Table 2.
Accuracy | Precision | Recall | F1-Score | AUC | Time [s] | |||||
---|---|---|---|---|---|---|---|---|---|---|
Model | PPV | TPR | TPR | TNR | FPR | FNR | ||||
Random Forest | 0.960 | 0.946 | 0.916 | 0.930 | 0.947 | 0.437 | 0.92 | 0.98 | 0.02 | 0.08 |
Multi-layer Perceptron | 0.944 | 0.899 | 0.911 | 0.905 | 0.934 | 24,130 | 0.91 | 0.96 | 0.04 | 0.09 |
k-Nearest Neighbors | 0.921 | 0.890 | 0.832 | 0.860 | 0.895 | 0.001 | 0.83 | 0.96 | 0.04 | 0.17 |
SVM (linear kernel) | 0.873 | 0.785 | 0.779 | 0.782 | 0.845 | 7.825 | 0.78 | 0.91 | 0.09 | 0.22 |
Naïve Bayes | 0.851 | 0.752 | 0.734 | 0.743 | 0.817 | 0.004 | 0.73 | 0.90 | 0.10 | 0.27 |
Logistic Regression | 0.842 | 0.816 | 0.595 | 0.688 | 0.770 | 0.042 | 0.59 | 0.94 | 0.06 | 0.41 |
Based on 80:20 split and fixed seed. PPV, positive predictive value; TPR, true positive rate; TNR, true negative rate; FPR, false positive rate; FNR, false negative rate.