Skip to main content
. 2022 Mar 30;12(4):850. doi: 10.3390/diagnostics12040850

Table 2.

Evaluation of machine learning algorithms: scalar performance measures and confusion matrix terms. Values are color-coded on a green (favorable values)-to-red (adverse values) scale.

Accuracy Precision Recall F1-Score AUC Time [s]
Model PPV TPR TPR TNR FPR FNR
Random Forest 0.960 0.946 0.916 0.930 0.947 0.437 0.92 0.98 0.02 0.08
Multi-layer Perceptron 0.944 0.899 0.911 0.905 0.934 24,130 0.91 0.96 0.04 0.09
k-Nearest Neighbors 0.921 0.890 0.832 0.860 0.895 0.001 0.83 0.96 0.04 0.17
SVM (linear kernel) 0.873 0.785 0.779 0.782 0.845 7.825 0.78 0.91 0.09 0.22
Naïve Bayes 0.851 0.752 0.734 0.743 0.817 0.004 0.73 0.90 0.10 0.27
Logistic Regression 0.842 0.816 0.595 0.688 0.770 0.042 0.59 0.94 0.06 0.41

Based on 80:20 split and fixed seed. PPV, positive predictive value; TPR, true positive rate; TNR, true negative rate; FPR, false positive rate; FNR, false negative rate.