Skip to main content
. 2022 Apr 14;12(4):990. doi: 10.3390/diagnostics12040990

Table 1.

The quantitative evaluation of the proposed method and the baseline approaches in the segmentation of metastases on H–E WSIs.

Method Score 95% C.I. for Mean
Mean Std. Deviation Std. Error Lower Bound Upper Bound
Proposed method 0.892 0.163 0.047 0.787 0.995
Precision U-Net [16] 0.486 0.116 0.033 0.411 0.559
SegNet [15] 0.548 0.091 0.026 0.489 0.605
FCN [17] 0.552 0.062 0.018 0.512 0.590
Deeplabv3+ [18] with MobileNet [19] 0.643 0.262 0.075 0.476 0.809
Deeplabv3+ [18] with ResNet [20] 0.613 0.354 0.102 0.388 0.838
Deeplabv3+ [18] with Xception [21] 0.753 0.286 0.082 0.571 0.935
Proposed method 0.837 0.169 0.049 0.729 0.945
Recall U-Net [16] 0.643 0.022 0.006 0.628 0.656
SegNet [15] 0.588 0.028 0.008 0.570 0.606
FCN [17] 0.500 0.082 0.023 0.448 0.551
Deeplabv3+ [18] with MobileNet [19] 0.682 0.277 0.080 0.506 0.858
Deeplabv3+ [18] with ResNet [20] 0.440 0.261 0.075 0.274 0.606
Deeplabv3+ [18] with Xception [21] 0.584 0.290 0.083 0.399 0.768
Proposed method 0.844 0.127 0.036 0.763 0.925
F1-score U-Net [16] 0.564 0.095 0.027 0.503 0.624
SegNet [15] 0.562 0.124 0.036 0.383 0.581
FCN [17] 0.510 0.078 0.022 0.400 0.531
Deeplabv3+ [18] with MobileNet [19] 0.640 0.241 0.069 0.487 0.794
Deeplabv3+ [18] with ResNet [20] 0.480 0.262 0.075 0.313 0.646
Deeplabv3+ [18] with Xception [21] 0.621 0.259 0.047 0.456 0.786
Proposed method 0.749 0.188 0.054 0.629 0.868
mIoU U-Net [16] 0.473 0.114 0.331 0.400 0.546
SegNet [15] 0.380 0.129 0.037 0.298 0.462
FCN [17] 0.363 0.086 0.025 0.308 0.418
Deeplabv3+ [18] with MobileNet [19] 0.504 0.229 0.066 0.358 0.650
Deeplabv3+ [18] with ResNet [20] 0.344 0.213 0.031 0.208 0.480
Deeplabv3+ [18] with Xception [21] 0.487 0.251 0.072 0.327 0.647
v3_DCNN-1280 * [22] 0.685 - - - -
Xception-65 * [23] 0.645 - - - -

* The reported numbers of Guo [22] and Priego [23] are referred in this table.