Table 9.
AUC, accuracy, sensitivity, and specificity of each ML algorithm.
ML Models | 5-Fold Cross-Validation | 10-Fold Cross-Validation | ||||||
---|---|---|---|---|---|---|---|---|
AUC | Accuracy | Sensitivity | Specificity | AUC | Accuracy | Sensitivity | Specificity | |
Control vs. PSD | ||||||||
SVM_L | 0.690 | 0.600 | 0.748 | 0.557 | 0.706 | 0.636 | 0.775 | 0.542 |
SVM_R | 0.708 | 0.646 | 0.681 | 0.495 | 0.711 | 0.700 | 0.742 | 0.517 |
KNN | 0.659 | 0.538 | 0.743 | 0.352 | 0.681 | 0.579 | 0.742 | 0.425 |
RF | 0.685 | 0.538 | 0.619 | 0.557 | 0.696 | 0.560 | 0.767 | 0.600 |
VE | 0.675 | 0.615 | 0.676 | 0.552 | 0.646 | 0.650 | 0.708 | 0.517 |
Imp vs. NoImp | ||||||||
SVM_L | 0.830 | 0.771 | 0.600 | 0.883 | 0.797 | 0.775 | 0.650 | 0.950 |
SVM_R | 0.496 | 0.648 | 0.267 | 0.817 | 0.722 | 0.708 | 0.300 | 0.800 |
KNN | 0.635 | 0.681 | 0.300 | 0.950 | 0.674 | 0.742 | 0.300 | 0.850 |
RF | 0.760 | 0.743 | 0.467 | 0.867 | 0.624 | 0.717 | 0.500 | 0.950 |
VE | 0.784 | 0.743 | 0.533 | 0.867 | 0.747 | 0.733 | 0.450 | 0.90 |
Abbreviations: PSD = poststroke depression; Imp = PSD patients showing improvement in their symptoms; NoImp = PSD patients showing no symptom improvement; SVM_L = linear support vector machine; SVM_R = support vector machine with radial basis function kernel function; KNN = k-nearest neighbors; RF = random forest; VE = voting ensemble; AUC = area under the curve.