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Abstract: Linezolid is an efficacious medication for the treatment of drug-resistant tuberculosis but
has been associated with serious safety issues that can result in treatment interruption. The objectives
of this study were thus to build a population pharmacokinetic model and to use the developed
model to establish a model-informed precision dosing (MIPD) algorithm enabling safe and efficacious
dosing in patients with multidrug- and extensively drug-resistant tuberculosis. Routine hospital
therapeutic drug monitoring data, collected from 70 tuberculosis patients receiving linezolid, was
used for model development. Efficacy and safety targets for MIPD were the ratio of unbound area
under the concentration versus time curve between 0 and 24 h over minimal inhibitory concentration
(f AUC0–24h/MIC) above 119 and unbound plasma trough concentration (f Cmin) below 1.38 mg/L,
respectively. Model building was performed in NONMEM 7.4.3. The final population pharmacoki-
netic model consisted of a one-compartment model with transit absorption and concentration- and
time-dependent auto-inhibition of elimination. A flat dose of 600 mg once daily was appropriate in
67.2% of the simulated patients from an efficacy and safety perspective. Using the here developed
MIPD algorithm, the proportion of patients reaching the efficacy and safety target increased to 81.5%
and 88.2% using information from two and three pharmacokinetic sampling occasions, respectively.
This work proposes an MIPD approach for linezolid and suggests using three sampling occasions to
derive an individualized dose that results in adequate efficacy and fewer safety concerns compared
to flat dosing.

Keywords: tuberculosis; population pharmacokinetics; linezolid; auto-inhibition of linezolid elimina-
tion; model-informed precision dosing; simulation

1. Introduction

Rifampicin-resistant (including multidrug-resistant (MDR)) tuberculosis (TB) is still
a global health threat, with close to half a million new cases annually [1]. MDR-TB is
defined as resistant to both isoniazid and rifampicin and extensively drug-resistant (XDR)
as resistant to isoniazid and rifampicin, plus any fluoroquinolone and at least one Group A
drug (levofloxacin, moxifloxacin, bedaquiline, or linezolid). Treatment of these infections
requires the use of second-line treatment, which is longer, associated with higher costs,
increased toxicity, and has a success rate of merely 59% [2,3]. Currently, one of the core
second-line anti-TB drugs used for the treatment of MDR- and XDR-TB is linezolid, a
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synthetic antibiotic from the oxazolidinone class, inhibiting the bacterial protein synthesis
by binding to the 23S rRNA of 50S ribosomal subunit [4]. Its two main inactive metabolites
are hydroxyethyl glycine and aminoethoxy acetic acid, excreted both renally (unchanged)
and non-renally [4]. The efficacy of linezolid has been suggested to be related to the ratio of
unbound area under the concentration versus time curve between 0 and 24 h over minimal
inhibitory concentration (f AUC0–24h/MIC) with a threshold above 119 [5,6]. As a potential
safety target for linezolid in TB treatment, it has been suggested that the unbound plasma
trough concentration (f Cmin) should be below 1.38 mg/L [6,7] since the time above f Cmin
is assumed to be related to mitochondrial toxicity [8,9].

Treatment of MDR- and XDR-TB with linezolid (nowadays usually in combination
with one of the later generation fluoroquinolones, bedaquiline, and another second-line
anti-TB drug) [10] is much longer than the standard treatment of other indications with
linezolid that have a maximum treatment length of 28 days, which has been shown to
lead to more serious adverse events [6,10]. A common adverse event, especially during
longer treatment, is myelosuppression (mainly thrombocytopenia, but also leukopenia and
anemia). Peripheral and optic neuropathy, lactic acidosis, hepatotoxicity, and hypoglycemia
occur more seldom but can be severe and irreversible (neuropathies) [6,11]. Linezolid’s
high toxicity during longer treatment contributes to a treatment discontinuation rate of
22.6% (141/624, based on 11 studies conducted between 2009 and 2018) [12]. One approach
to reduce the risk of developing serious adverse events and minimize the risk of early
treatment discontinuation is model-informed precision dosing (MIPD) [13]. MIPD is
guided by patient characteristics, individual plasma drug concentrations, and a population
pharmacokinetic (PK) or combined pharmacokinetic-pharmacodynamic (PKPD) model.
The approach can be used in TB treatment to reduce the risk of treatment failure as well as
toxicity [13–16]. The challenge in the treatment of MDR- and XDR-TB is to administer a
linezolid dose that is highly efficacious with limited toxicity. MIPD can be used to support
individual dose selection using a population PK model and targets for efficacy and safety.

The objectives of this work were to develop a population PK model, which, together
with pre-set efficacy and safety targets, can be used to develop an MIPD algorithm enabling
safe and efficacious dosing on an individual level.

2. Materials and Methods
2.1. Patients and Pharmacokinetic Data

Routine therapeutic drug monitoring (TDM) data from 70 MDR- or XDR-TB patients
receiving linezolid was collected at the TB center Beatrixoord in Haren, University Medical
Center Groningen (UMCG), The Netherlands, between 2007 and 2019. Due to the retro-
spective nature of this study and because TDM was already part of the routine treatment
protocol in the TB center, the need for subjects to provide informed consent was waived
by the Medical Ethical Review Board UMCG (METC 2013.492, ethical clearance date:
3 December 2013). Patient demographics, patient characteristics, linezolid total plasma
concentrations, and linezolid dosing regimens were retrieved from the medical charts. A
summary of patient demographics and characteristics is provided in Table 1. Linezolid was
administered in combination with other anti-TB drugs for up to 542 days with oral daily
doses (once daily (QD) or twice daily (BID)) ranging from 150 to 1200 mg. A summary of
all regimens included in the analysis can be found in Table S1 (Supplementary Materials).
Linezolid plasma concentrations were obtained at varying time points at up to seven in-
dependent sampling occasions in each patient. In most instances, a pre-dose sample was
taken before drug administration. Plasma total linezolid concentrations were quantified
using validated liquid chromatography coupled with the mass spectrometry (LC-MS/MS)
(ThermoFisher, San Jose, CA, USA) method with a lower limit of quantification (LLOQ) of
0.05 mg/L [17].
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Table 1. Demographics and covariates for patients included in the data set used for population
pharmacokinetic model building.

Parameter Unit All Patients

N 70

Mean weight (range) kg 61.2 (35.3–88.9)

Mean height (range) m 1.70 (1.50–1.93)

Mean creatinine clearance (range) mL/min 116.1 (40.7–150.0) a

Mean age (range) years 32 (15–70)

Mean body mass index (range) kg/m2 21.2 (15.5–32.6)

No. of male sex n (%) 38 (54.5)

No. with HIV n (%) 5 (7.1)

No. with diabetes n (%) 9 (12.9)

No. smoking n (%) 26 (37.1)

No. alcohol abuse n (%) 6 (8.6)

No. pregnancy n (%) 3 (4.3)

No. from indicated WHO region n (%)

African region 10 (14.3)

Region of the Americas 2 (2.9)

Southeast Asia region 6 (8.6)

European region
Eastern 27 (38.6)

Mediterranean region 15 (21.4)

Western Pacific region 10 (14.3)
a Calculated using the Cockcroft-Gault equation [18], using lean body weight instead of regular body weight
for patients with BMI higher than 25 and with creatinine clearance truncated at 150 mL/min (13 patients had
a calculated creatinine clearance above 150 mL/min). Age, bodyweight, body mass index, and creatinine
plasma concentration were registered on the day of admission. WHO region–region based on World Health
Organization (WHO) region classification describing origin of birth; ART–antiretroviral therapy; alcohol–alcohol
abuse characterized by more than 1 or 2 glasses of alcohol/day and less than 2 days/week with no alcohol;
n–number of patients.

2.2. Population Pharmacokinetic Model

A population pharmacokinetic model was developed based on data from 70 patients
(811 observations). One individual’s second sampling occasion was excluded from the
analysis as the treatment with linezolid was stopped one day before sampling. There were
two observations below LLOQ, which were set to LLOQ/2 since the usage of likelihood-
based methods such as the M3 and M4 method [19] did not seem necessary in light of the
sparseness of LLOQ data.

Model comparison during the modeling process was performed by comparing the
objective function value (OFV) of two nested hierarchical models, where a decrease in OFV
of 3.84 for one degree of freedom (addition or removal of one parameter) is considered to be
statistically significant at a 5% significance level according to the chi-squared distribution
(χ2-distribution).

2.2.1. Structural Model Building

Different disposition models were evaluated, including one- and two-compartment
models. In order to describe absorption, a first-order absorption with and without lag-time
and a transit absorption model [20,21] were tested. Transit absorption was hard-coded
with an increasing number of transit compartments (NN) until the most optimal number
of compartments was reached [20,21], as described in Equations (1) and (2). Equation (1)
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represents the first absorption transit compartment, while Equation (2) represents all other
transit compartments.

dA1

dt
= −ktr·A1 (1)

dAn

dt
= −ktr·A(n−1) − ktr·An (2)

ktr is the transit rate constant calculated as ktr = (NN + 1)/MTT, and MTT is the mean
transit time (estimated). The amount of drug in a certain transit compartment is described
by An, where n is the absorption compartment.

For drug elimination, linear elimination, Michaelis–Menten elimination kinetics,
as well as different approaches to account for drug-induced auto-inhibition of elimina-
tion [22–24] were explored. The first evaluated approach describing auto-inhibition of
elimination was developed for linezolid by Plock et al. [22], where an empirical inhibition
compartment is introduced, i.e., the drug concentration in the inhibition compartment
drives the auto-inhibition. Different previously published rate constant into the inhibi-
tion compartment (kIC) and concentration in the inhibition compartment yielding half of
clearance inhibition (IC50) values [22,25,26] were evaluated, and the ones providing the
best fit were fixed and retained in the model. The second approach, initially developed for
itraconazole [23], describes clearance inhibition dependent on dose with an exponential
function. Lastly, in a model originally developed for auto-induction of rifampicin elimina-
tion [24], the formation of an enzyme is described by a first-order enzyme degradation and
zero-order formation rate in which enzyme formation is stimulated by the presence of the
drug via a nonlinear (Emax) model. For description of linezolid elimination auto-inhibition,
the approach was reversed by inhibiting the enzyme formation.

2.2.2. Stochastic Model Building

Different residual error models on a normal scale were explored, including additive,
proportional and combined additive plus proportional models. All possible combinations
of inter-individual variability (IIV) and inter-occasion variability (IOV) were tested on
all structural parameters. IIVs and IOVs were modeled exponentially, assuming that
individual parameter values are log-normally distributed. Correlations were tested between
IIVs of absorption parameters.

2.2.3. Covariate Model Building

Allometric scaling of apparent clearance (CL/F) and apparent volume of distribution
(V/F) was introduced using bodyweight as a descriptor for body size [27–29]. The exponents
for the allometric relationships were fixed to 0.75 and 1 for CL/F and V/F, respectively [30],
and the terms were scaled to 70 kg. The impact of additional covariates including age,
sex, origin of birth (WHO region), HIV co-infection, diabetes, smoking, alcohol abuse,
pre-emptive use of erythropoietin, creatinine clearance (calculated using the Cockcroft-
Gault equation [18]) and the effects of concomitant P-glycoprotein (P-gp) inhibitors, P-gp
inducers, CYP3A4 inhibitors, and CYP3A4 inducers were assessed using the automated
stepwise covariate modeling (SCM) procedure in Perl-speaks-NONMEM (PsN) [31]. Values
of calculated creatinine clearance above 150 mL/min were truncated to 150 mL/min. Only
clinically plausible covariate relationships were explored (see Table S2, Supplementary
Materials). Missing covariate information was handled by imputing the mean value of a
covariate for continuous covariates and the mode for categorical covariates. Covariates
were selected in a forward inclusion step at a statistical significance level of p < 0.05 and
retained following a backward deletion step (p < 0.01). Statistically significant covariate
relationships from the SCM were also assessed for clinical significance. Clinical significance
was defined as a change in the typical parameter by more than 20% caused by the covariate
effect for categorical covariates and 20% change from the median for the 10% and 90%
percentiles of the continuous covariate. The covariates pregnancy, anti-retroviral therapy,
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and therapeutic use of erythropoietin were not evaluated since only 3, 4, and 0 patients,
respectively, exhibited the particular covariate.

2.2.4. Model Evaluation

Prediction-corrected visual predictive checks (pcVPCs), goodness-of-fit (GOF) plots,
scientific plausibility, and precision of model parameter estimates were evaluated. A
1000 sample sampling importance resampling (SIR) procedure was performed in PsN for
the final model to obtain the 90% nonparametric confidence interval for all parameters in
order to assess parameter uncertainty.

2.3. Model-Informed Precision Dosing Algorithm

An MIPD algorithm originally developed for dose individualization of rifampicin [15]
was adapted for dose optimization of linezolid treatment in patients with MDR- and XDR-TB.

A simulated population of 1000 hypothetical patients was created by bootstrapping
patient covariates, as well as individual MIC values from the original study population
(patient characteristics, see Table 1).

For the MIPD algorithm, the f AUC0–24h/MIC > 119 and f Cmin < 1.38 mg/L were used
as efficacy and safety targets [5,7], respectively, and the individualized dose should meet
both the efficacy and the safety target.

In order to obtain observed linezolid plasma concentrations for the simulated patient
population, the exposure following an initial dose of 600 mg QD was simulated for the first
day of treatment. In the next step, these concentrations were used to compute individual
PK parameters (empirical Bayes estimates (EBEs)), such as individual clearance or mean
transit time. Based on the individual PK parameters, the individual f AUC0–24h/MIC and
f Cmin were derived following doses of 150 mg to 1200 mg QD and 150 mg to 600 mg
BID (increments of 150 mg). The MIPD algorithm was then used to select the individual
dose that meets the efficacy and safety target. In case both the efficacy and safety were
reached, the lowest efficacious dose was selected. If two dosing regimens resulted in the
same f AUC0–24h/MIC, which is the case for the same daily dose administered once versus
twice daily, the dosing regimen leading to the lower f Cmin was chosen, ensuring safety.
If efficacy but not safety was reached, the lowest efficacious dose was selected, and a
warning was given regarding safety. If safety but not efficacy was attained, the highest
dose was chosen, and an efficacy warning was given. If neither efficacy nor safety could be
achieved, the highest dose was selected (1200 mg QD), and warnings regarding efficacy
and safety were reported. The selected individual dose was then used for simulation of
further sampling occasions using an adaptive dosing strategy. Using this workflow, in
total, three PK sampling occasions on days 1, 8, and 15 of treatment were simulated using a
sparse sampling (0, 2, and 5 h post dose) [32], updating the individual PK parameters at
every occasion using the newly obtained linezolid plasma concentrations.

For transformation of simulated total AUC0–24h and Cmin to f AUC0–24h and f Cmin,
respectively, linearity in protein binding across the simulated plasma concentration range
was assumed, and AUC0–24h and Cmin were multiplied by the fraction unbound (assumed
to be 0.69) [33].

In order to evaluate the performance of the MIPD algorithm, the true individual doses
were derived using information from all sampling occasions and a rich PK sampling for
EBE estimation.

To compare the performance of the MIPD algorithm using different amounts of
information for computation of the individual PK parameters, the relative bias (rBias)
Equation (3) and relative root mean squared error (rRMSE) Equation (4) were calculated
for f AUC0–24h/MIC and f Cmin as follows:

rBias =
1
N ∑i

1

predictedi−observedi
predictedi+observedi

2
×100 (3)
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rRMSE =

√√√√√ 1
N ∑i

1
(predictedi − observedi)

2(
predictedi+observedi

2

)2 × 100 (4)

The relative dose prediction error (rDPE), evaluating the accuracy in dose prediction,
was computed as follows Equation (5):

rDPE =
predictedDDi − trueDDi

trueDDi
× 100 (5)

where DD is the total daily dose.

2.4. Software

The data were analyzed with the non-linear mixed-effects modeling software NON-
MEM (v.7.4.3; Icon Development Solutions, Ellicott City, MD, USA) [34] using conditional
estimation with interaction (FOCE-I). Data handling and visualization were performed in
R (v.3.6.1; R Foundation for Statistical Computing, Vienna, Austria) [35]. Model diagnostics
were generated using Xpose4 (v.4.6.1) [31] and prediction-corrected visual predictive checks
(pcVPCs) were created with PsN (v.4.9.5) [31].

3. Results
3.1. Population Pharmacokinetic Model

The final population PK model consisted of a one-compartment disposition model
since a two-compartment model did not describe the data statistically significantly better
(p > 0.05). A transit absorption model including five transit compartments was statistically
significantly superior to an absorption lag-time model. The addition of a sixth transit
compartment did not improve the fit significantly. Incorporating Michaelis–Menten elim-
ination kinetics did not improve the model fit (OFV: 1978.5) compared to a model with
first-order elimination (OFV: 1974.9), and thus first-order kinetics were chosen for the
description of linezolid elimination. Based on goodness-of-fit plots (GOF) plots and
prediction-corrected visual predictive checks (pcVPCs), a slight underestimation at higher
concentrations was observed, suggesting the need to explore concentration-dependent auto-
inhibition of linezolid elimination. For that purpose, different models, including dose- and
time-dependency [23] as well as concentration- and time-dependency [22,24], were tested
to describe auto-inhibition of linezolid elimination. In the final model, the structure of a
previously developed concentration- and time-dependent elimination model developed by
Plock et al. [22] was implemented. The incorporated auto-inhibition model [22] consists of
an empirical inhibition compartment. Depending on the concentration in the inhibition
compartment (Ci), clearance (CL) from the central compartment (Ac) is inhibited, where
CL is a fraction of the original uninhibited value at the first dose. Equations (6) and (7)
describe the CL auto-inhibition:

dAc

dt
= ka·Aa −

CL
Vd

·Ac·
(

RCLF + (1 − RCLF)·
(

1 − Ci
IC50 + Ci

))
(6)

dCi
dt

= kIC·
(

Ac

Vd
− Ci

)
(7)

where CL is the uninhibited clearance (L/h), Aa the linezolid amount in the absorption
compartment (mg), Ac the linezolid amount in the central compartment (mg), Ci the line-
zolid concentration in the inhibition compartment (mg/L), ka the absorption rate constant
(h−1), Vd the central volume of distribution (L), kIC the rate constant into the inhibition
compartment (1/h), RCLF the remaining CL fraction, and IC50 the concentration in the
inhibition compartment leading to half of the maximum clearance inhibition (mg/L). The
kIC was fixed to the best fitting literature value of 0.0005 h−1 [25] and IC50 to 0.38 mg/L [25]
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due to the fact that most of the patient data in this study were captured in steady state, thus
not enabling estimation of the inhibition parameters with sufficient precision.

The residual error model was a combined additive and proportional error on a normal
scale. IIV in CL/F and mean transit time (MTT) were statistically significant, as well as
IOV in CL/F, V/F, MTT, and ka. Covariances were not found to be statistically significant
between any of the parameters.

The parameters CL/F and V/F were allometrically scaled using bodyweight. Out of
all explored covariates, HIV on CL/F, sex on ka, administration of P-gp inhibitors on MTT
were found to be both statistically and clinically significant.

The NONMEM code for the final model is given in Text S1 (Supplementary Materials).
Goodness-of-fit plots are shown in Figure S1 (Supplementary Materials). The structure of
the final model is schematically represented in Figure 1, and the final parameter estimates
are provided in Table 2. The final model described the observed data well in all dose groups
based on the precision in parameter estimates, GOFs, individual plots (not shown), and
pcVPCs showing both the whole population (Figure 2) as well as strata for the different
patient covariates (Figure S2, Supplementary Materials).
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inhibition (INH) is described by the Cinhib.comp leading to half of the maximum possible inhibition (IC50) 
and a rate constant (kIC) representing the transfer from the central into the inhibition compartment. 
The fraction of clearance remaining uninhibited is described by the parameter RCLF. The elimina-
tion of the drug is described by first-order kinetics, which is inhibited by INH. 

Figure 1. Schematic representation of the final linezolid population pharmacokinetic model. First, the
dose is transferred into an absorption compartment (Abs) via five transit compartments (Transit 1–5),
where ktr is the transit rate constant describing the transfer between transit compartments, calculated
as the number of transit compartments (NN) + 1 divided by the mean transit time (MTT). The drug
is absorbed from Abs to the central compartment (indicated by Vd, the distribution volume of the
central compartment), described by the absorption rate constant (ka). Clearance (CL) from the central
compartment is inhibited based on the linezolid plasma concentration (Cinhib.comp) in an empirical
inhibition compartment (Inhibition comp.). The concentration- and time-dependency of the inhibition
(INH) is described by the Cinhib.comp leading to half of the maximum possible inhibition (IC50) and a
rate constant (kIC) representing the transfer from the central into the inhibition compartment. The
fraction of clearance remaining uninhibited is described by the parameter RCLF. The elimination of
the drug is described by first-order kinetics, which is inhibited by INH.
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Table 2. Parameter estimates from the final linezolid population pharmacokinetic model.

Parameter Description Estimate 90% CI c RSE% d

CL/F (L/h/70 kg) Apparent clearance (uninhibited) 6.3 5.6–7.0 6.4

Vd/F (L/70 kg) Apparent volume of distribution 50.6 48.5–53.1 3.1

ka (h−1) Absorption rate constant 1.8 1.5–2.1 13.8

MTT (h) Mean transit time 0.53 0.44–0.61 10.6

kIC (h−1)
Rate constant into the inhibition

compartment 0.0005 FIX e - -

IC50 (mg/L)
Concentration in the inhibition
compartment yielding half of

clearance inhibition
0.38 FIX e - -

RCLF Remaining clearance fraction
uninhibited 0.798 0.69–0.92 11.3

Covariates

HIV co-infection on CL/F Effect of HIV co-infection on CL/F 0.43 0.07–0.90 122.0

Sex on ka Effect of sex on ka 0.95 0.78–1.10 14.0

P-gp inhibitor on MTT Effect of P-gp inhibitor on MTT 0.96 0.84–1.09 9.0

Inter-individual variability

IIVCL/F (%CV) a Inter-individual variability in
apparent clearance (uninhibited) 0.26 0.21–0.31 13.0

IIVMTT (%CV) a Inter-individual variability in
mean transit time 0.62 0.40–0.80 19.9

Inter-occasion variability

IOVCL/F (%CV) b Inter-occasion variability in
apparent clearance (uninhibited) 0.27 0.23–0.30 9.0

IOVV/F (%CV) b Inter-occasion variability in
apparent volume of distribution 0.26 0.23–0.30 8.5

IOVka (%CV) b Inter-occasion variability in
absorption rate constant 0.93 0.71–1.16 15.2

IOVMTT (%CV) b Inter-occasion variability in mean
transit time 0.69 0.53–0.85 13.4

Residual variability

Proportional error (%) Proportional residual error 0.054 0.045–0.065 12.5

Additive error (mg/L) Additive residual error 0.53 0.483–0.570 7.0
a Inter-individual variability expressed as the standard deviation and in % of the parameter estimate. b Inter-
occasion variability expressed as the standard deviation and in % of the parameter estimate. c 90% CI is the 90%
percentile confidence interval obtained from a sampling importance resampling (SIR) procedure. d Standard
errors expressed as relative standard errors (standard errors for omegas relative to their variance estimates).
e Values obtained by a publication by Keel et al. [25]. IIV, inter-individual variability; IOV, inter-occasion
variability; RSE, residual standard error.

3.2. MIPD Algorithm

An MIPD algorithm incorporating adaptive dosing was developed for individualized
linezolid dosing in patients with MDR- and XDR-TB. The proposed MIPD workflow is
illustrated in Figure 3.
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Figure 3. Model-informed precision dosing workflow. MIC determination is performed on day 1 of
treatment and PK sampling on days 1, 8, and 15. A Bayesian forecast is then performed using the
population PK model, patient characteristics, and individual linezolid plasma concentrations. Taking
efficacy and safety into account, the dose is adjusted one week after PK sampling. MIC, minimal
inhibitory concentration; PK, pharmacokinetics.
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A flat dose of 600 mg QD led to efficacious and safe (f AUC0–24h/MIC > 119 and
f Cmin < 1.38 mg/L) exposures in 67.2% of the simulated patients (17.6% of the patients
did not meet the safety, 14.0%, not the efficacy, and 1.2% neither the efficacy nor the safety
target) (Figure 4). Using the MIPD approach, both the efficacy and safety targets were met
in 76.1%, 81.5%, and 88.2% of the simulated patients following dosing regimens derived
based on information from one, two, or three PK sampling occasions, respectively. Using
information from three occasions, 6.9% of the simulated patients did not meet the safety
target, 4.6% did not meet the efficacy target, and 0.3% did not meet the safety nor the efficacy
target (Figure 4). A Sankey plot (Figure S3, Supplementary Materials) was created showing
individual dose adjustments for three consecutive PK sampling occasions, indicating that
a significant part of the simulated patients received the appropriate dose when adjusted
based on information from the first sampling occasion. All doses selected by the MIPD
algorithm were QD doses since BID dosing would lead to a higher f Cmin.
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Figure 4. Percentage of patients reaching both efficacy and safety, only efficacy, only safety, and
neither efficacy nor safety using information from one, two, and three sampling occasions to derive
individual PK parameters. The true individual PK parameters were obtained from a rich sampling in
order to derive the true optimal dose for comparison.

In order to determine how many sampling occasions are necessary to compute the
individual PK parameters and subsequently predict the f AUC0–24h/MIC and f Cmin with
sufficient accuracy and precision, the rRMSE and rBias were calculated for f AUC0–24h/MIC
and f Cmin predictions based on information from one, two and three sampling occasions.
Both the accuracy and precision in predictions of f AUC0–24h/MIC (rBias: −5.0%, −2.1%,
and −1.8%; rRMSE: 19.3%, 12.4%, and 8.1% for one, two, and three occasions) and f Cmin
(rBias: −8.9%, −2.7%, and −2.1%; rRMSE: 44.8%, 30.5%, and 20.2% for one, two and
three occasions) improved when additional information was added.

The relative dose prediction error decreased with increasing information used to
obtain individual parameters from sparse sampling (Figure 5), indicating that a higher
percentage of simulated individuals received a dose closer to the true dose.
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4. Discussion

An MIPD workflow, using the here developed population PK model, was established,
enabling safe and efficacious dosing on an individual level.

Several studies have shown that linezolid clearance decreases with increasing doses.
This phenomenon has previously been described with either Michaelis–Menten elimi-
nation kinetics [36,37] or concentration- and time-dependent auto-inhibition of elimina-
tion [22,25,26]. In this work, Michaelis–Menten elimination kinetics was not supported by
the data; however, the inclusion of a concentration- and time-dependent auto-inhibition
of elimination described the data well, and its incorporation is crucial to be able to use
the population PK model for MIPD before steady state is reached. The mechanism behind
the auto-inhibition of linezolid elimination is not fully known yet. It is suggested that
for the metabolite’s hydroxyethyl glycine formation, reduced nicotinamide adenine dinu-
cleotide phosphate (NADPH) is needed [22,38]. As linezolid inhibits cytochrome c-oxidase
activity, it interrupts the synthesis of adenosine triphosphate (ATP), which is needed for
nicotinamide adenine dinucleotide phosphate (NADP) reduction to NADPH [22]. Lack of
NADPH results in decreased hydroxylinezolid formation, and thus, linezolid elimination
is inhibited.

In this work, both statistical and clinical significance were considered when incorpo-
rating covariates in the model. Three covariates fulfilled both criteria, HIV co-infection on
CL/F, sex on ka, and coadministration of P-gp inhibitors on MTT (Table 2). Typical CL/F was
43% higher in patients with HIV co-infection, and the effect of the covariate on the apparent
clearance could be explained by changes in kidney function or concomitant medication
(Table 2). Typical ka was 95% higher in females, possibly due to biological differences
between men and women, such as differences in gastric pH, gastric fluid flow, intestinal
motility, and gastric emptying [39]. Typical MTT was 96% higher in patients who received
P-gp inhibitors. The imprecision in the estimated effect of HIV on CL/F was high, with
a 90% confidence interval of 7–90% (Table 2), which is probably due to the low number
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of HIV patients in the study population (n = 5/70). The covariate was kept in the model
since clearance is a parameter that can greatly influence plasma concentration. However,
the effect of HIV on CL/F estimated here should be interpreted with caution and studied
further. Allometric scaling, besides improving the model fit, was implemented in order to
be able to apply the population PK model to a pediatric population.

Linezolid has high efficacy for the treatment of MDR- and XDR-TB and a low resis-
tance development rate but is one of the most frequently reported anti-TB drugs to cause
severe adverse events, which might require early termination of treatment [40]. A recent
clinical trial investigating long-term linezolid treatment showed that toxicity was high,
with 81% of the patients suffering from peripheral neuropathy and 48% from myelosup-
pression [8]. According to our simulations, a flat dosing regimen of 600 mg QD led to
efficacious and safe exposures in 67.2% of the simulated patients, which is comparable to
previous findings [5,6,41]. While some work suggests that 600 mg BID is needed to reach
efficacy [42], other studies are in accordance with the here described findings. In the work
by Millard et al. [6], the majority of simulated patients reached the safety target following
doses of 300 mg QD, 300 mg BID, and 600 mg QD, but almost all subjects were above the
safety threshold with a dose of 600 mg BID. Alghamdi et al. [41] also suggested that 600 mg
QD is preferred in most patients with respect to safety. Furthermore, recent results from
the ZeNix trial presented in Berlin 2021 [43] highlight that cure is achievable with 600 mg
QD for 6 months, leading to less frequent adverse events compared to 1200 mg QD (38% vs.
24% for peripheral neuropathy and 22% vs. 2% for anemia) [43].

Besides studying the use of lower doses to increase safety, as in the ZeNix trial
(NCT03086486), individualizing a patient’s dose based on individual characteristics and
drug exposure with MIPD can be used as a tool to increase efficacy and safety [13–16].
MIPD provides individual dose suggestions, which is different from classical TDM, where
the achieved PK exposure after a dose is compared to a target without a precise dose
suggestion apart from the information that a dose is too high or too low. The here proposed
MIPD approach (Figure 3) ensures efficacy and safety on an individual level and can be
applied at any time during treatment. Simulations of 1000 virtual patients showed that
by using the MIPD approach, 88.2% reached efficacious and safe linezolid concentrations
with an individualized dose obtained using information from three sampling occasions.
After three sampling occasions, 6.9% of all simulated patients would get an efficacious but
not safe dose (17.6% following a flat dose of 600 mg QD), 4.3% would get a safe but not
efficacious dose (versus 14% for 600 mg QD flat dosing), and for 0.3% of the simulated
patients, the dose would be considered neither safe nor efficacious (versus 1.2% for 600 mg
QD flat dosing) (see Figure 4). Using information from three occasions resulted in 88.2%
of simulated patients reaching both the efficacy and safety target (improvement of 6.7%
compared to using information from two occasions), thus highlighting the importance
of the third occasion (Figure 4). In all simulated patients, a QD dosing strategy was
superior compared to BID due to the fact that the f Cmin is lower following QD dosing. The
superiority of a QD dosing strategy over BID has been shown previously [5,6,41] and could
be advantageous to increase patient adherence.

There are some limitations to this work. Firstly, since retrospective TDM data from
routine clinical care was analyzed and because patients were in their intensive phase of
TB infection, selection bias might have been introduced. In addition, it was only possible
to derive the dose prediction error for the total daily dose; thus, there was no distinction
between QD and BID dosing. However, since a QD strategy was superior to BID in all
simulated patients, it was not necessary here to compare the dose prediction error between
QD versus BID strategies. Furthermore, the parameters describing the auto-inhibition
of elimination were not identifiable in this work as the majority of samples were taken
at steady state, and thus the parameters related to elimination auto-inhibition had to be
fixed to values obtained from earlier studies [25]. In this work, efficacy and safety targets
from earlier defined PKPD indices were used for dose selection. A simulation study by
Kristoffersson et al. [44] showed that the use of longitudinal PKPD models can be more
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appropriate in certain situations than using PKPD indices. PKPD indices can further be
influenced by uncertainty in the obtained MIC value, both due to intra- and inter-laboratory
variability [45,46]. Since the MIC is determined in two-fold dilution steps, an error may
lead to a substantial change in the PKPD index and, subsequently, dose selection. These
findings indicate that MIPD based on a PKPD model might be more appropriate than based
on PKPD indices, which should be investigated in further studies. Furthermore, the safety
target has only been evaluated in one study with 38 participants [7], and the authors merely
explored f Cmin as a potential driver for toxicity. Other PK parameters such as AUC or
Cmax were not explored, and there is, therefore, a need to derive an updated individualized
safety target based on PK data combined with clinical safety outcome data. Lastly, the
developed MIPD approach should be validated in the clinic.

5. Conclusions

In conclusion, a linezolid population PK model for MDR- and XDR-TB patients was
successfully developed. This work presents an MIPD workflow for linezolid, which can be
used on any day of treatment, proposes to use three sparse sampling occasions to derive
the individualized dose, and suggests that an individualized dose would be beneficial from
an efficacy and safety perspective compared to a flat dose of 600 mg QD.
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