|
Proposed method |
0.892
|
0.163 |
0.047 |
0.787 |
0.995 |
Precision |
U-Net [16] |
0.486 |
0.116 |
0.033 |
0.411 |
0.559 |
|
SegNet [15] |
0.548 |
0.091 |
0.026 |
0.489 |
0.605 |
|
FCN [17] |
0.552 |
0.062 |
0.018 |
0.512 |
0.590 |
|
Deeplabv3+ [18] with MobileNet [19] |
0.643 |
0.262 |
0.075 |
0.476 |
0.809 |
|
Deeplabv3+ [18] with ResNet [20] |
0.613 |
0.354 |
0.102 |
0.388 |
0.838 |
|
Deeplabv3+ [18] with Xception [21] |
0.753 |
0.286 |
0.082 |
0.571 |
0.935 |
|
Proposed method |
0.837
|
0.169 |
0.049 |
0.729 |
0.945 |
Recall |
U-Net [16] |
0.643 |
0.022 |
0.006 |
0.628 |
0.656 |
|
SegNet [15] |
0.588 |
0.028 |
0.008 |
0.570 |
0.606 |
|
FCN [17] |
0.500 |
0.082 |
0.023 |
0.448 |
0.551 |
|
Deeplabv3+ [18] with MobileNet [19] |
0.682 |
0.277 |
0.080 |
0.506 |
0.858 |
|
Deeplabv3+ [18] with ResNet [20] |
0.440 |
0.261 |
0.075 |
0.274 |
0.606 |
|
Deeplabv3+ [18] with Xception [21] |
0.584 |
0.290 |
0.083 |
0.399 |
0.768 |
|
Proposed method |
0.844
|
0.127 |
0.036 |
0.763 |
0.925 |
F1-score |
U-Net [16] |
0.564 |
0.095 |
0.027 |
0.503 |
0.624 |
|
SegNet [15] |
0.562 |
0.124 |
0.036 |
0.383 |
0.581 |
|
FCN [17] |
0.510 |
0.078 |
0.022 |
0.400 |
0.531 |
|
Deeplabv3+ [18] with MobileNet [19] |
0.640 |
0.241 |
0.069 |
0.487 |
0.794 |
|
Deeplabv3+ [18] with ResNet [20] |
0.480 |
0.262 |
0.075 |
0.313 |
0.646 |
|
Deeplabv3+ [18] with Xception [21] |
0.621 |
0.259 |
0.047 |
0.456 |
0.786 |
|
Proposed method |
0.749
|
0.188 |
0.054 |
0.629 |
0.868 |
mIoU |
U-Net [16] |
0.473 |
0.114 |
0.331 |
0.400 |
0.546 |
|
SegNet [15] |
0.380 |
0.129 |
0.037 |
0.298 |
0.462 |
|
FCN [17] |
0.363 |
0.086 |
0.025 |
0.308 |
0.418 |
|
Deeplabv3+ [18] with MobileNet [19] |
0.504 |
0.229 |
0.066 |
0.358 |
0.650 |
|
Deeplabv3+ [18] with ResNet [20] |
0.344 |
0.213 |
0.031 |
0.208 |
0.480 |
|
Deeplabv3+ [18] with Xception [21] |
0.487 |
0.251 |
0.072 |
0.327 |
0.647 |
|
v3_DCNN-1280 * [22] |
0.685 |
- |
- |
- |
- |
|
Xception-65 * [23] |
0.645 |
- |
- |
- |
- |