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Abstract: Hydroxyapatite possesses desirable properties as a scaffold in tissue engineering: it is
biocompatible at a site of implantation, and it is degradable to non-toxic products. Moreover, its
porosity enables infiltration of cells, nutrients and waste products. The outcome of hydroxyapatite
implantation highly depends on the extent of the host immune response. Authors emphasise major
roles of the chemical, morphological and physical properties of the surface of biomaterial used. A
number of techniques have been applied to transform the theoretical osteoconductive features of
HAp into spinal fusion systems—from integration of HAp with autograft to synthetic intervertebral
implants. The most popular uses of HAp in spine surgery include implants (ACDF), bone grafts in
posterolateral lumbar fusion and transpedicular screws coating. In the past, autologous bone graft
has been used as an intervertebral cage in ACDF. Due to the morbidity related to autograft harvesting
from the iliac bone, a synthetic cage with osteoconductive material such as hydroxyapatite seems to
be a good alternative. Regarding posterolateral lumbar fusion, it requires the graft to induce new bone
growth and reinforce fusion between the vertebrae. Hydroxyapatite formulations have shown good
results in that field. Moreover, the HAp coating has proven to be an efficient method of increasing
screw fixation strength. It can decrease the risk of complications such as screw loosening after pedicle
screw fixation in osteoporotic patients. The purpose of this literature review is to describe in vivo
reaction to HAp implants and to summarise its current application in spine surgery.

Keywords: HAp; hydroxyapatite; spine; surgery

1. Introduction

Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) is the most significant inorganic component
of teeth and bone tissue [1]. Due to their crystallographic and chemical similarity with
human bone tissue, synthetic ceramics based on hydroxyapatites are commonly used in
biomedical applications, such as dentistry and orthopaedics, including spine surgery [2,3].

The outcome of hydroxyapatite implantation highly depends on the extent of the
host immune response [4,5]. This significantly affects tissue remodelling as well as wound
healing processes caused by a surge of reactions taking place on the Hap–tissue interface
that includes angiogenesis, activation of the fibroblast, as well as healing and remodelling of
the matrix. A created immunological microenvironment stands behind a positive outcome
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of HAp integration [6,7]. Cells participating in host–cell response in embedding hydroxya-
patite are, among others, mast cells, macrophages, neutrophils, and multinucleated giant
cells [8]. Recruitment of monocytes and neutrophils and subsequent differentiation of
monocytes to macrophages initialises the process [9]. The aforementioned immune cells
not only produce ROS designed to eliminate the foreign body but also produce a span of
cytokines and chemokines that stimulate fibroblasts, endothelial cells, and mesenchymal
stem cells to create a new tissue [10–14].

Hydroxyapatite possesses desirable properties as a scaffold in tissue engineering: it is
biocompatible at a site of implantation and degradable to non-toxic products. Moreover, its
porosity enables the infiltration of cells, nutrients, and waste products [15].

The authors emphasise the major role of the chemical, morphological and physical
properties of the surface of biomaterial used [16–18]. The modulated reactions include
cell adhesion, formation of the foreign body giant cells, and protein absorption. Multiple
papers proved the capability to stimulate osteoinduction, depending on the material’s
texture [19–24]. Regarding the type of texture, MSC differentiates to osteoblasts accord-
ingly [25,26]. Modifications of chemical structure also have a vast impact on immunore-
activity [27]. Moreover, the aging of HAp implants, including radiation exposure, has a
significant influence on its clinical performance [28,29].

Hydroxyapatite itself varies in morphological and physicochemical features as solubil-
ity, crystallinity, granulometric distribution as well as shape and size of pores. In a study on
animal models in a team led by da Freitas Costa, these differences did not have an impact
on cellular response [30]. According to Sadowska et al., incubation of RAW murine cells
with less porous calcium-deficient HAp (CD-HAp) generated the release of a decreased
amount of pro-inflammatory cytokines [31].

Laquerriere et al. underlined various immune responses to the HAp particles’ features
such as shape, size, or sintering temperature. Phagocytable spherical molecules increase
expression as well as production by monocytes of TNF alpha and IL-6, in contrast to these
non-phagocytable cells, which had an influence on neither. Moreover, needle-shaped
HAp particles had the highest impact on TNF alpha, IL-6, and IL-10 production [32]. The
degree of immune response in vivo and in vitro was analysed in regard to HAp size and
morphology by Filipa Labre et al. In this study, the inflammatory response was prolonged
in smaller needle-shaped HAp particles compared to other shapes of HAp particles [33].

Understanding the reactions evoked by incorporated hydroxyapatite seems pivotal in
anticipation of its biocompatibility [34].

Due to the recent development of micro- and nanotechnology, a wide range of bioma-
terials also differ in immunomodulatory effects [6,35,36]. Micro- and nanotopography are
the key factors in the induction of osteogenesis by hydroxyapatite [37].

The most popular uses of HAp in spine surgery include implants (ACDF), bone grafts
in posterolateral lumbar fusion, and transpedicular screws coating.

In the past, autologous bone graft has been used as an intervertebral cage for ACDF.
Due to the morbidity related to autograft harvesting from iliac bone, a synthetic cage with
an osteoconductive material such as hydroxyapatite seems to be a good alternative [38].
Regarding posterolateral lumbar fusion, it requires a graft to induce new bone growth and
reinforce fusion between vertebrae. Hydroxyapatite formulations have shown good results
in that field [39–41].

Moreover, a HAp coating has proven to be an efficient method of increasing screw
fixation strength. It can decrease the risk of complications such as screw loosening after
pedicle screw fixation in osteoporotic patients [42,43].

This literature review describes in vivo immunologic reactions to HAp implants and
summarises its current application in spine surgery.
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2. Immunologic Reaction to Hydroxyapatite
2.1. Mast Cells, Cytokines, and Chemokines

The host recognises hydroxyapatite as a foreign body, which triggers cytokines and
chemokines release [44]. Commonly, after this acute phase, the inflammatory state de-
creases, somatic cells proliferate and tissue remodelling occurs, which results in restoration
of haemostasis. In place of unsuccessful resolution of a chronic phase that occurs, heralded
by the fusion of macrophages, foreign body giant cell formation and encapsulation of the
biomaterial takes place [45]. Degranulation of mast cells with histamine, IL-4, and IL-13
is known to be responsible for the foreign body inflammatory response. Subsequently,
phagocytes, i.e., macrophages, are being recruited to adhere to the implant’s surface. This
process is enhanced by the absorption of the host’s fibrinogen. Various adsorbed proteins
including albumins, fibronectin, complement, gamma globulin, and vitronectin modulate
the host immune response to hydroxyapatite. The degree of adsorption is highly dependent
on HAp crystallinity [46], surface charge [47], and others [48]. After the acute phase of
inflammation begins, the chronic phase is demarcated by the recruitment of mononuclear
cells (lymphocytes and monocytes).

2.2. Macrophage Recruitment

Extravasation and migration of monocytes/macrophages are induced by cytokines and
chemokines as CXC, CC, C, and CX3C. Other particles, directing macrophages to the site of
the foreign body, are TGF-β, PDGF, PF4, leukotriene, and IL-1 released by platelets and
blood clots [49]. Macrophages themselves, as the site of biomaterial, release further PDGF,
TNF-α, IL-6, G-CSF, and GM-CSF, with the latter attracting more macrophages. As reported
by Mesters et al., differences in the HAp substrate’s microstructure, whether with micro-
metric plate-like or nanometric needle-like crystals, differentiate in a degree of macrophage
proliferation and activation. Plate-like crystals are characterised by a higher velocity of
proliferation, which is believed to be due to less pronounced depletion of Ca ions with cell
medium after contact with C-HAp. A lower release of reactive oxygen species was also ob-
served in needle-like substrates [10]. Many chemokines are released, including CCL2, CCL3,
CCL4, CCL7, CCL8, and CCL13, which recruit macrophages in the biomaterial–human
tissue interface [50]. There are two classic phenotypes of macrophages, which include
either pro-inflammatory M1 and pro-healing (anti-inflammatory) M2 polarization, with the
latter being responsible for tissue repair enhancement [51,52]. Implantation of biomaterial
causes activation of M1 macrophages, and the chemoattractants and cytokines released
in this phase stimulate osteoclastogenesis [53,54]. Moreover, activated M1 macrophages
release cytokines with pro-inflammatory potential, which attract mesenchymal stem cells
from local niches [55].

While M1 macrophages are vital in the initial phase of hydroxyapatite integration, an
extended duration of M1 presence is responsible for chronic inflammation [56], causing
higher expression of fibrous proteins as well as granuloma formation and encapsulation of
an implant, which results in unsuccessful biomaterial implantation [57]. There are three
subsets of M2 macrophages: M2a, M2b, and M2c [58]. While M2a and M2b are considered
as mainly regulatory macrophages influencing Th2 lymphocytes, M2c is fundamental in
tissue remodelling, suppression of inflammation, and promotion of angiogenesis [59].

The effective transition between M1 and M2 activation is responsible for balanced
bone tissue regeneration. IL-10 and other anti-inflammatory cytokines are essential in
providing an adequate microenvironment for osteogenesis [60].

Multiple studies have suggested the influence of biomaterial nanostructure on macrophage
morphology [35,61,62].

2.3. Adhesive Cells Recruitment, Integrins, and Remodelling of the Cytoskeleton

Integrins belong to a family of cell surface receptors and mediate extra- and intracellu-
lar interactions [63]. They enable cell aggregation and direct migration and are composed
of two subunits: alpha and beta [64]. Monocytes/macrophages express three types of beta
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subunit: B1, B2 and Beta3. Throughout B1, alfa4 and alfa5 bind to fibronectin and alfa 6 to
laminin. Among B2, alfaL, alfaM and alfaD are specific for ICAM (intracellular adhesion
molecules), alfaX attaches to fibrinogen, and C3bi complement fragment. alfaVB3 integrins
attach to vitronectin [65]. The ability to adsorb proteins such as fibronectine or vitronectine
to enable the further adhesion of blood-derived proteins is crucial in implanted biomate-
rial [66]. Due to increased amounts of attachment proteins, more osteoblasts and osteoblast
precursors can potentially bind to the biomaterial which enhances bone ingrowth [67].
Moreover, these adhesive proteins on a HAp surface arrange a provisional matrix for fur-
ther cell adhesion [68]. The deficiency of these proteins results in deteriorated attachment
of bone-derived cells [69].

Subsequently, macrophages spread over the hydroxyapatite structure and undergo
cytoskeleton remodelling [70]. The binding of proteins to the extracellular integrin’s domain
activates its cytoplasmic domain that connects to intracellular particles [71]. Transduction
of extracellular signals activates focal adhesion kinase (FAK) that regulates further focal
adhesions and binds to cytoskeletal proteins such as paxillin [72]. Integrin receptors, FAK,
as well as other kinases including ERK (extracellular signal-regulated kinase) and paxillin,
talin, or vinculin interaction enables cytoskeleton remodelling [73,74].

2.4. Osteogenesis

Cell adhesion modulated by integrins triggers multiple intracellular cascades essential
for cell destiny. Mitogen-activated protein kinase (MAPK) signalling activated by integrins
in the process of osteogenesis currently enjoys great interest by scientists. Numerous studies
reported on the role of the MAPK signalling pathway in modifying cell differentiation into
osteoblasts [75–78].

Both major MAPK signals p38 and ERK play a crucial role in an indirect modulation
of mesenchymal stem cell differentiation into an osteogenic lineage [79].

Osteogenesis in place of HAp implantation occurs most likely due to osteoconduc-
tion [21]. In this process, hydroxyapatite acts as a matrix for vascular proliferation where
migrating proosteoblasts create neighbouring tissue [80]. In other terms, osteoconduction is
the capability of bone growth on a biomaterial surface. Osteoinductive CaP-based ceramics
such as hydroxyapatite also present a high affinity for multiple bone growth factors [81].
Calcium phosphates are known for their biocompatibility, whereas calcium ions are known
to stimulate osteoblastic mechanisms through ERK1/2 and PI3K/Akt activation [75]. Phos-
phates modulate the growth and differentiation of osteoblasts via IGF-1 and ERK 1/2. They
also enhance the expression of bone morphogenic protein (BMP) [82,83].

Osteoinduction means the ability to enhance progenitor cells to differentiate towards
osteoblastic lineages [84]. Bone marrow-derived mesenchymal stem cells (BMSCs) are
recruited from bone marrow to the non-osseous implant sites through blood circulation.
This contributes to ectopic bone formation which is induced by osteoinductive CaP ceramics
such as HAP [85]. Differentiation of BMCS requires the expression of pro-osteogenic genes
such as Runt-related transcriptional factor 2 (Runx2) [86].

In a study conducted by Campi et al., nHAp (HAp nanoparticles) added to cell cultures
caused enhanced synthesis of OPN (osteopontin), OCN (osteocalcin), ALP (alkaline phos-
phate), DCN (decorin), and COL–III (collagen III) [87]. Bone-specific ALP and COL-I are
early markers of osteogenesis, and other proteins brand further stages [88] of osteopontin
functions to stabilize the matrix [89].

3. Use of Hydroxyapatite in Spine Surgery
3.1. Anterior Cervical Discectomy and Fusion (ACDF)

The first historically documented clinical use of HAp in anterior cervical discectomy
and fusion (ACDF) was noted by Koyama and Handa [90]. ACDF is a conventional tech-
nique of surgical treatment of post-traumatic and degenerative conditions of the cervical
spine such as cervical spondylosis, especially degenerative disc disease. These cases may
lead to spinal instability, chronic pain, radiculopathy, and myelopathy. Decompression
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of the neural structures and restoration of spinal stability, the foraminal area, disc space
height, and spinal alignment are the main objectives of the ACDF.

3.1.1. Types of grafts for ACDF

Due to the morbidity related to autologous iliac bone graft harvesting, which has been
used for ACDF in the past, alternative graft materials for ACDF have been developed.
The purpose of the graft is not only to fill space after the discectomy, it should also be
a scaffold for new bone mass formation, which has to withstand mechanical stress [91].
Moreover, the ideal bone substitute should be as non-traumatic as possible, restore natural
spine curvatures, provide sufficient stability, and maintain the integrity of the endplates of
vertebral bodies [92]. Currently, there are many alternatives for autografts in ACDF, such
as titanium mesh cages (TMCs) [93], polyetheretherketone (PEEK) cages [94], carbon-fibre
cages [95] and nanohydroxyapatite/polyamide cages [38]. Additionally, hydroxyapatite
formulations can be used as extenders for these grafts.

3.1.2. Hydroxyapatite Properties in ACDF

Hydroxyapatite is characterized by great osteoconductive properties, which show it as
a potential alternative to the autogenous bone graft. This material shows almost equivalent
arthrodesis effects to autografts [96,97]. Additionally, HAp has some advantages compared
with autologous bone graft. This material is characterised by excellent biocompatibility
and does not induce a foreign body reaction [92]. The use of HAp implants also eliminates
morbidity at the donor site following autogenous iliac bone grafting and provides a shorter
operation time. It may reduce the time of postoperative treatment and hospitalization [92].

Because of the lack of osteoinductive properties of HAp, it cannot stimulate bone
growth itself. Thus, the assertion of full contact HAp with cancellous bone is necessary [98].
Therefore, osteoinductive features of HAp increase after resecting endplates of adjacent ver-
tebral bodies due to exposure of cancellous bone [99]. A single material that compromises
osteoconductive, as well as osteoinductive features, has not yet been developed. Thus,
for better osteoinductivity, many authors suggest adding osteoinductive materials to the
hydroxyapatite implant such as demineralized bone matrix (DBM) [100–102].

In situ, the HAp graft undergoes slight and slow absorption, while maintaining
primary compressive strength. This is important, as the mechanical properties, namely
fracture strength and stiffness, of HAp composite materials are sensitive to variation in
the concentration of Hap [103,104]. In particular, both strength and stiffness decrease with
decreasing HAp concentration, reflecting a decreasing capacity for effective stress transfer
from the matrix material to the HAp phase [103,104]. Within 2 months after implantation,
osteoblasts and osteocytes from adjacent vertebral bodies migrate between the pores of
the HAp implant and stimulate the formation of new bone, which creates a connection
between vertebrae [38,91]. Many studies have described several sequelae after the use of
porous HAp grafts alone for ACDF, including dislodgement (3–4% of cases) [91], loss of
height or subsidence [98], the emergence of radiolucent stripe [98], and breakage or cracks
of the implant (2% of cases) [98,105]. Therefore, HAp should not be used in grafts alone,
but as one of the components of the graft for providing better osteoconductive properties.

3.1.3. Nanohydroxyapatite Cages

Grafts manufactured from nanocrystals of hydroxyapatite can also be used in ACDF.
The advantage of nanocrystalline HAp is the similarity of its crystal sizes to natural bone
crystals [106,107]. This feature provides faster bony fusion and increases osteoblast pro-
liferation [108]. Case series, described by Timothy et al., have demonstrated 100% bony
fusion promotion after using HApN cages in ACDF without serious side effects. Moreover,
HApN cages have shown a higher tolerance to torsion, shear, and compression forces when
compared to other synthetic cages such as a PEEK [109].
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3.1.4. Nanohydroxyapatite/Polyamide 66 Cages

The n-HAp/PA66 is a novel composite consisting of nanohydroxyapatite and polyamide
66, which has been recently applied in ACDF. Due to the similarity of PA66’s structure to
collagen, this polymer is biocompatible with many human cells [110]. Therefore, such a
composite better imitates the structure of natural bone than HAp alone. It has demonstrated
good biocompatibility, osteoconduction, and safety in severe reports [111,112]. Moreover,
biomechanical studies have shown similar mechanical properties of n-HAp/PA66 to that
of cortical bone, especially Young’s elastic modulus, which results in lower stress shielding
and better bone fusion [94,113]. A retrospective study conducted by Zhang et al. [114]
has shown that the n-HAp/PA66 cage achieved a similar fusion rate in two-level anterior
cervical corpectomy and fusion (ACCF) and a lower rate of subsidence compared to a
titanium mesh cage (TMC). Furthermore, failures of the graft are not common in the use
of this material. The main disadvantage is the subsidence of the implant. Fortunately, the
subsidence rate is not high and ranges from 2% to 10.6% [38,113,115–118]. Moreover, it is
lower than that of the titanium mesh cage and is similar to PEEK cages [115,118]. Therefore,
the n-HAp/PA66 cage has a great potential to be considered as a better alternative to PEEK
cages and TMC to increase fusion rates and decrease the incidence of failures.

3.1.5. Hydroxyapatite/PEEK Cages

Regarding outcomes following ACDF, PEEK cages have demonstrated similar results
compared to autograft [94], although there are objections against its osteointegration as well
as problems with radiographic assessment. Osteointegrative features can be improved by
adding materials characterised by osteoconductive properties such as HAp crystals. A num-
ber of techniques have been applied to transform the theoretical osteoconductive features
of HAp into spinal fusion systems—from the integration of HAp with autograft to synthetic
intervertebral implants [119]. Popular applications of hydroxyapatite in intervertebral
cervical cages include composite, cage filler, and coating.

Chin et al. [120] have evaluated the intervertebral cage composed of 80% PEEK and
20% calcium hydroxyapatite in ACDF, as shown in Table 1. In VAS and NDI scores, they
have observed significant improvement in the HAp PEEK group. Moreover, the trend
towards fusion has been observed in the HAp PEEK group earlier than in the control group
(3–5 months vs. 8 months). Additionally, there were no significant complications during
the 12-month postoperative follow-up. Therefore, HAp PEEK cages can be effectively and
safely used in ACDF with better outcomes in comparison to the PEEK cages alone.

Table 1. Comparison of the hydroxyapatite cages with other cages used in ACDF.

Type of Cage Material Fusion Rate Time to Achieve Solid Fusion Subsidence Rate Disadvantages

Autograft Natural bone harvested
from iliac bone 85–100% [102] ~6 months [96] ~0% [96]

morbidity at the donor site,
increased blood loss,

limited amount

Standard cages

TMC Cage Titanium 94–96% [113,118] 5–7 months [93] From 4 to 22%
[93,113,115]

difficulty in radiographic
assessment, stress shielding

effect [93,113]

PEEK Cage Polyetheretherketone 88–100% [94] 7–8 months [120] From 9.8% to 14.3%
[115]

lack of osteointegration of the
cage, difficulty in

radiographic assessment [94]

Hydroxyapatite cages

nHA/PA66 Cage
Nanohydroxyapatite

infiltrating into
polyamide 66

97%–98%
[113,115,118] - From 2 to 10.6%

[38,113,115–118]

difficult radiographic
assessment of solid fusion,
but easier compared with

TMC [113]

Hydroxyapatite/
PEEK Cage

Composite of 80% PEEK
and 20% calcium
hydroxyapatite

~100% [120] 3–5 months [120] -
lack of clinical studies,

difficulty in radiographic
assessment

The hydroxyapatite also can be used as a filler within the PEEK cage. In a prospective
randomized study conducted by Yi et al. [119], hydroxyapatite has been used as a PEEK
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cage filler to improve osteoconductive properties. They compared clinical results between
a PEEK cage filled with the HAp/β-TCP mixture and a PEEK cage filled with a mixture of
HAp and DBM (demineralized bone marrow). β-TCP and DBM were additionally applied
to provide osteoinductive properties. Comparing these two cages, clinical outcomes and
fusion rates were not statistically significantly different.

3.2. Lumbar Spinal Fusion

Lumbar spinal fusion heavily relies on using autografts or allografts as a material
used during surgery. Thus, they show to be the most effective way to achieve proper
stabilization [39]. However, the still growing number of new materials accessible to use in
this procedure creates an opportunity of lowering the negative effects of harvesting a bone
graft by the usage of artificial graft material.

3.2.1. Hydroxyapatite with Beta-Tricalcium

Evaluation of hydroxyapatite and beta-tricalcium phosphate mixed with bone marrow
aspirate as a bone graft substitute in reference to an autologous bone graft, showing that
it can be successfully used [39]. It is suggested that this technique can be used instead of
autologous grafts in lumbar fixation based on fusion rates and stability of achieved fixation.

Comparisons made between implants made out of 60TCP40HA and natural bone
substituted in Sprague–Dawley rats showed a different nature of bone formation between
two types of material used [40]. The natural bone resulted in more peripheral bony matter
formation; however, the TCP/HAp composite resulted in a more centralized process
of ossification. Analysis of both groups using micro-CT resulted in another interesting
observation: the percent of bone volume in the fusion region after 4 weeks showed no
difference; however, after 8 weeks, the volume of TCP/HAp was about twice compared
to the natural bone substitute group, which can suggest greater efficiency of TCP/HAp
composite in case of ossification [Table 2].

Table 2. Formulations of HAp used in spine surgery.

Procedure HAp Formulation

Anterior Cervical Discectomy and Fusion

Nanohydroxyapatite
Nanohydroxyapatite/polyamide 66 composite

Hydroxyapatite/PEEK coating
Hydroxyapatite/PEEK composite

Lumbar Spinal Fusion Hydroxyapatite/beta-TCP
Nanohydroxyapatite

Pedicle Screw Fixation
Hydroxyapatite screw coating

Hydroxyapatite sticks
Hydroxyapatite granules

3.2.2. Nanocrystalline Hydroxyapatite

Nanocrystalline hydroxyapatite used in lumbar fixation shows good results as used
in arthrodesis compared to autograft mixed with BMA and iliac crest autograft, after
12 months [107]. This similarity also applies to multilevel stabilization. Robbins, Stephen, et al.
also reported no complications related to the posterolateral graft mass and no symptomatic
nonunions. Materials made out of nano-hydroxyapatite/polyamide-66 were shown to be a
reliable manner of performing lumbar stabilization due to well-maintained disc height [41].
They provided a low chance of unsuccessful fusion, required no autologous bone harvesting,
and showed relatively fewer postoperative morbidities, as seen in the donor region.

3.3. Pedicle Screw Fixation

Pedicle screw fixation (PSF) is regarded as the gold standard of treatment of spinal
instability following traumas, degenerative changes, tumours, and deformities [121–124].



Materials 2022, 15, 2906 8 of 14

Despite many advantages of PSF [42,43], the application of this method does not exclude
cases of pseudoarthrosis. Many reports have shown complications after PSF, such as loos-
ening, pull-out, or breakage of screws [125–127]. To increase the rigidity of fixation, some
factors are important, such as the surgical insertion technique, type of implant, augmen-
tation method, and bone mineral density (BMD) [128]. In patients with decreased BMD,
especially osteoporotic patients, there is an increased risk of screw loosening, nonunion, and
back-off of the pedicle screw due to the poor mechanical properties of their bone [129,130].
Bisphosphonates and PTH, which are used in osteoporosis treatment, may prevent the
mentioned complications through the increasing volume of bone substance around the
screws [131]. The standard material used in PSF for improving anchoring strength is PMMA
bone cement [132–136]. Such augmentation of titanium pedicle screws can decrease the
risk of implant failures [137,138]. However, the use of PMMA causes some disadvantages,
such as exothermic and toxic properties of this material or risk of cement leakage and ex-
travasation [135,136,139,140]. Recently, different formulations of HAp have been evaluated
regarding increasing fixation strength.

3.3.1. HAp Screw Coating

One of them is the HAp coating, which has proven to be an efficient method of
improving the bone–implant interface. In the study with a porcine osteoporotic model,
Ohe et al. [42] proved that HAp-coated titanium pedicle screws provided strong fixation at
the bone–implant interface. A study conducted by Yi et al. [141] on the human cadaveric
model has proven that pull-out forces of Hap-coated screws in the insertion stage were a
bit lower than those with PMMA bone cement. However, HAp stimulates bone growth
in contrast to PMMA. Additionally, in a group of osteoporotic patients, HAp provided
greater fixation strength than PMMA. Therefore, HAp could be a better clinical alternative.
Liu et al. [43] proved on a sheep model that the addition of collagen and chondroitin
sulphate (CS) to HAp coating presents better outcomes in new bone formation on the screw
surface than coating with HAp alone. In such a composite, HAp prevents the oxidation of
the screw surface and effectively adsorbs CS and collagen. Additionally, collagen promotes
bone growth by interacting with progenitor cells, osteoblasts, and osteoclasts [43]. HAp
coating as augmentation in PFS is a promising method of increasing the fixation strength of
the screws. However, it should be evaluated clinically in further studies.

3.3.2. HAp Sticks

HAp sticks are another formulation of HAp used in PSF. HAp, as a stick form, can
be positioned at the target location without problems, distally to the screw. Moreover, in
comparison to PMMA cement bone, there is no risk of material leakage. Shin et al. [142]
evaluated the use of HAp sticks with PSF in patients with degenerative spine disease. They
have observed that the additional use of HAp sticks increases the initial screw fixation
strength in patients with osteoporosis. The effectiveness of HAp sticks also has been proven
by many ex vivo and animal studies as well as clinical studies [141,143,144]. Therefore,
HAp stick augmentation can reduce the frequency of the screw failure occurrence.

3.3.3. HAp Granules

The latest research, conducted by Kanno et al. [145] on osteoporotic patients, has
evaluated the use of HAp granules as augmentation with percutaneous pedicle screw
fixation (PPFS). They inserted 50% porous HAp granules into the screw hole using a special
device designed by themselves [146]. This study has shown that stability, pull-out strength,
insertion torque, and resistance to cyclic loads of screws in the osteoporotic spine increase
considerably after the addition of HAp granules. Moreover, at one-year follow-up, the
incidence of screw loosening decreased.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Materials 2022, 15, 2906 9 of 14

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dorozhkin, S.V. Calcium Orthophosphate Bioceramics. Ceram. Int. 2015, 41, 13913–13966. [CrossRef]
2. Balhuc, S.; Campian, R.; Labunet, A.; Negucioiu, M.; Buduru, S.; Kui, A. Dental Applications of Systems Based on Hydroxyapatite

Nanoparticles—An Evidence-Based Update. Crystals 2021, 11, 674. [CrossRef]
3. Fiume, E.; Magnaterra, G.; Rahdar, A.; Verné, E.; Baino, F. Hydroxyapatite for Biomedical Applications: A Short Overview.

Ceramics 2021, 4, 542–563. [CrossRef]
4. Spiller, K.L.; Koh, T.J. Macrophage-Based Therapeutic Strategies in Regenerative Medicine. Adv. Drug Deliv. Rev. 2017, 122, 74.

[CrossRef]
5. Werner, S.; Grose, R. Regulation of Wound Healing by Growth Factors and Cytokines. Physiol. Rev. 2003, 83, 835–870. [CrossRef]
6. Yang, C.; Zhao, C.; Wang, X.; Shi, M.; Zhu, Y.; Jing, L.; Wu, C.; Chang, J. Stimulation of Osteogenesis and Angiogenesis by

Micro/Nano Hierarchical Hydroxyapatite via Macrophage Immunomodulation. Nanoscale 2019, 11, 17699–17708. [CrossRef]
7. Franz, S.; Rammelt, S.; Scharnweber, D.; Simon, J.C. Immune Responses to Implants—A Review of the Implications for the Design

of Immunomodulatory Biomaterials. Biomaterials 2011, 32, 6692–6709. [CrossRef]
8. Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign Body Reaction to Biomaterials. Semin. Immunol. 2008, 20, 86–100. [CrossRef]
9. Narducci, P.; Nicolin, V. Differentiation of Activated Monocytes into Osteoclast-like Cells on a Hydroxyapatite Substrate: An in

Vitro Study. Ann. Anat. 2009, 191, 349–355. [CrossRef]
10. Mestres, G.; Espanol, M.; Xia, W.; Persson, C.; Ginebra, M.P.; Ott, M.K. Inflammatory Response to Nano- and Microstructured

Hydroxyapatite. PLoS ONE 2015, 10, e0120381. [CrossRef]
11. Ekström, K.; Omar, O.; Granéli, C.; Wang, X.; Vazirisani, F.; Thomsen, P. Monocyte Exosomes Stimulate the Osteogenic Gene

Expression of Mesenchymal Stem Cells. PLoS ONE 2013, 8, e75227. [CrossRef] [PubMed]
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