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Abstract

Both healthy and pathological brain aging are characterized by various degrees of cognitive 

decline that strongly correlate with morphological changes referred to as cerebral atrophy. These 

hallmark morphological changes include cortical thinning, white and gray matter volume loss, 

ventricular enlargement, and loss of gyrification all caused by a myriad of subcellular and cellular 

aging processes. While the biology of brain aging has been investigated extensively, the mechanics 

of brain aging remains vastly understudied. Here, we propose a multiphysics model that couples 

tissue atrophy and Alzheimer’s disease biomarker progression. We adopt the multiplicative split of 

the deformation gradient into a shrinking and an elastic part. We model atrophy as region-specific 

isotropic shrinking and differentiate between a constant, tissue-dependent atrophy rate in healthy 

aging, and an atrophy rate in Alzheimer’s disease that is proportional to the local biomarker 

concentration. Our finite element modeling approach delivers a computational framework to 

systematically study the spatiotemporal progression of cerebral atrophy and its regional effect on 

brain shape. We verify our results via comparison with cross-sectional medical imaging studies 

that reveal persistent age-related atrophy patterns. Our long-term goal is to develop a diagnostic 

tool able to differentiate between healthy and accelerated aging, typically observed in Alzheimer’s 

disease and related dementias, in order to allow for earlier and more effective interventions.
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1 INTRODUCTION

Brain aging is characterized by a myriad of biological, chemical, and mechanical hallmark 

features. While biological and chemical aging processes have been studied for decades, 

the mechanical aspects of brain aging remain understudied (Raz and Rodrigue, 2006; 

Hall et al., 2020). The brain undergoes several key morphological changes referred to as 

cerebral atrophy which manifests primarily as gray and white matter volume loss, ventricular 

enlargement, and sulcal widening (Fjell and Walhovd, 2010). While healthy brain aging is 

characterized by these changes, neurodegenerative diseases, such as Alzheimer’s disease 

(AD) and related dementias, exhibit a significant acceleration of brain aging mechanisms 

that cause a noticeable divergence from the healthy atrophy trajectory observed in cross-

sectional studies (Coupé et al., 2019). Figure 1 shows a qualitative comparison between a 

healthy brain (left hemisphere) and a brain exhibiting severe age-related atrophy features 

(right hemisphere). Strikingly, the changes in the aging brain become so pervasive that they 

are clearly visible in medical images (Lockhart and DeCarli, 2014). Despite each person’s 

brain looking differently, cross-sectional imaging studies reveal significant trends in volume 

loss, ventricular enlargement, cortical thinning, and the emergence of white matter lesions 

(Walhovd et al., 20112011; Suzuki et al., 2019).

Brain aging is a highly heterogeneous process that is strongly linked to local cellular 

composition as well as the gradual aggregation of neurotoxic proteins and waste products 

that fail to drain into the glymphatic system (Boland et al., 2018). The superposition 

of metabolic slowing and decreased cellular regeneration in most of the brain, leads to 

structural and functional degeneration that drives cognitive decline (Ownby, 2010; Mattson 

and Arumugam, 2018). AD is characterized by the accumulation of neurotoxic amyloid 

beta plaques that interfere with normal synaptic transmission (Reddy and Beal, 2008; Milà-

Alomà et al., 2020) and neurofibrillary tangles that disrupt axonal transport causing loss of 

signal transmission and axon death (Malpetti et al., 2020). Both proteins exhibit a prion-like 

behavior in that they recruit healthy protein, trigger their misfolding, and gradually form 

growing plaques and tangles (Jack and Holtzman, 2013). This leads to their systematic 

spread throughout the brain (Jack et al., 2013). While plaques spread extracellularly, tangles 

spread primarily along the structural axonal network and are able to eventually reach 

distant brain regions (Kim et al., 2019). This systemic infiltration of the brain has major 

implications for brain function such as memory, motor control, behavior, and ultimately 

death (Mattson, 2004).

From a mechanics perspective, brain aging is drastically understudied as it may provide 

new avenues to broaden our understanding of the relationship between cell- and tissue-level 

neurodegeneration and their aggregated effect on organ level morphological shape changes 

(Hall et al., 2020). Only a few studies have presented a mechanistic model of cerebral 

atrophy and are based on either non-rigid registration of two medical images (Karaçali and 

Davatzikos, 2006; Khanal et al., 2017) or the finite element method (Camara et al., 2006; 

Weickenmeier et al., 2018; Harris et al., 2019; Schäfer et al., 2019). Registration methods 

aim at minimizing intensity differences between two images by iteratively distorting a 

moving image to match the reference image. This minimization process may be subject 

to elasticity constraints derived from mechanics (Hamamci and Unal, 2013; Garcia et al., 
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2018). Finite element-based approaches are based on a constitutive model of volume loss 

that is implemented for two or three dimensional simulations (Budday and Kuhl, 2020). 

Harris et al. developed a two dimensional sagittal and coronal brain model to simulate 

volume loss representative for the brain’s response following a traumatic brain injury (Harris 

et al., 2019). The model is calibrated such that gray matter (GM) and white matter (WM) 

undergo different atrophy rates and shows an overall contraction of the cross-sectional brain 

image. The model does not capture aging-related ventricular enlargement, most likely due 

to the boundary conditions imposed on the model at the inferior edge of the brainstem. In a 

similar approach, Schäfer et al. presented a multiphysics model that couples protein spread 

in AD and volume loss (Schäfer et al., 2019). The model incorporates anisotropic diffusion 

of intracellular tau protein along the axon network. The two dimensional finite element 

(FE) model is characterized by an overall uniform area shrinking, although ventricular area 

marginally increases and cortical folds remain close together. In order to use computational 

modeling as a diagnostic tool to differentiate between healthy and pathological aging, 

simulation accuracy hast to be improved.

Here, we expand on a multiphysics model of cerebral atrophy which allows to differentiate 

between healthy and pathological aging (Weickenmeier et al., 2018; Schäfer et al., 2019). 

We employ classical continuum theory and model cerebral atrophy as negative growth 

via a multiplicative split of the deformation gradient into an atrophy part and an elastic 

part (Schäfer et al., 2019). Accelerated aging is driven by the gradual accumulation of an 

AD biomarker. We assume the atrophy factor to increase proportional to the biomarker 

concentration which we diffuse in the brain via a reaction-diffusion model, see Section 2. 

Using a subject specific FE model, we simulate healthy and AD-related brain aging and 

compare our model’s response to cross-sectional data reported in literature. Our comparison 

focuses on the hallmark features of cerebral atrophy and shows good qualitative agreement 

with the persistent trends observed in large-scale imaging studies.

2 METHODS

2.1 Multiphysics Model of Cerebral Atrophy

Our goal is to identify differences in spatiotemporal atrophy patterns characteristic for 

healthy and AD-related brain aging. Therefore, we formulate a multiphysics approach that 

couples mechanics-driven volume loss and the biology-driven spreading of toxic proteins 

(Weickenmeier et al., 2018). In our constitutive model, we pose that healthy aging is 

linked to a steady volume loss in gray and white matter tissues, while AD accelerates 

atrophy proportional to the local toxic protein level (Schäfer et al., 2019). We solve our 

continuum problem on an anatomically accurate finite element (FE) brain model and 

quantify hallmark features of cerebral atrophy including volume loss, cortical thinning, 

ventricular enlargement, and sulcal widening.

2.1.1 Continuum Model for Protein Spread—AD is characterized by the 

accumulation and spreading of misfolded, neurotoxic proteins (Jucker and Walker, 2018). 

Post-mortem studies on AD patients have shown that protein spread follows a characteristic 

spatial pattern that is characterized by consistent onset locations and spreading pathways 

Blinkouskaya and Weickenmeier Page 3

Front Mech Eng. Author manuscript; available in PMC 2022 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Jack et al., 2013). Mathematically, these progression patterns are well approximated 

by a reaction-diffusion model known as the Fisher-Kolmogorov equation (Fisher, 1937; 

Kolmogorov et al., 1937). We define the concentration of misfolded protein, c, that spreads 

via linear diffusion.

∂c
∂t = dΔc + α c [1 − c], (1)

where d is the isotropic diffusion constant, Δ c denotes the Laplacian of the protein 

concentration c, and α controls the growth rate of the concentration. For a derivation of 

the kinetic equations governing the prion-like behavior of proteins linked to AD, we refer 

the reader to our previous works (Schäfer et al., 2019; Weickenmeier et al., 2019). In brief, 

we derive a kinetic model that accounts for two configurations of the protein, a healthy state 

and a misfolded state. We then derive a kinetic equation that balances the total amount of 

healthy protein p and misfolded protein p, as a function of production rate of healthy protein 

k0, clearance rate of healthy and misfolded proteins k1 k1, and conversion of healthy to 

misfolded protein k12.

∂p
∂t = k0 − k1 p − k12pp and ∂p

∂t = − k1p + k12pp . (2)

Through introduction of the misfolded protein concentration c, which may vary between 0 

and 1, equilibrium considerations, and re-parameterization of the governing Eq. 2, we arrive 

at the partial differential Eq. 1, with

α = k12
k0
k1

− k ⋅ 1 . (3)

Model parameters d and α allow to adjust for the amount of spread and progression speed of 

misfolded proteins observed in individual subjects affected by varying AD severity.

2.1.2 Continuum Model for Cerebral Atrophy—To model the mechanical behavior 

of the brain, we use the nonlinear equations of continuum theory and introduce the mapping 

φ from the undeformed, unloaded configuration ℬ0 at time t0 to the deformed, loaded 

configuration ℬt at time t. We adopt the conventional notation, x = φ(X, t), where x ∈ ℬt
denotes the position vector in the deformed configuration at time t and X ∈ ℬ0 denotes the 

position vector of the initial configuration at time t0. We characterize local deformations by 

introducing the deformation gradient, F(X, t) = ∇Xφ (X, t) and local volume changes by its 

determinant, J = det (F). Following previous work, we model cerebral atrophy as volumetric 

shrinking and use the classical approach of splitting the deformation gradient into an elastic 

part Fe and an atrophy part Fa (Schäfer et al., 2019). The multiplicative decomposition of the 

deformation gradient, F = ∇Xφ, yields

F = Fe ⋅ Fa with J = JeJa . (4)
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The multiplicative split extends to the Jacobian J which breaks down into an elastic volume 

change Je = det(Fe) and volume loss by cerebral atrophy Ja = det(Fa). To characterize the 

hyperelastic material behavior of brain tissue, we adopt the neo-Hookean strain energy 

density function Ψ0 as the atrophy-weighted elastic stored energy Ψ, which depends 

exclusively on the elastic part of the deformation gradient,

Ψ0 = JaΨ,  with Ψ = 1
2μ Fe:Fe − 3 − 2ln Je + 1

2λln2 Je . (5)

Parameters μ and λ are the standard Lamé coefficients which can be expressed via Young’s 

modulus E and the Poisson’s ratio ν in the elastic limit as λ = Eν/[[1 + ν][1 − 2ν]] 

and μ = E/[2[1 + ν]. Following arguments of thermodynamics, we can derive the first 

Piola-Kirchhoff stress tensor P,

P = dψ0
dF = Ja dψ

dF e = Ja μF e + λln Je − μ F eT . (6)

The Piola-Kirchhoff stress tensor is governed by the quasistatic balance of linear 

momentum,

0 = Div(P) + Fφ in Ω, (7)

where Ω denotes the domain which is the brain. We assume that we can neglect external 

body forces Fφ = 0. In our multiphysics framework here, the atrophy problem is coupled 

to the protein spreading problem through the atrophy part of the deformation gradient 

Fa, which is considered to be a function of age and biomarker concentration c. More 

specifically, we assume that gray and white matter atrophy is purely isotropic,

Fa = ϑ3 I and Fe = F
ϑ3 ,  (8)

where we introduced a measure for volume loss ϑ which is related to cerebral atrophy Ja,

ϑ = Ja and Je = J
ϑ .  (9)

We propose a constitutive model for the evolution of the atrophy measure ϑ that allows 

to differentiate between healthy brain aging and accelerated aging observed in many 

neurodegenerative diseases such as AD (Weickenmeier et al., 2018; Schäfer et al., 2019). 

As such, we introduce a health atrophy rate, Gh, as well as a biomarker concentration, c, 

dependent atrophy rate, Gc, which allows us to capture accelerated cerebral atrophy due 

to the progressive accumulation of misfolded, neurotoxic protein. Our model is formulated 

such that natural atrophy is accelerated if the biomarker concentration, c, exceeds a critical 

threshold, ccrit, such that the evolution equation reads.
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ϑ̇ = [1 + γ(c)]Gℎ =
Gℎ if c < ccrit 

Gℎ + Gc if c ≥ ccrit ,

where γ(c) = Gc
Gℎ

ℋ c − ccrit  . 
(10)

Here, ℋ c − ccrit  denotes the Heaviside step function and marks the transition from healthy 

to accelerated, or diseased, atrophy at ccrit. Healthy and diseased atrophy rates, Gh and 

Gc, may be treated as subject-specific aging parameters that can be tuned to capture their 

specific progression behavior.

2.2 Finite Element Implementation

We implemented our continuum model in the finite element software Abaqus (Simulia, 

Providence RI) and solved our coupled problem as a thermo-mechanical analysis. We add 

the nonlinear source term of the protein spreading equation (Raz and Rodrigue, 2006) to the 

standard heat transfer problem using the subroutine HETVAL which requires the flux, fc= α 
c [1 – c] and rate of change of heat flux per temperature, dfc/dc = α[1 − 2c]. Similarly, we 

incorporate our constitutive material model using the user subroutine UMAT which requires 

Cauchy stress and its Jaumann rate. To determine Cauchy stress at the integration point 

level, we calculate the atrophy factor via a finite difference scheme,

ϑ̇ = ϑ − ϑn
Δt ,  such that ϑ = ϑn + [1 + γ(c)]GℎΔt, (11)

where (∘) and (∘)n denote the unknown quantity at t = tn+1 and the converged quantity at the 

previous time step t = tn, respectively, and Δt = t − tn > 0 is the current time increment. Here, 

we approximate the Heaviside step function ℋ in γ(c) Eq. 10) as a smooth function,

ℋ c − ccrit = 1
1 + exp β c − ccrit  , (12)

where β controls the transition between the two states. We store the converged atrophy factor 

as a state variable for post-processing, then calculate the atrophy part and the elastic part of 

the deformation gradient Fa and Fe (Eq. 4). We then calculate Cauchy stress, σ = J−1PFT, 

and its Jaumann rate,

cabaqus  = c + 1
2[σ ⊗ I + I ⊗ σ + σ ⊗ I + I ⊗ σ], (13)

with the consistently linearized tangent stiffness matrix, c,

c = 1
Je I ⊗ Fe : ∂2ψ

∂Fe ⊗ ∂Fe : I ⊗ FeT , (14)

where we used the tensor operators • ⊗ ∘ ijkl = • ik ⊗ ∘ jl and 

• ⊗ ∘ ijkl = • il ⊗ ∘ jk.
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2.3 Finite Element Model Generation

We created an anatomically accurate FE brain model from T1-weighted magnetic resonance 

images of a healthy adult male brain. We used ScanIp from Simpleware (Synopsis Inc., 

Mountain View CA) to semi-automatically segment the regions of interest and generate 

the FE mesh. Our model differentiates between gray matter (GM), white matter (WM), the 

hippocampus, ventricles, and cerebrospinal fluid (CSF). Figure 2A) shows representative 

sagittal, axial, and coronal MRI slices of the subject’s brain, as well as the volumetric 

reconstructions of the respective substructures. We built our model sequentially and began 

segmentation with reconstruction of the ventricles, followed by WM, GM, and finally 

CSF. We avoided reconstructing the skull by defining zero-displacement Dirichlet boundary 

conditions on the peripheral surface of CSF. Here, we merged the lateral ventricles, 

third ventricle, and fourth ventricle into a single volume in order to quantify ventricular 

enlargement, one of the hallmark features of brain aging. We paid close attention to the 

segmentation of WM tissue to accurately capture individual sulci and gyri across all lobes. 

To realistically simulate cortical thinning and sulcal widening, we must prevent self-contact 

of the cortical layer. Therefore, we inflated the WM segmentation by a constant thickness 

of 3 mm to obtain the GM layer. We then manually modified the GM layer to remove 

self-contact between lobes and folds in each slice. Ultimately, we aimed for a balance 

between agreement of segmentation and MRI on the one hand, and obtaining a FE mesh that 

may realistically predict structural shape changes of the brain on the other. Following WM 

and GM segmentation, we isolated the hippocampus as a separate substructure, given its 

relevance in AD as one of the first brain structures to markedly shrink. Finally, we inflated 

the GM layer by 5 mm and applied smoothing to obtain the CSF layer. This layer allows us 

to anchor the brain in our atrophy simulations while minimizing external forces on the GM 

layer.

Model Properties: Our model consists of 1,361,277 tetrahedral elements: 7,925 elements 

for the ventricles, 2,898 elements for the hippocampus, 121,904 elements for WM, 172,238 

elements for GM, and 98,755 elements for CSF. We restricted element edge length to vary 

from 2.0 to 2.3 mm to minimize element distortion and obtain similarly sized elements. 

We imported the mesh into Abaqus for analysis. Specifically, we use linear tetrahedral 

elements C3D4 and define two simulation cases. We simulate healthy aging by simply 

solving the atrophy problem and simulate accelerated aging by running a thermo-mechanical 

analysis. In both cases, we only prescribe zero-displacement Dirichlet boundary conditions 

to the outer surface of the CSF layer to fix the model in space. In the AD case, we 

additionally prescribe an initial concentration of c0 = 0.3 in the hippocampus. We used 

model parameters from our previous experimental and computational studies (Schaer et al., 

2008; Weickenmeier et al., 2018; Weickenmeier et al., 2016) and summarize the model 

parameters for the atrophy and protein problem (Eq. 1, Eq. 5, Eq. 10) in Table 1. To assess 

long-term brain shape changes we simulate an age range of 40 years. Literature provides 

a myriad of large cohort studies that assess volumetric changes across this age-range 

(Apostolova et al., 2012; Coupé et al., 2019). Moreover, this allows us to review the impact 

of AD-onset time by varying the critical prion load necessary to trigger accelerated aging.
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2.4 Data Analysis

We wrote custom python codes for post-processing of our simulations in order to determine 

volume ratios, anterior-posterior variations of the gyrification index, sulcal widening, and 

cortical thinning.

To calculate relative volume ratios of WM, GM, hippocampus, and ventricles, we sum the 

volume of all elements belonging to one of these subregions and divide by the total brain 

volume; we repeat this step for each time increment to obtain longitudinal changes as shown 

in Figure 7.

The gyrification index (GI) is determined by slicing our 3D model into 160 coronal slices (1 

mm spacing between slices) and creating a binary image showing the domain associated 

with brain tissues, i.e., GM, WM, hippocampus, and ventricles wherever present. The 

subsequent steps are based on functions in the scikit-image processing package. Specifically, 

we determine the convex hull that fully encapsulates the brain domain to obtain the 

smoothed outer circumference and extract the contour tightly lining the pial surface. We 

repeat this process for each slice and determine the gyrification index as the local ratio 

between exact pial surface length and smooth outer circumference, as shown in Figure 11.

Our cortical thickness measurement is based on the approach used in FreeSurfer (http://

surfer.nmr.mgh.harvard.edu) (Han et al., 2006). We create triangulated surfaces of the outer 

GM surface and the outer WM surface and define cortical thickness tc as the average of 

two distance measures, dij and djk. We iterate over every node of the GM surface, ni, 

identify the closest node on the WM surface, nj, and save the Euclidian distance between 

these two nodes as dij. We repeat this search for that particular WM node, nj, and save 

the Euclidian distance between nj and GM node nk as distance djk. We ultimately obtain a 

cortical thickness measure at each GM surface node as tc = 0.5[dij + djk] and plot the result 

as a surface plot, as shown in Figure 8. We export nodal coordinates of our surfaces in the 

undeformed and the deformed configuration in order to determine cortical thickness at a 

young and an old age.

We introduce sulcal widening as the volume increase in the fluid-filled cavity of five 

prominent sulci, i.e., the intra-parietal sulcus, the superior temporal sulcus, the central 

sulcus, the sylvian fissure, and the superior frontal sulcus, as shown in Figure 10. Similar to 

determining the relative volume fractions, we sum the volume of all elements of a particular 

sulcal fold for each time increment of our simulation.

3 RESULTS

We evaluate our simulations with respect to hallmark features of cerebral atrophy and aim 

at identifying key differences between healthy brain aging and accelerated aging associated 

with AD.

3.1 Spatiotemporal Progression of Toxic Proteins in Alzheimer’s Disease

We simulate the spreading of neurofibrillary tangles (NFT) consisting of misfolded tau 

protein based on the toxic protein spreading model described in §2.1. Pathological 
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studies have shown that NFTs first appear in the entorhinal cortex and subsequently 

spread throughout the brain. Figure 3 shows the spatiotemporal propagation of the NFT 

concentration through the brain. We observe that the hippocampus is affected first, then 

infiltrates the temporal lobe next, followed by the parietal lobe, occipital lobe, and in the late 

stages reaches the frontal lobe. Our observations are in line with cadaver studies that show 

a similar progression pattern of NFTs (Jucker and Walker, 2018). The coronal view shows a 

highly symmetric protein spread in the left and right hemisphere; from the axial and coronal 

cross-sections, it can be seen that deep gray matter structures tend to saturate with NFTs 

first. Early deep gray matter involvement, such as putamen and thalamus (de Jong et al., 

2008), is linked to well-known early symptoms of AD, including short-term memory loss, 

difficulty performing daily tasks, and mood changes. The delay between onset and cortical 

layer involvement is part of the long pre-symptomatic phase of AD (Hanseeuw et al., 2019) 

and consistent with imaging studies that observed spatially heterogeneous atrophy patterns 

(Anderson et al., 2012).

3.2 Spatiotemporal Distribution of the Atrophy Factor in Healthy Brain Aging and 
Alzheimer’s Disease

The atrophy model allows us to differentiate between healthy and AD aging. On 

top of an age-proportional atrophy factor in healthy aging, we added additional toxic 

protein concentration-related atrophy to simulate AD. Figure 4 shows the spatiotemporal 

distribution of the atrophy factor, i.e. the volume shrinking fraction, which ranges from 1 (no 

shrinking) to 0.8 (maximum volume loss). We differentiate between WM and GM atrophy 

rates due to tissue specific neurodegenerative processes. Therefore, GM and WM have the 

same atrophy factors in healthy aging, respectively. In AD, we see a spatially heterogeneous 

distribution with maximum atrophy in deep WM and GM structures and in the frontal lobe. 

The coronal view shows that the cortex exhibits an atrophy gradient that ranges from the 

temporal lobe to the frontal lobe; in WM we observe a gradient ranging from the temporal 

lobe to the parietal lobe. Both are consistent with imaging studies investigating regional 

atrophy rates in the cortex (McDonald et al., 2009).

3.3 Brain Deformations in Healthy Brain Aging and Alzheimer’s Disease

Figure 5 shows the temporal progression of the predicted deformation field and 

corresponding equivalent structural image for healthy aging and AD for representative 

axial and coronal sections. We observe maximum displacement magnitudes of 7.17 mm for 

healthy aging and 8.58 mm in AD. Maximum displacements concentrate around the lateral 

ventricles which undergo significant enlargement, especially in the AD brain. In comparison 

to the atrophy factor, which affects the hippocampus first, ventricles, and the surrounding 

white and gray matter regions, appear to deform early, followed by cortical deformations. 

For late stages we observe higher displacement magnitudes for the GM layer in comparison 

to deep white matter structures. The structural scans reveal hallmark features of cerebral 

atrophy: hippocampal shrinking, early onset of deep GM shrinking, cortical thinning, and 

ventricular enlargement. We generally observe that these features are exacerbated in AD 

in comparison to healthy aging. These observations are strongly correlated with medical 

imaging based studies that observe hippocampal shrinking, cortical thinning, and ventricular 

enlargement as early predictors for AD (Apostolova et al., 2012). Previous computational 

Blinkouskaya and Weickenmeier Page 9

Front Mech Eng. Author manuscript; available in PMC 2022 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



studies typically prescribe a zero-boundary condition on nodes of the brainstem in order to 

fix the model in space (Harris et al., 2019; Schäfer et al., 2019). These boundary conditions 

significantly impact the simulated deformation field and limit these models’ abilities to 

resolve temporospatial patterns or critical features such as ventricular enlargement. Here, 

the cerebrum is loosely tethered to the skull via the ultrasoft CSF layer which allows 

for physical features to emerge naturally. Strikingly, we observe global brain involvement 

despite scattered atrophy features.

3.4 Ventricular Enlargement in Healthy Brain Aging and Alzheimer’s Disease

Figure 6 shows the gradual expansion of the lateral ventricles for healthy aging and AD. We 

observe significantly larger ventricles in AD, which increase by a factor 2.66, in comparison 

to healthy aging, where ventricles increase by a factor 1.76. The simulation predicts a 

predominantly uniform inflation of the entire ventricular cavity in healthy brain aging at 

a moderate expansion rate. In AD, we observe consistent overall ventricular dilation, but 

notice a significant concentration of maximum expansion in the body of the ventricles 

and the posterior horns. This observation is consistent with a medical imaging study that 

reported a temporal pattern that starts in the occipital horn, then affects the body, and 

ultimately reaches the frontal horns (Apostolova et al., 2012). The sagittal view of the brain 

shows the corresponding white and gray matter loss. As the ventricles expand, we observe a 

smoothing of the superior horn, temporal horn, and occipital horns with an overall decrease 

in curvature of the ventricular surface.

4 DISCUSSION

4.1 The Origin of Brain Volume Loss

Cerebral atrophy is caused by diverse tissue damage mechanisms that culminate in brain 

volume loss (Oschwald et al., 2020; Blinkouskaya et al.). While healthy aging and AD share 

some of the gray and white matter damage mechanisms there is a distinct point during 

the lifespan where the atrophy trajectory in AD diverges from the healthy model due to 

accelerated neurodegeneration (Callaghan et al., 2014; Coupé et al., 2019). Most common 

damage mechanisms are neurodegeneration in GM (Farokhian et al., 2017), demyelination 

in WM (Vernooij et al., 2008), activation of microglia cells (Von Bernhardi et al., 2015), and 

cerebral small vessel disease which is associated with microbleads, lacunes, and perivascular 

spaces (Cuadrado-Godia et al., 2018).

In gray matter, neurons undergo morphological changes linked to a reduction in the 

complexity of dendrite arborization (Dickstein et al., 2007). The underlying dendritic 

shortening and loss of dendritic spines leads to a progressive decrease in synaptic density 

and synaptic transmission with major implications on cognitive decline (Dickstein et al., 

2013). Unlike healthy aging, AD is accompanied by neuron death due to the ever-increasing 

presence of neurotoxic proteins such as amyloid beta plaques and neurofibrillary tangles 

(Serrano-Pozo et al., 2011). GM volume loss is therefore exacerbated in AD and manifests 

in accelerated atrophy rates (Anderson et al., 2012) and increased cortical thinning (Du et 

al., 2007). It is well established today that the very first morphological changes associated 
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with AD appear in the entorhinal cortex and hippocampus at least 10 years before the 

diagnosis (Dickstein et al., 2007).

In WM the most prevalent tissue changes are characterized by partial loss of myelin, axons, 

and oligodendroglial cells (Xiong and Mok, 2011); mild reactive astrocytic gliosis linked to 

WM lesions (Rodríguez-Arellano et al., 2016); arteriolosclerosis of small vessels resulting 

in incomplete ischemia and cell death (Pantoni, 2002); and the emergence of perivascular 

spaces that interfere with the glymphatic drainage of the brain’s waste products (Rasmussen 

et al., 2018; Wardlaw et al., 2020).

During normal aging, amyloid beta plaques can be found in the frontal lobe, hippocampus, 

and entorhinal cortex of healthy elderly. In addition, neurofibrillary tangles, although much 

rarer than plaques, are commonly found in the medial temporal areas after 50 years of age 

(Dickstein et al., 2007). In AD, however, the progressive aggregation of plaques and NFTs 

has detrimental effects on neuronal morphology and synapses. Unlike in normal aging when 

neurons shrink, AD triggers sustained neuronal loss in neocortical and entorhinal regions of 

up to about 30% (Mattson, 2004).

4.2 Atrophy Dynamics During Aging

Figure 7 shows brain volume fractions of GM, WM, and ventricles representative of a brain 

aged 40 years and older. We extracted atrophy data from Coupe et al. who identified volume 

changes from a cross-sectional study with 4,329 subjects (2,944 healthy subjects and 3,262 

subjects with AD and mild cognitive impairment) (Coupé et al., 2019), see dashed lines. 

We focus on brain aging and calibrate our model parameters such that our model provides 

good qualitative agreement for healthy brain aging, (Figure 7A). Our model successfully 

reproduces GM and WM volume loss and ventricular enlargement. The offset between GM, 

WM, and ventricular volume fractions is due to comparison of a personalized brain model 

with cross-sectional data. More importantly, the numerically observed atrophy trajectories 

paint a representative picture that demonstrates the ability of our modeling approach to 

predict shape changes associated with brain aging. Our model predicts GM volume fraction 

to drop from 52.36% at age 40 years to 50.49% at age 80 years in healthy aging and 49.34% 

in AD; WM volume fraction to drop from 47.63% at age 40 years to 40.29% at age 80 years 

in healthy aging and 32.95% in AD; ventricular volume fraction increases from 3.22% at age 

40 years to 5.66% at age 80 years in healthy aging and 8.57% in AD. AD clearly exacerbates 

tissue loss and exhibits an accelerating atrophy rate with increasing age, (Figure 7B). Tissue 

lost due to atrophy is replaced by fluid (volume fraction shown in grey) linked in one part 

to ventricular enlargement and in another part to sulcal widening and loss of gyrification 

(Scahill et al., 2003).

4.3 Cortical Thinning

The cortical layer is subject to spatially heterogeneous age-related cortical thinning. The 

deterioration of dendritic connections and the loss of GM neurons cause volume loss that 

can be broken down into cortical thickness and surface area. These two properties do not 

necessarily follow each other chronologically (Dickerson et al., 2009). The differentiation 

between both measures has proven useful, however, because of increased sensitivity with 
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respect to age-related changes (Storsve et al., 2014; Dotson et al., 2016). In our computer 

model, we observe a mean cortical thickness of 2.79 mm in the young brain and 2.64 mm 

in the aged brain. In Figure 8, we report our model’s brain thickness which ranges from 

1.5 to 4.3 mm in the young brain and decreases to a range from 1.3 to 3.9 mm in the 

aged brain. These values compare well to results presented by Fjell et al. who observed 

a progressive decline in overall cortical thickness in their three subject groups aged < 40, 

40–60, and > 60 (Fjell et al., 2001; Fjell and Walhovd, 2010). They report that sulci undergo 

more pronounced thinning than gyri and that thinning is unevenly distributed across the 

cortex. Based on data extracted from Fjell et al., the cortex appears to thin by roughly 0.1% 

per year, or 0.00745 mm, which corresponds to an overall thickness decrease of about 0.3 

mm over the course of 4 decades for subjects aged > 40 (Fjell et al., 2015). The linearly 

decreasing relationship between cortical thickness and age across several datasets provides 

strong support for our modeling approach which assumes a constant atrophy rate for all 

ages (Fjell et al., 2001; Du et al., 2006). Despite significant efforts to identify common 

thinning trajectories in the human brain, cortical thinning is driven by molecular and 

cellular processes that are not limited to individual regions. Cross-sectional studies report 

that the frontal cortices are most strongly affected and that the medial-temporal cortices, 

i.e., parahippocampal and entorhinal cortex, are moderately affected. Lateral inferior parts 

of the temporal lobes show least thinning and the superior parts of the lateral temporal 

lobes exhibits more pronounced thinning than the inferior parts (Fjell et al., 2001; Fjell 

and Walhovd, 2010). In our model, we observe slightly higher thinning in the frontal and 

temporal region, while the occipital lobe thins less. In aging research the temporal lobes 

play a significant role because they are functionally related to the hippocampus and other 

GM structures that are associated with memory loss and cognitive decline (Dickerson et al., 

2009; Dhikav et al., 2014). In the end, our model leads to fairly similar cortical thinning 

across the entire brain due to the prescribed constant GM atrophy rate. Coupling to the 

spreading of neurotoxic proteins may lead to a stronger heterogeneity in terms of thinning.

4.4 Hippocampal Shrinking and Ventricular Enlargement

The hippocampus is one of the, if not, the earliest cortical substructures to undergo 

detectable atrophy in Alzheimer’s disease and related dementias (Henneman et al., 2009). 

Hippocampal changes can be detected as early as 10 years prior to the onset of symptoms 

and is therefore considered to be a strong indicator for abnormal aging processes (Ritchie et 

al., 2016; Kinnunen et al., 2018). Hippocampal shrinking precedes most cortical changes by 

up to 5 years and is reported to shrink by 5.2% per year based on data from cross-sectional 

brain imaging studies (Thompson et al., 2004; Henneman et al., 2009). It is primarily 

linked to de-arborization of subcortical GM neurons (Esiri, 2007; Dickstein et al., 2013). In 

comparison to healthy aging, Alzheimer’s disease accelerates neuronal degeneration due to 

accumulation of neurotoxic amyloid beta plaques and neurofibrillary tangles (Bobinski et 

al., 1999). Figure 9 shows our model’s predicted volumetric shrinking for healthy aging and 

AD. We observe a decrease of the hippocampal brain volume fraction by 8.87% for healthy 

aging and by 24.1% for AD. The direct comparison illustrates the distinct difference in the 

atrophy trajectory in accelerated aging in AD observed in cross-sectional studies (Coupé et 

al., 2019).
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The brain tissue volume lost due to cerebral atrophy, is replaced by fluid. Structurally, 

this manifests in significant ventricular enlargement (Pagani et al., 2008; Apostolova et 

al., 2012) and an increase in the space between folds, i.e., sulcal widening (Liu et al., 

2013; Jin et al., 2018). Ventricular enlargement is one of the most prominent features in 

longitudinal medical images and represents a major change in brain topology (Sengoku, 

2020). Mechanically, the extent of ventricular enlargement is significant and will lead to 

high loads on the membrane separating ventricle and cerebrum. The ependymal cells lining 

the ventricular wall are likely to be fatigued with age, leading to CSF leakage into white 

matter and causing tissue degeneration, such as leukoaraiosis in the vicinity of ventricular 

horns (Milhorat et al., 1970; Todd et al., 2018). Our model predicts a uniform volumetric 

expansion of the entire ventricles which is reflective of findings from imaging studies (Salat 

et al., 2009; Coupé et al., 2019). Our simulation is able to reproduce this deformation 

mode due to our physically motivated boundary conditions on the FE model. Instead of 

constraining individual nodes in the brainstem (Harris et al., 2019; Schäfer et al., 2019), 

here, we suspend the brain inside the skull by mimicking CSF as an ultrasoft, highly 

compressible solid. The suspension of the shrinking cerebrum allows for the ventricles to 

expand. This leads to a fairly symmetric displacement field with respect to the left and right 

hemisphere. In our model, the initial ventricular volume corresponds to 2.37% of the total 

intracranial volume. In our simulation, we observe an increase to 4.15% of total intracranial 

volume, or a 75.03% volume increase in healthy aging; In AD, ventricular volume fraction 

increases to 6.28%, or an overall volume increase by 164.98%. Our data aligns well with 

data reported by Coupe et al. that observe significant acceleration of ventricular expansion 

at age 40 (Coupé et al., 2019). Microstructurally, ventricular expansion is accompanied by 

a progressive deterioration of the ventricular wall which is composed of ciliated ependymal 

cells that undergo significant cellular stretch during each pulsation cycle. Over the course of 

a lifetime, these cells accumulate significant mechanical fatigue and cause membrane failure 

(Milhorat et al., 1970; Jiménez et al., 2014). The subsequent leakage of CSF into white 

matter tissue causes leukoaraiosis and white matter deterioration.

4.5 Sulcal Widening and Loss of Gyrification

Ventricular enlargement is accompanied by an increase in the space between folds and 

loss of gyrification (Hamelin et al., 2015; Aso et al., 2020). This feature is less prominent 

on medical images, but is another indicator for the significant topological changes of the 

brain (Plocharski et al., 2016; Shen et al., 2018). From a FE modeling perspective, creating 

an anatomically accurate mesh that properly capture sulcal widening represents a major 

challenge. Most folds touch each other such that the segmentation process typically does 

not produce a GM surface without self-contact. This leads to node sharing of elements that 

belong to different folds and ultimately, prevents models to allow for separation of the GM 

surface upon tissue atrophy. Here, we specifically address this issue and produced a FE mesh 

that has minimal node sharing between neighboring folds. Therefore, our model exhibits 

this hallmark feature of cerebral atrophy and allows us to compare model response with 

imaging data. Jin et al., for example, report that the mean sulcal width between primary 

sulci increases by ~ 17.3% from 1.27 ± 0.17 mm in middle-aged persons to 1.49 ± 0.20 

mm in older adults (71). In Figure 10 we report sulcal widening, a measure of the volume 

increase of the fluid between folds. We segment these volumes for five prominent sulci, the 
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intra-parietal sulcus, the superior temporal sulcus, the central sulcus, the sylvian fissure, and 

the superior frontal sulcus (Kochunov et al., 2005; Liu et al., 2013). We observe that the 

overall volume change of all sulci follow a similar trend and increase by up to 40%. Similar 

to previous work, the sylvian fissure exhibits the largest increase in width and is noticeably 

larger in individuals with AD in comparison to cognitively normal subjects (Park et al., 

2013; Cai et al., 2017). Overall, we observed that the technical challenges associated with 

detailed geometric interpretation of sulcal changes, such as sulcal widening and changes in 

sulcal depth, represent a barrier to serving as a reliable biomarker for morphological changes 

in the aging brain. Especially, subject-specificity will limit absolute comparisons with any 

healthy or diseased cohort (Shen et al., 2018).

The gyrification index (GI), defined as the ratio between actual GM surface divided by the 

smooth surface surrounding the cortex, is another parameter that is closely linked to the 

topology of brain folds (Madan, 2021). In Figure 11 we show the gyrification index for 

164 coronal slices calculated for the healthy young brain, healthy aged brain, and the brain 

affected by Alzheimer’s disease. The GI is highest across the brain for the young brain. 

With aging or AD, the GI decreases due to decreased folding. We observe the highest GI in 

the temporal lobe with 3.28 for young, 3.27 for aged, and 3.19 for the AD brain; minimum 

GI is observed in the frontal lobe with 1.22 in young, 1.06 in aged, and 0.64 in the AD 

brain. We observe a mean GI of 2.48 ± 0.38 in the young, 2.42 ± 0.4 in the aged, and 

2.32 ± 0.44 in the AD brain. The most prominent and persistent drop in GI is observed 

in the temporal and parietal lobes which are heavily affected by early infiltration of our 

neurotoxic biomarker and corresponding accelerated atrophy. Our reported values compare 

well with cross-sectional studies reported in literature (Jockwitz et al., 2017; Madan, 2021). 

In a cross-sectional study by Cao et al., the GI drops from 3.4 at age 10 to 2.6 at age 85, 

following the curve GI = a + b ln (A + c), with age A and parameters a = 3.4, b −0.175, and 

c = −2.9991 (Cao et al., 2017). According to this formula, GI drops from 2.8 at age 40 to 2.6 

at age 80, or by 4.5% between ages 40 and 80. Our model predicts a 2.7% change for the 

most folded coronal slice.

4.6 Limitations

Our computational model is based on several assumptions and thus not without limitations. 

For example, when creating the FE mesh, we uniformly inflate the WM surface to create 

a GM layer which results in a fairly homogeneous GM thickness across the brain. In 

reality, the gray matter layer is characterized by thickness differences between sulci and 

gyri (Lin et al., 2021) and varies across the brain (Fischl and Dale, 2000). We chose this 

approach due to the necessity to avoid self-contact between GM folds in order to capture 

sulcal widening during atrophy. Furthermore, our current constitutive model differentiates 

between GM and WM atrophy rates, but assumes a uniform parameter across the brain. 

Cross-sectional studies have demonstrated significant regional variation in brain shrinking 

rates in healthy aging and AD (Fox and Schott, 2004; Fjell et al., 2014). The coupling of 

biomarker concentration and atrophy rate in our model introduces, however, a degree of 

heterogeneity that exacerbates spatiotemporal differences between healthy aging and AD. 

Our model shows good agreement with cross-sectionally observed image-based atrophy 

patterns. Going forward, there is a need to develop a validation approach that allows to 
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calibrate model parameters against longitudinal imaging data of individual subjects (Rusinek 

et al., 2003). To that end, we will develop a non-rigid registration technique that delivers the 

full-field displacements of the brain between two images (Wang et al., 2021). And lastly, 

AD is characterized by two different protein spreading mechanisms: connectivity-based 

spread via intracellular diffusion of neurofibrillary tangles along the axon network and 

proximity-based spread of amyloid beta via extracellular aggregation of plaques (Jack 

and Holtzman, 2013). Here, we only consider isotropic diffusion through the bulk tissue. 

As a next step, we will integrate the diffusion tensor imaging-based tractome to more 

accurately represent intracellular spreading of tau which has shown to better correlate with 

neurocognitive decline (Raj et al., 2015).

5 CONCLUSION

Brain shape undergoes many changes throughout life. Advanced aging is characterized 

by progressive atrophy which appears as brain volume loss, cortical thinning, sulcal 

widening, and ventricular enlargement. These morphological changes are part of healthy 

brain aging and it remains unclear how these changes relate to cognitive decline. In 

case of accelerated aging, such as in neurodegenerative diseases like AD, these structural 

changes are exacerbated due to the presence of neurotoxic proteins that spread through the 

brain. Here, we developed a constitutive framework for the simulation of three-dimensional 

morphological changes of the brain in healthy aging and AD. Our anatomically accurate 

FE model nicely captures volume loss, GM thinning, ventricular enlargement, and loss of 

gyrification. We compare our numerical results to commonly studied structural properties 

extracted from medical images and demonstrate that our generalized model shows good 

agreement with cross-sectional aging data. As a next step, we will utilize our modeling 

approach to create subject-specific FE models and validate our simulations against their 

longitudinal imaging data. This work has the potential to systematically investigate the 

impact of gray and white matter aging mechanisms, such as cerebral small vessel disease, 

leukoaraiosis, lacunes, and the dearborization of neurons, on the evolving morphology of the 

healthily and pathologically aging brain.
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FIGURE 1 |. 
The aging brain undergoes cerebral atrophy which describes the morphological shape 

changes observed in both healthy and pathological aging. They include neurodegeneration, 

cortical thinning, volume loss, white matter degeneration, sulcal widening, and ventricular 

enlargement. As we age, subcellular and cellular aging mechanisms gradually result in these 

organ-level changes that are visible in cross-sectional imaging studies. Gradually growing 

availability of longitudinal data provides new insight into progressive brain deterioration 

over several years and allows to quantify personalized progression of brain aging, underlying 

pathology, and its cognitive impact. Here, we show two coronal slices of a subject with 

severe Alzheimer’s disease from the Alzheimer’s disease Neuroimaging Initiative, that 

highlight their significant atrophy during a 3-year period.
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FIGURE 2 |. 
We create an anatomically accurate finite element model of the brain based on semi-

automatic segmentation of a T1-weighted MRI. (A) The brain’s primary cortical and 

subcortical structures, as well as fluid volumes, are clearly visible in the representative 

sagittal, axial, and coronal slices shown here. (B) For the brain, we reconstruct the 

ventricles, white matter (WM), and gray matter (GM); we encase GM by cerebrospinal 

fluid (CSF) and approximate the skull by imposing zero-displacement boundary conditions 

on the CSF’s outer surface. (C) We create the GM layer by projecting the WM surface 

outward; this approach minimizes self-contact of the outer GM surface and provides an FE 

mesh that does not prevent sulcal widening due to shared nodes on the GM surface.
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FIGURE 3 |. 
The spatiotemporal spreading behavior of our biomarker for neurodegenerative disease is 

governed by a reaction-diffusion equation. We seed the biomarker in the hippocampus and 

observe a gradual infiltration of the whole brain. The temporal lobe is affected first, followed 

by the occipital, then parietal, and finally the frontal lobes, see 3D view. Moreover, we 

observe an early affect on deep gray and white matter structures before diffusing outward 

into the cortical layer, see axial view. In our current version of the model, we prescribe equal 

diffusion in gray and white matter tissue, which is reflected in the diffuse spreading of the 

biomarker concentration.
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FIGURE 4 |. 
We show the spatial distribution of the atrophy factor over our simulation period of 

40 years. In our model we differentiate between healthy (top rows) and accelerated, or 

pathological, aging (bottom rows). We prescribe a constant, albeit different, atrophy rate 

for gray and white matter tissue in healthy aging. In pathological aging, the atrophy 

factor in Alzheimer’s disease is coupled to the biomarker concentration and increases the 

atrophy factor once biomarker concentration exceeds a critical value; therefore, the AD-

related atrophy factor follows a similar spatiotemporal progression pattern as the biomarker 

concentration. Atrophy factor of one corresponds to no volume change and we observe a 

maximum volume loss of 0.798. Since cross-sectional studies have identified more white 

matter volume loss in comparison to gray matter, we prescribe a higher atrophy rate which 

leads to more pronounced WM atrophy, see coronal and axial view.
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FIGURE 5 |. 
Representative axial and coronal views of the displacement magnitude and structural images 

at six time points during the aging process. We show healthy aging and Alzheimer’s 

disease-related aging in the top and bottom rows, respectively. Brain deformation is 

higher in Alzheimer’s disease than healthy aging, and is largest around the ventricles. 

Moreover, we observe significant enlargement of the ventricular horns in the vicinity of the 

hippocampus, see coronal view. The forth time point clearly shows a distinct separation of 

the displacement trajectories.
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FIGURE 6 |. 
Ventricular enlargement is one of the most prominent features of the aging brain. The 

ventricular body expands most and the anterior and posterior horns inflate in response to 

tissue loss. Alzheimer’s disease has a larger affect than healthy aging. Overall the ventricular 

volume more than doubles in Alzheimer’s disease and increases by 165% in healthy aging. 

The sagittal view of the brain shows the effect on deep gray matter structures.
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FIGURE 7 |. 
Cross-sectional studies, with subjects covering many decades of life, provide insight into 

the transient brain volume changes and how they break down into the brain’s cortical and 

subcortical regions. Here, we compare our model’s predicted gray matter, white matter, and 

ventricular volume fraction with data reported by Coupe et al. (2019) for (A) healthy aging 

and (B) AD. In AD, we clearly observe a deviation from healthy aging in the form of 

accelerated atrophy. The grey area shows the loss of tissue volume that is replaced by fluid.
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FIGURE 8 |. 
We measure cortical thickness changes in the healthily aging brain and observe a clear 

difference between increased sulcal thinning in comparison to gyri that remain nearly 

unchanged. Only few locations are predicted to thicken and are located in deep gray matter 

locations. Overall the mean cortical thickness decreases from 2.79 mm in the young brain to 

2.64 mm in the aged brain.
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FIGURE 9 |. 
Hippocampal shrinking and ventricular enlargement differ for healthy aging and 

Alzheimer’s disease. The initial overlap between healthy aging and Alzheimer’s disease 

is due to the gradual spread of our biomarker through the brain which ultimately accelerates 

brain changes passed the age of 60 years. This deviation from the healthy trajectory is used 

as a biomarker for detecting Alzheimer’s disease (Apostolova et al., 2012).
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FIGURE 10 |. 
Cerebral atrophy includes sulcal widening, or the increase in intra-sulcal volume due to the 

shrinking of surrounding tissue. The sylvian fissure, which separates the frontal and parietal 

lobes from the temporal lobe, increases most by 39%, while the other sulci increase on 

average by 36% over a 40 years time period.
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FIGURE 11 |. 
The gyrification index is a measure for the degree of folding. Here, we compute a 

gyrification index for 164 coronal slices generated from our finite element model. We 

compare the gyrification index for the young brain, aged brain, and in Alzheimer’s disease 

and observe a noticeable decrease in Alzheimer’s disease in the temporal and parietal 

lobes while the frontal lobe, which is affected least in terms of atrophy, shows only small 

deviations. Peak gyrification is observed in the vicinity of the sylvian fissure which is 

widens significantly as discussed before.
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