from cellulose, starch, chitin, and chitosan, which commonly exist in plants, animals,
microorganisms, and bacteria. Among them, cellulose-based nanofillers have been more
widely investigated due to advances in the production of cellulose nanofibrils (CNF) and
cellulose nanowhiskers (CNW) [241–244]. CNF have elongated rod-shaped structures with
large diameters and lengths variations, both ranging from a few up to 100 nm. Due to their
highly crystalline nature, large surface area/aspect ratio and their ability to form a dense
percolating network, CNF are known to have high barrier properties toward most gases
and liquids. However, since cellulose-based materials have water-loving surfaces due to the
abundance of –OH groups, blending CNF (as it is) with hydrophobic materials such as PLA
is not feasible without either the addition of compatibilizing agents or appropriate chemical
modifications. Several strategies have been attempted to overcome this problem such as the
use of surfactants [243,245], surface acetylation [246], and reactive compatibilization [247],
to name a few. For example, Espino-Pérez and co-workers [243], used an in situ surface
grafting method to produce fully compatibilized PLA/CNW bionanocomposites with
enhanced barrier properties. The CNW surface was grafted with a long aliphatic isocyanate
chain (n-octadecyl isocyanate (ICN)) and the barrier performance of PLA/CNW and
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PLA/CNW–ICN nanocomposite solution-casted films were evaluated. Visual observations
of the films indicated that good filler dispersion and film transparency were obtained only
with the lowest CNW and CNW–ICN content (2.5 wt%). At higher CNW concentration,
aggregation of CNW in the matrix could be observed, indicating poor system compatibility.
In fact, the water and oxygen permeability of both samples were not significantly reduced
compared to neat PLA, likely due to the reduction in hydrogen bonds between the fibrils,
which led to poor interfacial adhesion with the PLA matrix. This may suggest that while
surface grafting of CNW with isocyanate is effective in enhancing the hydrophobicity
of CNW, it is probably not the best compatibilizing approach to produce well-dispersed
PLA–CNW systems. More recently, successful compatibilization and enhanced barrier
properties of PLA–CNF nanocomposites was achieved by Nair and co-workers [248] by
preparing CNF with high amounts of lignin (about 20–23 wt%) (NCFHL) from the bark
of various coniferous species. Since lignin contains both polar (hydroxyl) groups and
nonpolar hydrocarbon and benzene rings, its presence naturally enhances the hydrophobic
nature and the barrier properties of CNF without additional modifications. As shown
in Figure 14A–C, morphological examination of solution-casted PLA-NCFHL films with
various NCFHL contents (5, 10, 15, and 20 wt%) revealed that with up to 10 wt% of load,
fibrils were well-embedded within the PLA matrix.
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Figure 14. TEM image of (A) neat PLA and (B) the PLA–NCFHL biocomposite (with lignin) in which
fibrils were well embedded within the PLA matrix (indicated by arrows); (C) confocal laser microscope
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the neat PLA and PLA/lignin biocomposite. Adapted from [248] with permission from American
Chemical Society. Copyright © 2018.

As expected, the good dispersion observed at 5 and 10 wt% of NCFHL loading resulted
in a significant enhancement in the water permeability performance of the nanocomposites,
with WVTR values reduced to about half compared to neat PLA (Figure 14D) [248]. This
was ascribed to the formation of an effective interphase between the lignin and PLA,
which increased the tortuous path for water vapor diffusion. In this specific context,
Rigotti et al. [249] carried out an in depth-investigation on the role of microstructure of PLA
layers located at the clay–matrix interface on the nanocomposites’ gas transport properties.
The barrier performance of solution-casted PLA films containing lauryl-functionalized
cellulose nanofillers (LCNF) was examined using gas phase permeation measurements
(toward CO2, H2, and D2 gases) and thermal desorption spectroscopy (TDS) analysis.
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Results showed that there exists a critical LCNF concentration (6.5 wt%) under which the
permeation flux (P) for all gases decreases with increasing filler content, while at higher
concentrations, flux increases, reaching a similar p value of neat PLA at 10 wt% of filler
load. According to the SEM and TEM analyses, when filler content was lower than 6.5 wt%,
LCNF appeared to be well-dispersed, while at higher concentrations, LCNF clusters and
micrometric agglomerates could be observed. This is typically linked to a change in the
nanostructure as a function of filler content. By analyzing experimental transport data
using the permeation model of mixed matrix membranes, it was possible to conclude
that at concentrations not exceeding 6.5 wt%, the interfacial regions at the filler–matrix
interface were rigidified, likely due to strong lauryl–PLA chain interactions, which led
to local free volume reduction. Therefore, this was suggested to be responsible to the
improved barrier performance of PLA–LCNF systems, confirming that appropriate control
of the nanocomposite interface properties is necessary to obtain systems with enhanced
barrier capabilities.

5.3. Isodimensional Nanoparticles

Nanoparticles with three nanodimensions (less than 100 nm), also known as 3D-
isodimensional nanoparticles, have gained increasing interest in the field of food packag-
ing [250,251]. These include nanoparticles derived from most metals such as silica [252],
copper [253], gold [254], silver [255], zinc [256], magnesium [257], titanium [258], and their
corresponding oxides [259]. Among them, metal oxides have attracted special attention
because they can be produced much more cheaply and are known for their strong an-
tibacterial and ethylene scavenging activity [260]. These particular properties have shown
that they offer an intriguing potential for the development of active nanocomposites for
the packaging of fresh products, which are very sensitive to microbial spoilage. Several
multifunctional PLA-based metal oxide nanocomposites have been prepared and the re-
sulting transport properties investigated [261,262]. In a study by Lizundia et al. [261],
the effect of incorporating different metal oxide nanoparticles (TiO2, SiO2, Fe2O3, and
Al2O3) at 1 wt% on the transport properties of PLA films was investigated. TEM analysis
showed that all nanoparticles had a spherical shape with similar diameters ranging from
10 to 20 nm. However, for the nanocomposites, it was interesting to note that SiO2 and
Al2O3 isotropically distributed in the PLA matrix, while TiO2 and Fe2O3 formed large
aggregates of about 100–150 nm. Unexpectedly, the most efficient metal oxide in the water
permeability measurements was TiO2, whose incorporation resulted in a reduction of about
18% compared to pure PLA, followed by Al2O3 and Fe2O3 particles, which also resulted
in a relatively moderate reduction (13% and 16%, respectively). The least efficient system
was PLA–SiO2, which caused only 4% of reduction in water permeability. A different trend
was observed with respect to oxygen: SiO2 and TiO2 improved the barrier performance
of PLA to oxygen, while Al2O3 and Fe2O3 increased the overall permeability to about
5%. The author concluded that in these particular cases, the morphological characteristics
(such as size, filler dispersion, and free volume) did not seem to play the most important
role in the permeation process. The different barrier behavior observed in the samples
was related to differences in the nature of the nanoparticles and possible filler–matrix
interactions. In both cases, the best performance of TiO2 was attributed to its large hy-
drophobicity, while the worst barrier performance of SiO2 for water molecules was related
to its high hydrophilicity, which favored a faster diffusion path. Moreover, PLA–ZnO
antibacterial nanocomposite films were prepared in a composition range from 0.5 to 3 wt%
of nanofillers by melt extrusion, and the barrier properties to water vapor were analyzed
by Pantani et al. [262]. Since untreated ZnO can lead to severe degradation of the PLA
matrix during the melt mixing process due to transesterification and depolymerization
reactions, the surfaces of the nanoparticles were previously treated with protective agents
(silane), which also acted as compatibilizers. TEM images in Figure 15A show a relatively
continuous and well-dispersed rod-like ZnO distribution in the PLA matrix for all com-
positions [262]. However, only a slight reduction (~20%) in water vapor permeability
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(6.43 × 10−7 wt%/atm × cm2/s) was obtained with 3 wt% of filler compared to unfilled
PLA (8.26 × 10−7), which was attributed to an increased difficulty for molecules to diffuse
into the polymer matrix. In a similar work, Shankar et al. [158] prepared solution-cast
PLA–ZnO nanocomposite films with concentrations of less than 2 wt% (0.5, 1.0, and 1.5).
Morphological analysis reported in Figure 15B shows that the ZnO nanoparticles had a
cubic and rod shape with a size in the range of 50–100 nm. However, it is worth noting
that the surface of the nanocomposite films was relatively rough compared to that of
neat PLA and the overall roughness appeared to increase with increasing ZnO content.
Nevertheless, a reduction in the water vapor permeability of up to 30% was achieved
compared to unfilled PLA, even for the composite with the lowest ZnO content (0.5 wt%).
No further reduction was observed at higher ZnO contents, likely due to the formation of
ZnO-based microagglomerated structures. In another study, Marra et al. [263] reported that
homogeneous dispersion of 1 wt% ZnO in PLA-based nanocomposites in an increase in
water vapor transmission rate to about 16% compared to normal PLA. This was associated
with potential changes induced by the presence of ZnO particles at PLA–filler interfaces,
resulting in an increase in free volume. In the same way, Swaroop and Shukla [264] studied
the barrier properties of solution-cast PLA-based films reinforced with MgO nanoparticles.
At 1 wt% metal oxide content, the resulting films showed a 20% increase in water vapor
permeability. Morphological studies revealed that the nanoparticles were in the form of
agglomerates, resulting in a very rough film surface. This was probably the main cause of
changes in free volume, absorption, and solubility at the interfaces near the “highly polar”
MgO nanoparticles, which overall contributed to the high water permeability measured.
These results suggest that spherical composites with metal oxide exhibit relatively poor
filler–polymer compatibility because the polarity of the particles does not match that of the
PLA matrix.
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6. Other Emerging Approaches toward High-Barrier PLA-Based Plastic

With the advent of new polymerization techniques, PLA-based block and graft copoly-
mers with tailored properties have been synthesized based on judicious selection of co-
monomers and the variation of copolymer compositions [265–267]. However, due to the
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good biocompatibility of PLA, the great majority of these copolymers have been mostly
exclusively studied for applications in the field of biomedicine [268–272] and only little
attention has been paid to the design of “high barrier” PLA-based copolymers for the
food-packaging sector [17,273–278]. A few random studies, mainly focusing on improv-
ing the mechanical properties of PLA by copolymerization, have also shown somewhat
promising results in terms of gas permeability performance of the resulting copolymers.
For example, Genovese et al. [273] synthesized PLA-based ABA triblock copolymers with
a hydroxyl-terminated poly(propylene/neopentyl glycol succinate) copolymer as a mid-
block, through ROP followed by chain extension reaction. Depending on A/B ratio, the
resulting bio-based copolymers showed enhanced mechanical and barrier properties com-
pared to the PLA homopolymers. In particular, the oxygen permeability of the copolymer
containing 33% of the midblock unit was two times lower than that of neat PLA. These
results were directly related to an increase in the degree of crystallinity and the presence of
the two methyl groups in the neopentyl glycol sub-unit, which was suggested to hinder
the passage of small molecules. Other examples include the copolymerization of PLA
with rubbery-type monomers to afford versatile thermoplastic elastomers (TPEs) with
good barrier properties [277]. TPEs are commonly referred to as ABA triblock copolymers
containing an incompatible A hard block (component with high Tg) and a B soft block
(component with low Tg). Typical examples include petroleum-derived styrene-based TPEs
(PS–TPEs), which are extensively used in the packaging field [278] due to their well-known
versatile properties and low cost. In fact, depending on the ratio between the soft and hard
components, these materials’ properties can be easily tuned based on the required appli-
cations, ranging from slightly flexible plastics to highly elastic gums. With the increasing
demand for eco-friendly alternatives, PLA-based TPEs could potentially substitute styrenic-
based TPEs in this specific field. For example, Ali et al. [272] synthesized four different
PLA thermoplastic polyurethane (PLAPU) copolymers with different compositions of hard
PLA and soft PCL units via a chain-extension reaction. Depending on PCL content, the
copolymers exhibited excellent flexibility and gas barrier properties. In particular, at the
highest PCL content, the oxygen permeability was reduced by approximately 85 times
compared to that of the PLA homopolymer. This behavior was ascribed to the incorporation
of high molecular weight PCL segments, which led to an increase in the chain density, thus
decreasing the effective path for diffusion. In a more recent study, Yuk et al. [274] prepared
a series of thermoplastic superelastomers based on poly(isobutylene)-graft-poly(L-lactide)
copolymers by a “grafting from” controlled polymerization in a one-pot, two-step pro-
cess as reported in Figure 16A. These copolymers were based on a graft structure, which
typically leads to superior physical and mechanical properties compared to linear block
copolymers. As shown in Figure 16B, the oxygen barrier properties of the PLA-based
graft copolymer films were evaluated and compared to those of commercial PLA and
poly(styrene)−b−poly(isoprene)−b−poly(styrene) (SIS), which is one of the most widely
used TPEs in food packaging applications [274]. Depending on compositions, the resulting
superelastomers showed high-performance gas barrier characteristics. The oxygen perme-
ability performance of copolymers with the highest PLA content (45 wt%) was 60-fold and
5-fold better than that of SIS and neat PLA, respectively. This was attributed to the presence
of the largest fraction of homogeneously distributed semicrystalline PLA domains, which
tied up the rubbery isobutylene segments, thus decreasing the channel for gas permeability
through the copolymer matrix.
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7. Molecular Dynamics Simulations for Permeability Investigation of PLA-Based Materials
7.1. Most Important Tools to Study PLA-Based Plastic

In line with the growing computing power and with an ever increased number of
precise and rigorous programs available to the scientific community, there have been several
proposed theoretical models for the prediction of polymer permeability that are discussed
in this section. Among the available approaches, molecular dynamics (MD) simulations
have been successfully applied in different research areas [279] including mass transport
property investigations to elucidate the sorption and diffusion mechanisms of small gas
molecules in varieties of potentially useful polymers such as PLA [280]. Applying these
methods, many results, difficult or impossible to detect from conventional experiments,
can be obtained.

Different MD approaches can be used to investigate the permeability of PLA-based
materials. Sun and Zhou [281] performed full-atomistic simulations of oxygen sorption
and diffusion in amorphous PLA. The oxygen solubility coefficient (S) was calculated
by fitting the dual-mode sorption model to the simulation data. The simulated S value
was much higher than the experimental data obtained from the time-lag method, but
slightly lower than the measurement from quartz crystal microbalance. This discrepancy
was probably due to the predominant Langmuir type sorption mechanism, which holds
for oxygen sorption in PLA. The time-lag method only considers oxygen molecules that
are involved in the diffusion process. The allowed rotation states of successive bonds
between adjacent atoms are determined from probability functions by energy consideration
using the standard Monte Carlo method [282]. The solubility coefficient of gas in a glassy
polymer is defined as the ratio of gas concentration to gas pressure at equilibrium, following
Equation (4):

S =
C
p
= kD + CH

′ b
1 + bp

(4)

where kD, CH
′, and b can be determined by nonlinear regression fit of the oxygen sorption

data that are obtained by GCMC simulations.
Information about the structural features of different PLA models at the atomic level

can be provided by the radial distribution function (RDF). The RDF indicates the probability
density of finding A and B atoms at a distance of r following Equation (5):
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4πr2dr

)
/
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)
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where nB is the number of B particles located at the distance r in a shell of thickness dr
from particle A; NB is the number of B particles in the system; and v is the total volume
of the system. The free volume inside the polymer matrix can be obtained by rolling a
spherical probe over the Connolly surface of polymer atoms. It should be noticed that the
available volume for the probe to pass through is dependent on the radius of the probe [78].
Regardless of the specific computational type to use, the diffusivity of a gas in an organic
solvent, polymer, or zeolite can be calculated by running a MD simulation and determining
the mean square displacement (MSD) of the gas in the material. MSD is a measure of the
deviation of the position of a particle with respect to a reference position over time. It is
the most common measure of the spatial extent of random motion, and for this reason, it
is the most useful tool to detect the small molecule diffusion from a starting state [283].
The motion pattern of penetrant gases in the host polymer can be qualitatively studied
by monitoring the penetrant’s displacement |r(t) − r(0)| from its initial position. The
diffusion coefficient D is then obtained from the slope of a plot of the MSD against time t.

H. Ebadi-Dehaghani et al. used a MD simulation to investigate and predict the gas
permeability through polymer blends and nanocomposites [284]. They demonstrated that
the oxygen permeation was highly dependent on blend composition, clay loading, and
state of clay dispersion governed by compatibilization in the PP/PLA/clay nanocomposite
film. Compared to the PLA-rich system, they found that the PP-rich films showed a greater
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barrier to oxygen. The lower permeability of PP-rich films was mainly due to the reduced
size of dispersed domains of the oxygen barrier component (i.e., PLA in the PP matrix),
leading to a more tortuous permeant path, while the higher degree of crystallinity observed
in PP-rich films compared to the PLA-rich system was found to also be responsible for the
higher barrier properties of the PP-rich films.

7.2. Different MD Approaches to Use for PLA Systems

The use of explicit full-atom (FA) simulation model (Figure 17A) for PLA polymers
has been found to be suitable for approximately reproducing different important physical
properties of amorphous PLA solids. In particular, Xiang and Anderson adopted this
kind of approach to calculate material density, water sorption isotherm, and diffusion
coefficient of PLA systems, thus verifying potential utilities in designing PLA based drug
delivery systems, particularly for predicting drug–PLA miscibility. They combined MD
simulations, the particle insertion method of Widom [285], and a theoretical sorption
relation to calculate the water sorption isotherm in PLA. They found that at 0.6 (wt%) of
H2O, water molecules localized next to polar ester groups in PLA because of hydrogen
bonding. Local mobility in PLA as characterized by the atomic fluctuation was sharply
reduced near the Tg, decreasing further with aging at 298 K [286]. The non-Einsteinian
diffusion of water was found to be correlated with the rotational β-relaxation of PLA
carbonyl groups at 298 K. A relaxation–diffusion coupling model proposed by the authors
provided a diffusion coefficient of 1.3 × 10−8 cm2/s at 298 K, which is comparable to the
reported experimental values [287]. In other studies, MD simulations have been performed
to estimate the diffusivity coefficients of the gases CO2, O2, and N2 from polypropylene
(PP)/poly(lactic acid) (PLA)/clay nanocomposite films with various compositions (PP-rich
and PLA-rich). Diffusion temperature dependency of the PP-rich sample for O2 gas has
been also investigated. The MSD of the gases has been calculated via MD simulation
according to the Charati and Stern method [288], which consists of the generation of the
initial microstructure of a polymer containing penetrant gas molecules as an amorphous
cell module, and the use of a full atom approach. The diffusion coefficients of gases in
PLA can also be controlled by the amount of free volume, the free-volume distribution,
and the dynamics of the free volume of the polymers. Penetrant molecules reside most
of the time in microcavities inside the PLA matrix, and the microcavities are elements of
“free volume” (or “empty” volume) between the surrounding polymer chains. This reliable
computational method showed that solubility increased with increasing temperature, which
was in accordance with the experiments.
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Another explicit FA computational model for PLA was developed by Xiang and
Anderson (2014). MD simulations of PLA glasses were carried out to explore various
molecular interactions and predict certain physical properties such as material density,
water sorption isotherm, and diffusion coefficient. The combined use of MD simulations,
the particle insertion method of Widom, which is a statistical thermodynamic approach
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to the calculation of material and mixture properties [285], and a theoretical sorption
relation allows us to efficiently calculate the water sorption isotherm in PLA. Weak sorption
of water in amorphous PLA solids can be predicted, with results that can be similar to
the experimental ones. Inspection of molecular structures of the simulated PLA glasses
provided further understanding of the distribution of water in PLA polymers, which has
been difficult to obtain experimentally.

The FA MD studies of fundamental properties such as water solubility, diffusivity, and
distribution in PLA polymers are only a few, due to the enormous computational resources
required to conduct atomistic simulations with explicit solvent models. United atom (UA)
MD has also been proposed to obtain cheaper calculations than those obtained for all
atom MD, retaining a high accuracy degree. This method subsumes nonpolar hydrogen
atoms into their adjacent carbon atom (Figure 17B), decreasing the computational costs.
While the accuracy of the united atom MD simulation has been found to be reliable for
protein modeling [289], this approach was found to be unreliable in estimating the diffusion
coefficients of small penetrant molecules through polymers.

Coarse-grained (CG) modeling represents a valid way to overcome the huge require-
ments for computing resources while maintaining high calculation efficiency. It consists of a
less sensitive method than the FA and UA approaches (Figure 17C), but its accuracy degree
remains high enough to describe short- and long-range phenomena at various granularity
levels [290,291]. Two CG computational methods can be considered for the investigation of
PLA-based material permeability: a mesoscale approach—dissipative particle dynamics
(DPD) [292]—and MD simulations using the MARTINI force field in conjunction with the
GROMACS package [293]. DPD simulations group atoms and molecules into fluid beads
and use bead level interactions to describe the evolution of a system. For any two beads
i and j, the pair wise interaction force (FDP

ij) is the sum of the conservative force (FC
ij),

dissipative force (FD
ij), and random force (FR

ij), as shown in Equation (6):

FDP
ij = FC

ij + FD
ij + FR

ij (6)

where FC
ij is a soft repulsive force, while FD

ij is a drag force or frictional force and FR
ij is

a random force. Of these three, the conservative force (FC
ij) best describes the energy of

the system. Groot and Warren (1997) established a connection between DPD beads and a
real fluid by defining a relationship between the maximum repulsion between particles
(aij), which is a function of the conservative force (FC

ij), and the Flory–Huggins interaction
parameter (x). The MARTINI force field uses, on average, a four to one mapping of non-
hydrogen atoms to interaction centers (although sometimes fewer or more than four atoms
are mapped on to an interaction site) and defines the interaction sites into four main types:
polar (neutral water soluble atoms), non-polar (mixed groups of polar and apolar atoms),
apolar (hydrophobic groups), and charged (groups bearing an ionic charge) [294].

FA and CG MD simulations represent different ways to carry out MD simulations
for the permeability investigation of PLA-based materials. There is no specific method to
conduct this as the choice to use one protocol with respect to the other depends on the size
of the conditions of the system (PLA size, presence of solvent, number of gas molecules, and
simulation time). Recent studies [295] have shown that it is possible to use both methods.
This combined approach is based on starting from an all-atom MD simulation to obtain
input parameters such as angles, bonds, and dihedrals of PLA chains, taking into account
the crystalline and amorphous phases. After that, the MARTINI force field could be used to
map PLA with various polymer segment lengths against the presence or absence of other
molecules in the system.

8. Concluding Remarks and Future Outlook

With the aim of minimizing the environmental impact, several PLA-based biodegrad-
able plastic packaging materials with improved barrier properties have been developed
in the last decades. In this work, all recent strategies to improve the barrier properties of
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PLA were reviewed including crystallization, orientation, stereocomplexation, blending,
incorporation of nanoparticles, and copolymerization. Considering the enormous number
of available approaches and the wide range of processing conditions applied, it is often
difficult to establish clear relationships between the structure and barrier properties. How-
ever, the current review of the literature has identified some strategies that appear to have
a greater impact on the gas permeability of PLA than others.

Starting with crystallinity content, although it has been generally demonstrated that
barrier properties depend on the degree of crystallinity for many semi-crystalline poly-
mers, increasing the crystallinity content of PLA from 0 to 40% does not always lead to a
decrease in gas permeability, as expected. For PLA materials with a comparable degree of
crystallinity, several studies have shown that gas permeability strongly depends on chain
orientation, amorphous phase morphology, and crystalline forms (i.e., ordered α-form
crystals and less ordered α′-form crystals in PLA). More importantly, further studies on the
wide variety of crystalline and amorphous phase organization of PLA have revealed the
importance of the crystalline superstructure and lamellar arrangement in improving gas
barrier properties. In other words, the crystalline phase acts as an impermeable barrier, but
its supermolecular microstructure must be properly tailored. Numerous data show that
gas barrier properties can be reduced by up to two orders of magnitude if the arrangement
of PLA lamellae is tuned along a perpendicular direction of the gas diffusion path. To
achieve this, specific crystallization protocols must be applied to create regularly spaced
lamellae in PLA packaging materials. The most successful approaches involve either molec-
ular orientation, crystallization under nanoconfinement, addition of vertically aligned
nanoplatelets, and/or use of specific fibrillar nucleating agents as templates to construct
parallel-aligned shish-kebab-like crystals with well-interlocked boundaries. Consistent
with these promising findings, most recent studies have focused on the development of
nanocomposite structures by incorporating small amounts of nanoparticles (i.e., typically
clays with at least one dimension less than 100 nm) into polymeric matrices. By acting as
physical barriers to the diffusion and permeation of small molecules, such nanostructures
have been shown to significantly improve the barrier properties of PLA. This phenomenon
is attributed to the well-known tortuosity effect. In this context, theoretical models and
empirical studies have suggested that, in addition to the aforementioned nanoparticle
orientation, other key factors in achieving high-barrier materials are maximizing the aspect
ratio of the nanoparticles and improving the interfacial adhesion between the nanofillers
and the PLA matrix. However, despite extensive research efforts, none of these materials,
with the level of gas permeability required by the end-users and at reasonable costs, have
reached the market yet. As this film will be in contact with food, potential risks to human
health are questioned as nanomaterials may migrate from the packages to foodstuff. In
addition, the effect of nanoparticle incorporation on the biodegradability/compostability
of the polymer must be thoroughly investigated. In the absence of these detailed studies,
nanocomposites cannot be approved for legal utilization in industry.

Meanwhile, recent progress in polymerization methods such as controlled radical
polymerization (CRP) has enabled the synthesis of interesting copolymerization products
for a wide range of applications, while fitting with some of the principles of green chemistry
such as the use of bio-based monomers, solvent-less protocols, and mild conditions (low
temperature). Using these methods, PLA barrier properties can be enhanced by copolymer-
ization with appropriate monomers to widen its applicability in the food packaging field.
Despite the impressive developments, there are still challenges that need to be addressed.
For instance, there is a huge need to discover new selective catalysts in light of expanding
the range of monomers that can be used. In addition, current polymerization protocols are
difficult to scale-up due to the lack of automatic systems. However, further developments
are expected in the near future as growing research interest is focusing on strategies to
simplify the current polymerization protocols and allow for more scalable methodologies
to be implemented.
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