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Abstract: Prion diseases are progressive and irreversible neurodegenerative disorders with a low
incidence (1.5-2 cases per million per year). Genetic (10-15%), acquired (anecdotal) and sporadic
(85%) forms of the disease have been described. The clinical spectrum of prion diseases is very
varied, although the most common symptoms are rapidly progressive dementia, cerebellar ataxia
and myoclonus. Mean life expectancy from the onset of symptoms is 6 months. There are currently
diagnostic criteria based on clinical phenotype, as well as neuroimaging biomarkers (magnetic
resonance imaging), neurophysiological tests (electroencephalogram and polysomnogram), and
cerebrospinal fluid biomarkers (14-3-3 protein and real-time quaking-induced conversion (RT-QuIC)).
The sensitivity and specificity of some of these tests (electroencephalogram and 14-3-3 protein) is
under debate and the applicability of other tests, such as RT-QulC, is not universal. However, the
usefulness of these biomarkers beyond the most frequent prion disease, sporadic Creutzfeldt-Jakob
disease, remains unclear. Therefore, research is being carried out on new, more efficient cerebrospinal
fluid biomarkers (total tau, ratio total tau/phosphorylated tau and neurofilament light chain) and
potential blood biomarkers (neurofilament light chain, among others) to try to universalize access to
early diagnosis in the case of prion diseases.
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1. Introduction

Prion diseases, also known as transmissible spongiform encephalopathies, are rapidly
progressive and irremediably fatal neurodegenerative disorders. The average life ex-
pectancy is six months, but great variability in the duration of the clinical course of the
disease has been described, lasting from weeks to years [1-3]. The cause is the aggregation
of a misfolded prion protein scrapie (PrPSc). PrPSc is the abnormal conformational isoform
of the normal cellular prion protein (PrPc) located on the cell surface of central nervous
system neurons, the exact function of which remains unknown [4]. PrPSc is able to propa-
gate and to aggregate in the brain tissue. PrPsc is neurotoxic and its accumulation leads to
synaptic degeneration and disorganization, which induces neuronal loss and spongiform
changes. Indeed, a reduction of over 30% in the relative synaptic index has been reported
in prion disease-affected brains [1,3,5].

Prion diseases are classified into sporadic (85%), genetic (10-15%) (due to mutations in
the prion protein gene (PRNP)) and acquired (exceptional) forms (Figure 1). Prion diseases

Medicina 2022, 58, 473. https:/ /doi.org/10.3390 /medicina58040473

https://www.mdpi.com/journal /medicina


https://doi.org/10.3390/medicina58040473
https://doi.org/10.3390/medicina58040473
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/medicina
https://www.mdpi.com
https://orcid.org/0000-0001-9709-5314
https://orcid.org/0000-0002-2015-5857
https://orcid.org/0000-0002-4179-5781
https://doi.org/10.3390/medicina58040473
https://www.mdpi.com/journal/medicina
https://www.mdpi.com/article/10.3390/medicina58040473?type=check_update&version=1

Medicina 2022, 58, 473

20f19

show a huge variety of cognitive, motor and neuropsychiatric symptoms. Almost 90% of
the sporadic cases are due to sporadic Creutzfeldt-Jakob disease (sCJD) with an incidence
close to 1.5-2 cases per million persons per year [3]. In addition to familial Creutzfeldt-
Jakob disease, genetic causes include familial fatal insomnia (FFI) (of which there is also a
very rare sporadic form), Gerstmann-Straiissler-Scheincker (GSS) and Huntington-disease-
like 1 (HDL1) [6,7]. In 1996, variant Creutzfeldt-Jakob (vCJD), a zoonotic prion disease
acquired by consumption of cattle contaminated by bovine spongiform encephalopathy,
was described for the first time in the United Kingdom [8-10]. Fortunately, sanitary mea-
sures and food chain regulation have contributed to the near disappearance of vCJD [8,9].
Regardless of the type of prionopathy, early diagnosis is a challenge due to the great phe-
notypic variability, with the most frequent symptoms being rapidly progressive dementia,
cerebellar ataxia and myoclonus [3].
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Figure 1. Prion diseases etiologic classification adapted by the authors [10-13].

Currently, the definitive diagnosis of prion diseases requires postmortem anato-
mopathological examination or brain biopsy, which is not feasible in clinical practice [1,3]
(Table 1). Postmortem neuropathological study is also necessary to classify cases into
the different subtypes of sCJD. Different clinicopathological subtypes of sCJD, defined by
methionine/valine polymorphism at codon 129 of the PRNP gene and the type (based
on the size of protease-resistant fragments) of PrPSc accumulated in the brain, have been
described [3,14]. Despite the development of new diagnostic tools, postmortem anato-
mopathological study is the gold standard technique to confirm, or completely rule out, the
diagnosis of a prion disease and, therefore, classifications that relate clinical and anatomical
changes are still relevant. The molecular subtype of sCJD is an important prognostic marker
for patient survival [3].

In recent decades, efforts have been made to advance the use of biomarkers to allow
an early diagnosis of the different prionopathies. Neurophysiological and neuroimaging
biomarkers and different cerebrospinal fluid (CSF) analytes (14-3-3 protein and total tau)
have been progressively incorporated into the diagnostic criteria. Special mention should
be made of the real-time quaking-induced conversion (RT-QuIC) technique for the detection
of prion protein in CSF, a technique with the most promising results for the accurate pre-
mortem diagnosis of sCJD and other prionopathies, which is already incorporated into the
latest diagnostic criteria [3] (Table 1). Despite its promising results, the RT-QulC technique
is not universally available; therefore, research into other more accessible biomarkers with
potentially high diagnostic performance has continued over the last few years.
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Table 1. Diagnostic criteria for probable and definite categories of prion diseases.
Probable Disease Definitive Disease
Rapidly progressive
cognitive impairment
AND typical EEG
(generalized periodic
complexes) OR typical
MRI (high signal in Progressive
caudate/putamen or at neu%olo ical
least two cortical regions syndro n%e AND Progressive neurological syndrome AND
sCJD either on DWI or FLAIR) OR I 6 neuropathologically OR immunocytochemically OR
OR positive 14-3-3 AND posive biochemically confirmed.
¢p two of the following: RT-QuIC in CSF
-Myoclonus & or other tissues.
-Visual or cerebellar
problems
-Pyramidal or
extrapyramidal features
-Akinetic mutism
P . Progressive Definitive CJD
rogressw;ef tric disord neuropsychiatric ~ AND definitive Definitive CJD
gCJD 2%1]1;) }C)lsy_c patrie G1soraer OR disorder AND or probable CJD OR AND pathogenic
efinite or probable h . in 1st d PRNP mutati
CJD in 1st degree relative Igla{tN?’gI:Etca tion il’ellaiiveegree rutation
Progressive neuropsychiatric disorder with duration of illness >6
months, no history of potential iatrogenic exposure, no evidence of
gCJD and no alternative diagnosis suggested by routine
investigations AND positive tonsil biopsy OR bilateral pulvinar high
signal on MRI AND atypical appearance of sCJD on EEG in the early =~ Progressive neuropsychiatric disorder AND
vCJD stages AND four of the following: neuropathological confirmation (spongiform change and
-Early psychiatric symptoms (depression, anxiety, apathy, extensive PrP deposition with florid plaques throughout
withdrawal, delusions) the cerebrum and cerebellum)
-Persistent painful sensory symptoms (frank pain or dysaesthesia)
-Ataxia
-Myoclonus, chorea or dystonia
-Dementia
Progressive cerebellar syndrome in a recipient of human Progressive cerebellar syndrome or sporadic CJD with a
iCJD cadaveric-derived pituitary hormone OR sporadic CJD with a recognized exposure risk AND neuropathological
recognized exposure risk confirmation
Less than 8 years
Cognitive impairment duration AND
and/or two of the absence of
following: alternative
VSPr -Psychiatric symptoms AND etiology or Progressive neurological syndrome AND
-Parkinsonism phenotype neuropathological confirmation
-Aphasia divergence from
-Ataxia atypical neurode-
-Myoclonus generative
dementias
Organic sleep
dl'st'.urbance& If not yet One of the
clinically apparent, a following;
polysomnography has to ;
Repertomea Losoloioks,
At least two of the mont}%s
following: S
-Psychiatric symptoms -(\}:egeta}?;e s1gns P . logical synd AND
sFI and FFI (visual hallucinations, AND ypler dl. TOSIS, d rogresszelnel'lro oglcg syndrome
personality changes, newly diagnose neuropathological confirmation
depression, anxiety, arterial .
aggressiveness, {;};iergslfg;
disinhibition, listlessness) ycarcia,
-Ataxia constlpatloq,
-Visual symptoms hyperthermia)
Myocl -Husky voice
yoclonus
-Cognitive/mnesic deficits
Progressive neurological syndrome AND
GSS Progressive cerebellar syndrome, cognitive impairment and/or neuropathological confirmation (amyloid deposits
sensory symptoms AND pathogenic PRNP mutation immunoreactive for PrP are the morphological hallmark of
GSS)
Abnormal involuntary movements, coordination difficulty, dementia, Kuru and multicentric plaques that stain with anti-prion
HDL-1 personality changes and psychiatric symptoms AND pathogenic plaqu P

PRNP mutation

antibodies

CJD: Creutzfeldt-Jakob disease; sCJD: sporadic Creutzfeldt-Jakob disease; EEG: electroencephalogram; MRI: mag-
netic resonance imaging; RT-QulC: Real-Time Quacking-Induced conversion (RT-QuIC); CSF: cerebrospinal fluid;
gCJD: genetic Creutzfeldt-Jakob disease; vCJD: variant Creutzfeldt-Jakob disease; iCJD: iatrogenic Creutzfeldt-
Jakob disease; VSPr: Variably protease-sensitive prionopathy; sFI: sporadic fatal insomnia; FFI: fatal familial
insomnia; GSS: Gerstmann-Strausller-Scheinker; PrP: prion protein; HDL-1: Huntington disease-like syndrome.

Bold words are for emphasis.
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Neurophysiological
biomarkers

This narrative review aims to examine the currently accepted neurophysiological,
neuroimaging and cerebrospinal fluid (CSF) biomarkers for diagnosis and to investigate al-
ternative CSF and peripheral blood biomarkers that have been recently proposed (Figure 2).
We highlight those biomarkers that are more easily accessible, including blood biomarkers,
which would truly represent a diagnostic revolution in prionopathies. The existing differ-
ences in biomarker performance between different prionopathies will also be emphasized,
although it is true that most of the work reviewed has focused on sCJD. The examination,
in combination, of current diagnostic criteria and of multimodal diagnostic biomarkers
(e.g., neurophysiological, neuroimaging, genetic, CSF and plasma analytes), available both
for use in clinical practice and in the development phase, not only limited to CJD but also
to the rest of the prionopathies, is considered of special interest in this review.
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Figure 2. Diagnostic biomarkers for prion diseases in use in clinical practice and summary of the
most promising biomarkers under investigation. Figure created with biorender.com (accessed on 18
February 2022). CJD: Creutzfeldt-Jakob diseases, sCJD: sporadic Creutzfeldt-Jakob disease; gCJD:
genetic Creutzfeldt-Jakob disease, FFI: fatal familial insomnia, sFI: sporadic fatal insomnia.
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2. Neurophysiological Biomarkers
2.1. Electroencephalogram (EEG)

Periodic sharp-wave complexes (PSWCs), generalized and/or lateralized complexes,
characterized by strictly periodic cerebral potentials at a frequency of 1 Hz, are the typical
EEG finding commonly associated with sCJD. PSWCs tend to disappear during sleep and
may be attenuated by some psychotropic drugs [15]. PSWCs are observed in 67-95% of
patients with sCJD, with a sensitivity of 65% and specificity of 90% [16,17]. In turn, the main
background frequency and the «/0 power ratio in quantitative EEG seems to be related
to clinical progression and has been suggested as a useful tool for follow-up monitoring
in prion diseases [18]. EEG could also be useful for the detection of non-convulsive status
epilepticus, which, although infrequent, has an increased risk in some prionopathies, such
as sCJD [3].

Advantages: EEG is an economically accessible and safe technique. It is available
in most healthcare centers and can be performed repeatedly during clinical follow-up
if required.

Limitations: The diagnosis performance of EEG improves with the clinical course of
the disease. Therefore, it is a biomarker that is mainly related to the late symptomatic
phases of sCJD [13,15]. In early stages of the disease, unspecific alterations, such as diffuse
slowing and frontal rhythmic delta activity (FIRDA), are more frequent [15]. Among the
other limitations, it should be noted that similar alterations have been described in other
neurodegenerative dementias, such as Alzheimer’s disease (AD) and Lewy body dementia
(LBD), although less frequently. It is also noteworthy that the probability of detection of
PSWC is much lower in other prionopathies, such as FFI or GSS, and even in the MV2, VV2
and MM2 forms of sCJD [3,17,19].

2.2. Polysomnogram (PSG)

In cases of familial or sporadic fatal insomnia the demonstration of an early and
progressive reduction in total sleep time, the loss of sleep spindles and K-complexes, the
disruption of normal sleep structure, sleep fragmentation, and periods of subwakefulness
interrupted by brief episodes of REM sleep, with or without atonia, often associated
with dream enactment behavior, is a diagnostic criterion [20]. In the case of sCJD, sleep
anomalies are not recognized as a diagnostic criterion, although it is common to detect
loss of normal sleep EEG architecture, sleep-disordered breathing [21] and periodic leg
movement disorders in the PSG [22].

Advantages: A non-invasive technique with high diagnostic performance for both
sporadic and familial fatal insomnia.

Limitations: Not universally accessible and not useful for differential diagnosis of
the most frequent causes of rapidly progressive neurodegenerative dementias apart from
fatal insomnia.

3. Neuroimaging Biomarkers
3.1. Brain Magnetic Resonance (MR)

The presence of hyperintensities in T2 and fluid-attenuated inversion recovery imag-
ing (FLAIR) sequences are frequent in the MR images of sCJD specially involving basal
ganglia [16], as well as the restriction of diffusion (DWI) in at least two cortical regions (rib-
boning) or/and restricted diffusion predominantly in the caudate nucleus, putamen and /or
thalamus [3,17,23,24]. However, these typical signs on MR images are not pathognomonic
of sCJD and could also be induced, though rarely, by toxic metabolic encephalopathies,
progressive multifocal dementia, autoimmune encephalitis, CNS lymphoma, vasculitis and
infectious etiologies [24].

The MR pattern could also be useful, mainly when combined with PRNP polymor-
phisms, to differentiate sCJD molecular subtypes [17]. In the MM1 subtype of sCJD, the
caudate nucleus has unilateral or bilateral asymmetrical involvement, and the involvement
of the thalamus is more frequent in VV2 and MV2 subtypes [25]. The presence of a pulvinar
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sign (high signal on FLAIR and DWI) is highly suggestive of vCJD [3,26]. Moreover, altered
diffusion in the striatum, thalamus and frontal and occipital cortices has been reported
in GSS [6]. The sensitivity of sCJD diagnosis using MR varies according to different stud-
ies between 80 and 92%; the same is true for specificity, with a range between 74 and
98% [3,27,28]. Recently, the use of MR spectroscopy to determine the N-acetylaspartate
(NAA)/creatine (Cr) ratio has been suggested as a useful parameter for predicting the
clinical course in sCJD, as lower NAA /Cr is related to shorter disease duration [29].

Advantages: Structural neuroimaging is a mandatory test for the differential diagnosis
of cognitive impairment, and, in the case of rapidly progressive dementias, the MR evalua-
tion is crucial. Changes in restriction occur early in the context of sCJD [3,30]. In contrast
with EEG, MR diffusion abnormalities are an early phenomenon, being detectable at least
one year before the onset of symptoms in asymptomatic PRNP mutation carriers [31],
making it useful for early diagnosis.

Limitations: At the time to perform the MR, a clinical suspicion of possible prion
disease must be reported because is advisable to perform an MR evaluation with a specific
protocol including diffusion sequences (DW1/ADC).

3.2. Fluorodesoxyglucose Positron Emission Tomography (PET-FDG)

Decreased glucose metabolism in the neocortex affecting extensive cortical regions
(frontal, parietal and occipital cortices) and basal ganglia has been reported in sCJD but does
not seem to be useful for differential diagnosis with other neurodegenerative dementias [28].
However, the hypometabolism of medial temporal area seems to be significantly less
frequent compared to other neurodegenerative dementias [32]. Instead, it may be useful
for the diagnosis of infrequent forms of sporadic fatal insomnia, where hypometabolism in
the thalamic region is early and characteristic [3,6].

Advantages: It could be useful for helping with the diagnosis of sporadic fatal insomnia.

Limitations: It is an expensive test that is not usually performed in cognitive de-
cline screening. There are no specific hypometabolism patterns that could be useful for
diagnosing sCJD or performing a differential diagnosis with other prionopathies.

4. Genetics

PRNP gene sequencing is the primary diagnostic technique in genetic prion disease.
PRNP mutations account for 10-15% of all human prion syndromes [3]. The detection of
PRNP gene mutations can be performed by sequencing DNA from patient blood specimens
or a decedent’s unfixed autopsy tissue. All the genetic forms of prion disease are linked to
PRNP mutations and include point mutations, octapeptide repeat insertions and deletions.
Many different mutations have been linked to genetic CJD, although the most common
worldwide is E200K [2]. The penetrance of PRNP mutations is assumed to be close to
100% although real-life data are lacking. In the specific case of the E200K mutation, the
most widespread significant variability has been detected with penetrance ranging from
60 to 90% among different populations [2]. The D178N mutation is present in all families
with FFI. In individuals of European ancestry, five variants account for up to 85% of the
pathogenic PRNP variants (Table 2). Therefore, the first step in genetic analysis is to
determine whether these variants exist, and, if not, the entire gene should be sequenced [2].
However, in specific geographic regions with higher prevalence of gCJD, an adaptation of
the preliminary genetic analysis could be advisable.
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Table 2. Summary of the most frequent PRNP variants. Adapted from Ladogana et al., 2018 [2].

PRNP DNA Nucleotide Predicted Protein Related Phenotype Expected Survival
Variants Change Change Prionopathy (Median)
Ataxia (100%), pyramidal
Proline to leucine (75%), deme.n tia (62:/0)'
P102L ¢.305C>T substitution at GSS extrapyramidal (EO ), 40 months.
codon 102 myoclonus (%5 %).
Others: dysarthria, sleep
and sensory disturbances.
. Dementia (96%),
FFI argl ]g)enetlc myoclonus (89%), ataxia 15 months (earlier
aspartic acid to (Depen. gls on the (82%), extrapyramidal onset and shorter
D178N c.532G>A aspgragine allelepon codon 129. (820/.0)’ pylﬁamidal (79(:{0)’ duration O.f
substitution at M allele: FFI and cortical blindness (79%). symptomatic
codon 178 V allele: ger;etic Others: sleep disturbances,  disease in genetic
CfD) dysarthria, weight loss CJD).
and hyperhidrosis.
Dementia (100%),
extrapyramidal (54%),
Valine to isoleucine Othgf‘]sr'ailiii}ci(ffnﬁ)t.ism 16,4 months (wide
V1801 c.538G>A change at codon Genetic CJD oy L ’ .
180 (57%) anq psyclpatnc range of survival).
(50%). Cortical blindness,
myoclonus and ataxia are
more infrequent.
Ataxia (100%), dementia
(95%), myoclonus (85%),
Glutamic acid to pyrakr’rll.ldgl (700/07)6(¢:*/ortlcal 5 months (wide
E200K c.598G>A lysine substitution Genetic CJD naness ( 0)’0 range of survival
at codon 200 extrapyramidal (65%). 1-74 months)
Others: dysarthria, sleep ’
disturbances and weight
loss.
Ataxia (100%), dementia
(92%), myoclonus (92%),
Valine to isoleucine extrapyramidal (92%), 4 months (wide
V2101 c.628G>A substitution at Genetic CJD cortical blindness (85%),

codon 210

pyramidal (72%).
Others: dysarthria and
sensory symptoms.

range of survival).

GSS: Gertsmann-Strausller-Scheinker; FFI: Familial fatal insomnia; CJD: Creutzfeldt-Jakob disease; M: methionine;
V: valine. Bold words are for emphasis.

In addition, the polymorphism of codon 129 of the PRNP gene has potential relevance

as it may influence susceptibility to both variant and sporadic forms of CJD: 85-95%
of sCJD cases are methionine homozygous at codon 129, compared to 49% in healthy
controls [2,17]. However, the codon 129 polymorphism has primarily been investigated
in research studies and is not currently used in the diagnostic work-up of prion disease.
Interestingly, stratifying patients by codon 129 polymorphism could have a possible role in
future clinical trials [17].

5. Cerebrospinal Fluid (CSF) Biomarkers
5.1. Biochemical Analysis

No differences in the quantity of proteins, glucose concentration and total cell number
assessed in CSF are detected in prion diseases compared to controls [33].

Advantages: The existence of significant biochemical alterations in CSF may help to
check for other etiologies, e.g., inflammatory.
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Limitations: Lumbar puncture is considered an invasive test, even though it is cur-
rently performed in clinical practice for the early diagnosis of neurodegenerative disorders,
such as AD.

5.2. CSF Surrogate Biomarkers
5.2.1. 14-3-3 Protein

The gamma-isoform of the 14-3-3 protein (14-3-3 gamma) expressed in neurons could
be a specific marker for neuronal damage and is useful for sCJD diagnosis [34-36]. The
pathological mechanisms leading to the accumulation of 14-3-3 protein in CSF are not
fully understood; however, neuronal loss followed by cell lysis is assumed to cause in-
crease in 14-3-3 levels [37]. Currently, the detection of increased 14-3-3 protein in CSF is
used as a molecular diagnostic criterion for patients that are clinically compatible with
sCJD [37]. The diagnosis performance is lower for genetic forms of prion diseases and for
sporadic fatal insomnia [38,39]. The diagnostic performance of quantitative enzyme-linked
immunosorbent (ELISA) assay for 14-3-3 is higher in comparison with western blotting
(WB) [34,40]. Combination with other surrogate biomarkers, such as the determination of
total tau (t-tau) and the ratio of t-tau/phosphorylated tau (p-tau), significantly increases
the specificity [14,36,41-43].

Advantages: It has high sensitivity (86-97%) for sCJD [44-46] (Figure 3). Combination
with t-tau and the ratio of t-tau/p-tau has very good sensitivity and specificity and is more
accessible compared to other techniques, such as RT-QuIC.

+ 100% 100% 100% 100% H H H 100% 100%

14-3-3 protein
t-tau in CSF

: @ rrauicincsk
67% i . MRI

i @ =

50%  50%
Sensitivity of biomarkers

used in clinical practice for

= P the diagnosis of prion
: i 4 . i i diseases
; i 0% 0% 0% 0% 0% g i 0% 0% :
o i O 00000 O i 00
iCJD vCJD FFI Gss VPSPr

Figure 3. Biomarkers used in clinical practice and their diagnostic sensitivity for prion diseases.
sCJD: sporadic Creutzfeldt-Jakob disease; gCJD: genetic Creutzfeldt-Jakob disease; iCJD: iatrogenic
Creutzfeldt-Jakob disease; vCJD: variant Creutzfeldt-Jakob disease; FFI: fatal familial insomnia; GSS:
Gerstmann-Strausller—Scheinker; VPSPr: variably protease-sensitive prionopathy; MRI: magnetic
resonance imaging; EEG: electroencephalogram.

Limitations: Protein 14-3-3 is not as specific as was initially thought [16]; specificity
could vary between 75.6 and 91% for sCJD [42]. Acute neurological conditions, such as
stroke, status epilepticus or inflammatory encephalopathies, can also increase 14-3-3 protein
levels [47]. In turn, the approach shows poor performance in the diagnosis of infrequent
prion diseases.



Medicina 2022, 58, 473

90f19

5.2.2. Total Tau (t-tau) and Total Tau/Phosphorylated Tau (t-tau/p-tau) Ratio

Elevation of CSF t-tau levels is correlated with axonal neurodegeneration rate in many
different neurological conditions, while p-tau is increased in AD but not in other neurode-
generative disorders. The determination of levels of t-tau and the ratio of t-tau/p-tau could
be useful for the diagnosis of CJD, preferably combined with other diagnostic tools [16,48].
Sensitivity and specificity vary depending on the cut-off point established for both t-tau
and t-tau/p-tau ratio values but very high sensitivity (85%) and specificity (98.6%) can be
achieved, both of which are higher compared to the 14-3-3 protein performance [16,49-53].
In turn, the most highly elevated levels of t-tau are observed in the MM1, MV1 and VV2
types with classical symptomatology [54]. Therefore, it has been suggested that t-tau can
be used in the diagnostic assessment of prion protein type when the codon 129 genotype is
known and could provide valuable information for physicians about the prognosis [55].
Increase in t-tau and t-tau/p-tau is related to a shortened life expectancy, which could be
explained because t-tau reflects neuronal damage [1,48,54,56] and t-tau levels continue to
increase during the progression of the disease [57]. Levels of t-tau correlate with disease
burden as assessed by cortical involvement evaluated by DWI sequence of MR [58].

Advantages: High specificity for t-tau and t-tau/p-tau ratio for sCJD. Diagnostic
performance improves for both genetic and sporadic CJD if combined with 14-3-3 pro-
tein [43,59,60]

Limitations: t-tau could be increased in other neurodegenerative conditions but not as
much as in prionopathies.

5.2.3. Neurofilament Light Chain Protein (NfL)

NfL is a neuronal cytoskeleton component and is released when there is neuronal
damage in a wide range of conditions, making this a very good biomarker of neurode-
generation [61,62]. NfL is increased in all sCJD subtypes, including those which typically
show low values of t-tau and negative protein 14-3-3 (e.g., sCJD MV2K, MM2C and gCJD
E200K) [5,63]. It has outstanding sensitivity to detect sCJD, higher than 95%, but a very
low specificity of 43.1% [14,64].

Limitations: Low specificity makes it less useful compared to the determination of
t-tau or the combination of t-tau or ratio t-tau/p-tau + 14-3-3 protein in the differential
diagnosis of rapidly progressive dementias [14].

Advantages: Due to high sensitivity, this could be useful combined with other surro-
gate biomarkers for the early diagnosis of prionopathies.

5.2.4. Other Biomarkers

Alpha synuclein, a neuronal protein especially abundant at presynaptic regions,
stands out among other promising surrogate biomarkers. Its levels are increased in both
genetic and sporadic forms of CJD, with good diagnostic performance (sensitivity 98%
and specificity 97%); in addition, there is an inverse correlation between alpha synuclein
levels and disease duration in CJD [61,65-68]. In turn, neurogranin, related to synaptic
plasticity, has been shown to be increased in sCJD compared to controls and other neu-
rodegenerative dementias with a diagnostic yield similar to 14-3-3 protein in the early
stages of the disease, without significant variations with disease progression [5,10]. It has
been speculated that neurogranin levels could be useful to differentiate between different
subtypes of CJD (different concentrations having been reported according to the clinico-
pathological subtypes) [5]. Interestingly, it has been reported that ubiquitin, which marks
neuritic damage, dysfunctional protostasis and neuroinflammation, has higher concentra-
tions in CJD than in controls and other neurodegenerative dementias, and especially in
less frequent forms of sCJD, such as MM(V)1 [69,70]. One study has also shown higher
levels of calmodulin, a ubiquitous calcium-binding protein, in sCJD compared to other
neurodegenerative dementias, particularly in those with higher levels of t-tau [71].

Markers related to oxidative stress have also been postulated, as is the case for mito-
chondrial malate dehydrogenase 1 (MDH1). Increase in MDH1 would have a sensitivity
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of 97.5% and specificity of 95.6% for the diagnosis of sCJD with positive correlation for t-tau
and 14-3-3 protein concentrations according to preliminary data from several studies with
small or very heterogeneous samples [72,73]; however, this must be confirmed in future
studies prior to its future possible use in clinical practice.

A single study indicates that glial biomarkers, such as YKL-40, CHIT-1 and GFAP,
are significantly increased in the VV2 form of CJD compared to other neurodegenerative
dementias and are positively correlated with symptomatic progression of the disease [10,74].
An increase in these biomarkers has even been observed in presymptomatic cases of
GSS [74].

Biomarkers related to iron metabolism, such as transferrin, have also been studied. A
single study has postulated that elevated transferrin could be used in combination with
t-tau to increase its diagnostic performance [75].

Advantages: The discovery of new biomarkers related to different pathophysiological
processes can help us to better understand the disease itself and thus identify possible
therapeutic targets.

Limitations: At present, none of these biomarkers are approved for use, either in
isolation, or in combination with core biomarkers, in neurogenerative diseases. Further
studies are needed to confirm the benefit of their application in clinical practice.

5.3. CSF Prion Proteins
5.3.1. Total PrP

Total PrP levels in the CSF of patients with prion disease tend to be reduced compared
to controls. It has been speculated that this may result from the sequestration of soluble
monomeric protein into aggregates in the brain (analogous to the proposed mechanism
for reduction of CSF A31-42 in AD) [65,76,77]. Specificity for diagnosing prionopathies
of reduced total PrP in CSF seems to be moderate and unlikely to be used for differential
diagnosis with other causes of rapidly progressive dementia, at least if not combined with
surrogate CSF biomarkers, such as 14-3-3 protein and t-tau or ratio of t-tau/p-tau [37,61,78].
On the other hand, it has been suggested that it could have potential applicability for
monitoring response to future disease-modifying treatments because there are significant
differences in genetic forms of CJD between PRNP mutation carriers and non-carriers
years before symptom onset, and levels of test-retest of total PrP are stable during follow-
up [79,80].

Advantages: This biomarker directly reflects the pathophysiology of prion diseases
and therefore has a potential role in the follow-up of possible future treatments.

Limitations: It has suboptimal performance, no better than that described for surrogate
biomarkers with applications in clinical practice. Therefore, it is unlikely to be indicated for
use as a diagnostic biomarker in the future.

5.3.2. Prion Real-Time Quaking-Induced Conversion (RT-QuIC)

Aside from brain biopsy, RT-QuIC, an ultrasensitive in vitro PrPSc amplification assay
(Figure 4), is the only disease-specific antemortem diagnostic biomarker that directly
detects the pathological prion protein (PrPSc) and since 2018 has been incorporated in
the current diagnostic criteria [17,41,42,62,81-83]. A very high sensitivity (80-96%) and
virtually full specificity (99-100%) has been reported for RT-QulC for sCJD [13] (Figure 3).
However, the sensitivity is lower in MM1, the most frequent subtype of sCJD [41], and is
even lower in genetic forms of CJD, GSS and FFI, as well as in sporadic fatal insomnia.
The most plausible explanation for this finding is strain variability [76,81]. Nevertheless,
the RT-QulC performance continues to be higher compared to 14-3-3 protein and to the
combination of 14-3-3 protein and t-tau or t-tau/p-tau ratio for genetic forms of CJD, GSS
and FFI [77]. However, it has not demonstrated an ability to differentiate between different
subtypes of sCJD [84]. In turn, RT-QuIC presents increased costs and less inter-laboratory
standardization data is available compared to the use of approved surrogate biomarkers
(14-3-3 protein and t-tau) [85].
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Figure 4. Description of the prion real-time quaking-induced conversion technique applied to the
diagnosis of prion diseases, adapted from Orru et al., 2017 [86].

Advantages: The ability to detect prion protein with high sensitivity and specificity of
almost 100%. Included as a diagnostic criterion.

Limitations: Technically more complex than the determination of other surrogate
biomarkers that are measurable in CSF (14-3-3 protein and total tau), and accessible in
fewer hospitals. Poorer performance for atypical variants of sCJD and genetic forms of CJD,
GSS and familial and/or sporadic fatal insomnia.

6. Plasma Biomarkers
6.1. NfL

Increased levels of plasma NfL have been reported in CJD, significantly higher than in
other neurodegenerative dementias (e.g., AD, LBD and frontotemporal dementia -FTD-)
and obviously compared to controls. One study has shown an AUC of 0.93 to discriminate
CJD from non-CJD dementias [87] and another has reported a sensitivity of 100% and
specificity of 85.5% for the diagnosis of different prionopathies (sporadic, genetic and
iatrogenic CJD and GSS) [61,88]. However, it has been suggested that performance of
NfL is better in CSF compared to plasma [89]. The increase in plasma NfL occurs in the
early stages of the disease, before symptom onset, and it seems to be always altered if the
prion conversion assay is positive in CSFE. The levels of NfL continue to increase with the
symptomatic progression of the disease [88,90,91].

Advantages: An accessible biomarker with a huge number of studies suggesting its
utility for discriminating neurodegenerative vs. non-neurodegenerative dementias. Altered
from the early stages of disease, so therefore useful for early diagnosis.

Limitations: Not a specific biomarker of prion diseases; also increased in other neu-
rodegenerative dementias, although not to the same extent.

6.2. t-tau

Plasma t-tau levels are higher in CJD, in sporadic, iatrogenic and genetic forms, com-
pared not only to controls, but also significantly when compared to other neurodegenerative
dementias [25,39,41]. t-tau is particularly increased in sCJD patients who are homozygous
for methionine at codon 129 of the PRNP gene [92]. Plasma t-tau seems to have a moderate
association with disease duration, offering a moderate survival prediction capacity [93].
One study has reported a sensitivity of 84.6% and specificity of 96.2% [88], but it seems
that both sensitivity and specificity are lower in general for plasma t-tau compared to CSF
t-tau [89].
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Advantages: This could be useful to discriminate from non-neurodegenerative causes
of cognitive decline.

Limitations: It is a non-specific biomarker of neurodegeneration that does not clearly
improve performance compared to use of plasma NfL.

6.3. YKL-40

Increased levels of plasma YKL-40 have been detected in different sporadic and genetic
forms of prionopathies compared to controls. Higher levels are detected in later stages of
the disease [94]. Due to the limited capacity to discriminate from other neurodegenerative
dementias and moderate ability to distinguish from healthy controls, YKL-40 does not
seem to be a good diagnostic biomarker but could have a role in disease monitoring [94].

Advantages: Could be a potential plasma biomarker related to progression of the disease.

Limitations: Very limited capacity to discriminate prion diseases from other neurode-
generative diseases; doubtful utility as an additional biomarker for diagnosis.

6.4. MicroRNA

The blood microRNA profile has been suggested as a complementary test to use,
together with plasma neurodegeneration biomarkers. One study, with a small sample size,
has shown different microRNA expression in sCJD compared not only to controls but also
to AD [95].

Advantages: Could be another non-invasive biomarker of sCJD.

Limitations: Very limited data; does not seem to be applicable in clinical practice, at
least in the short term.

6.5. Total Prion Protein (t-PrP)

The existence of vascular pathology with loss of integrity of the blood brain barrier
(BBB) has been described in more than 40% of brains with prion disease. With loss of BBB
integrity, it is expected that dying endothelial cells in the intracranial capillary vascular
system, and specially dying neurons, can release PrP to the blood circulation system.
Increased levels of plasma t-PrP have been reported in sporadic, genetic and variant CJD.
However, increase in plasma t-PrP is not specific to prion diseases because it has also been
reported in other conditions, such as AD, FID, or LBD [96]. Therefore, it seems to be useful
to discriminate between neurodegenerative and non-neurodegenerative dementias, but
less clearly between prion diseases and other neurodegenerative disorders, even though
higher levels have been reported in classical sCJD compared to other neurodegenerative
dementias [96]. Interestingly, there is a dissociation between t-PrP CSF and plasma levels
in sCJD, which are increased in plasma but decreased in CSF [62,96]. The presence of
higher t-PrP levels in sCJD cases harboring MM and VV at PRNP codon 129 compared
to MV carriers has also been reported, suggesting a better performance for homozygous
carriers [88]. A mild association has been reported between CSF markers of neuronal
injury (14-3-3 protein and NfL) and plasmatic t-PrP, suggesting that plasma t-PrP might be
regarded as a biomarker of neurodegeneration, in contrast to CSF t-PrP, which probably
reflects pathogenic PrP aggregation occurring in prion disease patients. Non-association
has been reported between plasma t-PrP and the stage or disease duration, which argues
against a potential use of this marker for prognostic purposes [96].

Advantages: It is possible to assess this biomarker in an accessible fluid, so invasive
techniques are not required. The increase in t-PrP in the plasma of CJD (sporadic, acquired
and genetic) can be detected from the early stages and does not vary between different
stages of the disease, making it potentially useful as an early diagnosis biomarker.

Limitations: It is not specific for CJD diagnosis, and we do not have information about
less prevalent prionopathies. This biomarker seems to be more related to neurodegeneration.
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7. Nasal Mucosa

RT-QuIC performed in the samples obtained by nasal brushing, a less invasive tech-
nique compared to lumbar puncture, has shown a very high diagnosis accuracy according
to preliminary data, with a sensitivity of 97% and specificity of 100%; this is a better perfor-
mance compared to RT-QuIC in CSF [97,98]. It has been suggested that the combination of
CSF RT-QuiIC and RT-QuliC from a sample of nasal mucosa could increase the sensitivity in
the early diagnosis of CJD to almost 100% [42,61].

Advantages: Obtaining a nasal mucosal sample would be safer and better tolerated by
patients than lumbar puncture. If the preliminary data are confirmed, it could potentially
replace CSF as a sample for RT-QulIC, or, at least, and this is ultimately more likely, allow
increased diagnostic confidence in those subjects with high suspicion of prion disease with
negative RT-QulC in CSF, with the ability to detect some false negatives.

Limitations: Only preliminary data are available that do not allow evaluation of
its practical clinical applicability. In many subjects, lumbar puncture will continue to
be performed for screening of other neurodegenerative dementias; therefore, it seems
implausible that nasal mucosa sampling can universally replace lumbar puncture for RT-
QulIC study, at least not until other biomarkers with good diagnosis performance for other
neurodegenerative dementias are developed for use in nasal mucosa.

8. Future Directions

The combination of neuroimaging (structural magnetic resonance) and CSF RT-QuIC
for prion protein, t-tau, t-tau/p-tau ratio and 14-3-3 protein appears to be the most cost-
effective combination for the early diagnosis of different prion diseases. Now that t-tau
and t-tau/p-tau ratio are frequently assessed in mild cognitive impairment, considering
whether abnormally high levels of one or both are highly suggestive of prion disease is
essential. Qualitative analysis of EEG seems to be less useful for early diagnosis. However,
research in the applicability of quantitative EEG to detect changes from earlier stages of the
disease (including presymptomatic) could substantially increase its diagnostic performance,
as well as reduce interobserver variability. PSG continues to be essential for the diagnosis
of sFI and FFI, and review of EEG during PSG could potentially increase the capacity to
detect PSWCs in CJD patients. Future studies to assess the performance of routine EEG vs.
PSG-EEG (qualitative and quantitative analyses) would be of interest.

The performance of CSF biomarkers is very good, but their assessment still requires
an invasive test (lumbar puncture) that is usually performed later after symptom onset.
The identification of diagnostic biomarkers in more accessible fluids, such as peripheral
blood, is currently being investigated. The most promising plasma biomarkers are very
sensitive and non-specific (NfL and t-tau) and require ultra-sensitive analysis techniques
that are unavailable in most centers. Nevertheless, despite technical limitations, peripheral
blood is the best potential source for future biomarkers that, ideally, should also directly
reflect prion pathology. PrPSc measured in exosomes, small extracellular vesicles capable
of crossing the blood-brain barrier, in both peripheral blood and CSF, are being suggested
as possible biomarkers for the accurate diagnosis of prion diseases, but validation studies
are still lacking [99,100]. Even if the novel strategy of PrPSc determination in exosomes in
peripheral blood fails, efforts to identify other biomarkers with the same, or at least very
close, performance to RT-QuIC in CSE, the best available diagnostic biomarker, in more
accessible fluids, such as peripheral blood and/or mucosa, will remain a priority.

Genetic prion diseases, on the other hand, are not only candidates for the application of
potential future disease-modifying treatments (such as antisense oligonucleotides) but also
allow the identification of prognostic and/or disease progression biomarkers. Confirming
that periodic plasma NfL determination can predict up to two years in advance the onset
of symptoms [90], and that higher t-tau levels are associated with a faster disease course,
could help to better select potential candidates for future clinical trials. The availability
of objective biomarkers of progression is essential to consider how to measure response
in future clinical trials, as these are pathologies with widely varying clinical phenotypes
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and age of symptom onset [101]. Therefore, the identification of accessible prognostic
biomarkers to be measured repeatedly in the population at risk is an undeniable need.

9. Conclusions

The early and accurate diagnosis of prion diseases with a clinically progressive course
and without modifying treatment is essential. Therefore, the availability of biomarkers that
can provide near-total diagnostic certainty is crucial. The fact that some of these biomarkers
are found in high concentrations from an early stage (even in asymptomatic carriers in the
genetic forms) can help us to better identify subjects that could be candidates for future
therapeutic strategies.

Among the biomarkers available in clinical practice, RT-QuIC in cerebrospinal fluid, is
the diagnostic biomarker with the best performance for early diagnosis; preliminary results
of the same technique in other tissues, such as nasal mucosa, are also very promising.
However, along with the determination of RT-QulC, it is advisable to also request the
determination of 14-3-3 protein, t-tau and p-tau, since diagnostic sensitivity will be further
increased by their use without any decrease in specificity.

In recent years, there have been fewer advances in neuroimaging and neurophysiology
biomarkers, but they are no less relevant. Structural neuroimaging (MR should be used
preferably) within the etiological study of any neurodegenerative dementia is mandatory
and will therefore continue to have a relevant role. Neurophysiological tests will continue
to play an essential role in the diagnosis of sporadic or fatal familial insomnia, and the
electroencephalogram, which is non-invasive and inexpensive, can remain as an additional
diagnostic tool in centers with fewer resources.

For the time being, it does not seem that plasma biomarkers will be applied for the
diagnosis of prion diseases due to the inferior performance of all biomarkers studied in
the blood in comparison to cerebrospinal fluid to discriminate prion diseases from other
neurodegenerative dementias. However, they could be useful for monitoring the response
to a possible disease-modifying treatment, since assay protocols based on peripheral blood
biomarkers as a target response will always be easier to perform than those based on
CSF biomarkers.
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