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S C I E N C E  P O L I C Y

The ripple effects of funding on researchers and output
Reza Sattari1, Jung Bae2,3, Enrico Berkes2, Bruce A. Weinberg2,3,4*

Using unique, new, matched UMETRICS data on people employed on research projects and Author-ity data on 
biomedical publications, this paper shows that National Institutes of Health funding stimulates research by 
supporting the teams that conduct it. While faculty—both principal investigators (PIs) and other faculty—and 
their productivity are heavily affected by funding, so are trainees and staff. The largest effects of funding on 
research output are ripple effects on publications that do not include PIs. While funders focus on research output 
from projects, they would be well advised to consider how funding ripples through the wide range of people, 
including trainees and staff, employed on projects.

INTRODUCTION
The scientific community’s understanding of how science is pro-
duced is remarkably limited. When trying to understand the produc-
tion of science, funders have often focused on the effects of grants, 
including funding amounts and mechanisms. However, funding 
and grants do not produce science directly (1–5). While biographers, 
popular writers, and psychologists have realized the critical role 
played by people in the production of science, they have tended to 
focus on a small number of eminent individuals (e.g., Albert Einstein) 
and delved into their life experiences (6–7), although it has been 
widely recognized that science is increasingly produced by teams 
(8). Lacking large-scale, quantitative data, researchers have often 
turned to ethnographies and case studies to understand the role of 
teams and communities in science (9–10). Even scientific rhetorical 
conventions—the use of the passive voice, the “royal we,” and the 
focus on formal hypothesis testing, methods, and findings rather 
than the research process itself—serve to obscure rather than 
illuminate how research is actually produced.

In this paper, we peer inside the black box of science production 
and find that funding for “science” primarily supports the scientists, 
including trainees and staff, who produce it. Turning our focus from 
projects (or great innovators) to teams raises a completely new set 
of questions: Who are the people that produce research in terms of 
gender, race, ethnicity, and age? What roles do they play in labs? In 
addition, given the importance of trainees, how does the support 
from research projects ripple through to their future productivity?

We are able to answer these questions thanks to a new match 
between two unique datasets. First, the UMETRICS data provide 
record-level information on payments on sponsored research 
projects at 72 university campuses comprising 41% of academic 
R&D in the United States (11–13). Starting from transactions on 
projects, we use payments to identify all people working on re-
search projects—from faculty members to trainees and staff— 
regardless of how many (if any) articles they appear in as authors. 
We then match publications to research projects in a novel way by 
identifying the articles written by the people who work on those 
research projects, whether or not the articles acknowledge the 
project itself or are even conducted as part of the project. Prior work 
has often relied on grant acknowledgements in publications (1–3), 
which are sometimes misreported, and ignored people who have 

been working on a project but are not named as authors. Moreover, 
our person-based approach allows us to cast a much wider net and 
consider, for example, trainees who are supported on a research 
project but also do important work separate from that project, perhaps 
after leaving the lab. The conventional, acknowledgement- based 
approach to identifying publications has no way of capturing these 
indirect “ripple effects,” which means that it misses a potentially large 
portion of the effects of funding. By contrast, our approach begins 
with the people who conduct research and their publication trajec-
tories, and it therefore captures these ripple effects.

UMETRICS allows us to identify who is touched by research 
funding and what they do. It contains data on job titles, which allow 
us to describe the mix of positions supported, and names, from 
which we impute individual characteristics, such as gender, race, 
and ethnicity.

Our second core dataset is the Author-ity disambiguation of 
PubMed (14–15), which permits us to identify the lifetime publica-
tions of the researchers in UMETRICS. Author-ity algorithmically 
identifies all the articles authored by unique individuals in PubMed. 
These publications are matched to employees in UMETRICS using, 
first, the grant acknowledgements in National Institutes of Health’s 
(NIH’s) ExPORTER from 1985 through 04 February 2020 and, 
second, a novel, network-enhanced, fuzzy name–matching approach 
detailed in Material and Methods.

We also use data on funding from NIH’s ExPORTER. All fund-
ing amounts are expressed in 2018 dollars using the Biomedical 
Research and Development Price Index (BRDPI). Our funding and 
output data are aggregated to the level of lab years or principal 
investigator (PI) years, defined as all the projects with the same PI 
in a given year. (Note that, in this paper, “lab” is used to refer to a 
group that is run by a certain PI, and the two concepts are equiva-
lent in terms of our unit of analysis.) We estimate all models in 
levels and afterward obtain implied percentage changes by dividing 
estimates by means. Compared to a logarithmic model, this ap-
proach ensures that large labs influence the estimates substantially. 
Publications are assigned to all labs or PIs that supported one or 
more authors on at least one project. Summary statistics are reported 
in Materials and Methods.

RESULTS
What does science funding support?
We begin our empirical investigation with an analysis of how 
science funding is allocated across very broad categories of activity. 
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We divide direct costs into three components: employees of all 
types, subawards to other institutions, and spending on purchased 
inputs from vendors, such as materials, supplies, and travel. The top 
of Fig. 1 shows how direct spending is allocated across these spend-
ing categories for a lab of the mean size of $362,198 in 2018 BRDPI 
dollars (baseline) and a lab with $100,000 in additional spending. 
Spending on employees accounts for over two-thirds (68%) of total 
spending, followed by purchases from vendors and subawards. 
When the funding for a lab increases by $100,000, three-quarters of 
the direct spending is allocated to employees. Assuming that indi-
vidual workers are paid according to their productivity (and that 
wages are not highly responsive to funding amounts), the estimates 
in Fig. 1 can be interpreted as measuring efficiency units of labor 
(i.e., the effect on labor inputs weighted by wages). Almost half of 
the remainder gets allocated to subawards, much of which likely 
funds staff at the subaward recipient’s lab. The bottom shows the 
percentage change in spending in each category from a $100,000 in-
crease in funding (along with 95% confidence intervals), with 
employee spending having the largest percentage response, followed 
by subawards.

Biomedical research spans many substantive areas. The NIH 
is divided into 27 institutes and centers (ICs), most of which are 
focused on a specific organ or disease. To analyze topical differences 
here and below, we generate estimates for the ICs for which we have 
sufficient data. While the overwhelming majority of projects spon-
sored by different ICs allocate the largest portion of their funds to 
employees, fig. S1A shows some differences across ICs. For instance, 
a greater share of awards from the National Institute on Alcohol 
Abuse and Addiction (NIAAA) and the National Institute of Envi-
ronmental Health Sciences are allocated to vendor purchases.

Given the primary role played by personnel, we next turn to study 
what types of personnel are employed on projects. UMETRICS 
provides data on each person employed, including the amount of 
time allocated to individual projects by pay period (typically a 
month). We observe employee job titles, which have been aggregated 
into six major categories, namely, faculty, postdocs, graduate 
students, undergraduate students, research staff, and other staff 
(this last category includes people who were not classified elsewhere, 
who are overwhelmingly staff based on manual inspection). Re-
search staff includes people categorized as research and research 
facilitation, while other staff includes all the employees that are 
categorized as technical support, clinical, instructional, and other. 
Table S1 reports the breakdown of occupations before the aggrega-
tion. Here too, the unit of observation is a lab or PI year. Figure 2 
shows the effect of funding on employment measured in full time 
equivalent workers by job categories. The employment of research 
staff and faculty, not all of whom are PIs, responds the most to 
funding increases, although, in percentage terms, other staff is even 
more responsive. Undergraduates are also highly responsive in 
percentage terms, but they have the lowest base of all categories. 
These findings indicate that larger labs are more professionalized 
than smaller labs, with larger shares of faculty and staff.

Figure S1B provides employment breakdowns by NIH ICs. Again, 
while there is a high degree of similarity across ICs, there are some 
interesting and plausible patterns. For instance, a larger share of 
employees supported by the National Institute of General Medical 
Sciences are trainees (graduate students or postdocs), and projects 
funded by the National Center for Advancing Translational Sciences 
support considerably more personnel (over 80) than any other IC.

What does science funding produce?
The goal of biomedical research is to produce knowledge, particu-
larly knowledge that leads to improvements in health. We therefore 
turn to study the research output from projects. Because the most 
productive researchers are likely to obtain the most funding, simply 
relating publications to funding would confound the causal effect of 
funding on output with underlying unobserved factors that attract 
funding and are associated with higher output (16–21). To tease out 
causal effects in a widely accepted and intuitive way, we rely on an 
“event study” design. Here, we relate research output to leads 
(i.e., future values) and lags (i.e., past values) of funding. Intuitively, 
if there is a causal effect of funding on output, then one would 
expect to observe an increase in publications in the years after funding 
is received but not in the preceding years. In other words, future 
funding amounts should not affect past output and are included in 
the regression model as a diagnostic to verify whether the model 
successfully controls for unobserved factors that might confound 
the estimated relationship between funding and productivity. If 
future funding is related to current output, that would be an indication 
that the model is likely misspecified and does not adequately control 
for the unobserved factors relating output to funding. Frequently, 
but not always, event study designs are applied to analyze the 
effect of a discrete change in a policy at a point in time on future 
outcomes. By contrast, we study changes in the amount of funding, 
so the estimates can be interpreted as the effect of increasing fund-
ing by $100,000 in a given year on publications in surrounding years.

We focus our analysis on fixed effect (FE) regression models 
that include FEs (i.e., indicator/dummy variables) for each PI or lab 
that sweep out all time-invariant differences across PIs, including 
differences stemming from differences across fields. The FEs are 
expected to control for unobserved determinants of productivity 
and funding. In the Supplementary Materials, we also estimate 
ordinary least squares (OLS) models that do not account for these 
FEs to explore how our estimates change when we do not control 
for unobserved factors. If our intuition holds, we expect to observe 
future funding being related to past publications in the OLS models 
but not in the FE models. This would suggest that the noncausal 
portion of the relationship between funding and output may be 
adequately captured by accounting for fixed differences across PIs. 
Both models also include dummy variables for calendar years and 
for the number of years since a PI first received NIH funding, a 
proxy for experience, in addition to leads and lags in funding.

Figure 3A plots the results from a basic event study design where 
the outcome is the number of unique publications in a focal year by 
personnel ever observed employed on a PI’s grants. The indepen-
dent variable of interest is total NIH funding in the 7 years around 
the focal year (the 3 years before the focal year, the focal year, and 
the 3 years after the focal year). The FE estimates show more publi-
cations for labs with higher funding in the past. The estimates indi-
cate roughly 0.8 more publications for each additional $100,000 in 
funding, with over half of that effect coming in the third year after 
funding. Reassuringly, in this case, the estimates show a weak 
relationship between past publications and future funding, suggesting 
that the PI FEs adequately control for unobserved differences in 
publication records across researchers that affect funding decisions. 
Despite differences in time periods, funding sources, and units of 
analysis, the magnitudes are broadly similar to existing causal esti-
mates (16, 21), which estimate an increase of about 10 publications 
per $1 million in additional funding.
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To illustrate the consequences of inadequately controlling for 
productivity, we report OLS estimates in fig. S2A (along with the FE 
estimates). The OLS estimates indicate that publications are strongly 
related to funding received in the years after the publications but 
that past funding is weakly related to future publications. These 
results suggest that funding is allocated to labs or PIs with stronger 
publication histories and point to the importance of including  
PI FEs.

Although the absence of significant effects before funding 
suggests that the FE approach appropriately controls for pretrends 
and differences in productivity across labs and fields, there are 
unobserved factors that might confound the interpretation of our 
results. In particular, two unobserved factors might be at play, both 
of which would likely bias our estimates upward. First, funding 
might allow labs to hire researchers who are, on average, more pro-
ductive (of course, rapid lab expansion could also lead to a reduc-
tion in the ability of hires). Second, on the basis of the content of 
grant applications, for instance, the NIH may be able to identify 
increases in future lab productivity in advance and channel resources 
to the labs whose productivity is about to increase. Our FE event 
study design reduces the risk of differences in lab productivity, in 
that the FEs eliminate all time-invariant differences in productivity 
across labs and the event study pretrends allow us to identify whether 
productivity increases before receiving funding. At the same time, 
without (quasi-) experimental variation, we cannot eliminate these 
possibilities. It is also worth noting that our FE estimates of the 

direct effects (i.e., abstracting from ripple effects) are in line with 
those reported in papers that use different identification strategies, 
which is somewhat reassuring in terms of the validity of our empiri-
cal approach.

Our main estimates focus on all the articles written by people 
who are employed on a PI’s grants, while most research has focused 
on publications that acknowledge grants (1–3). There are a number 
of reasons why these two approaches might diverge. One is simple 
reporting error—not all publications properly acknowledge the grants 
that support them. Historically, there was under-acknowledgement 
of awards, which might be another explanation for the large ripple 
effects, but due to changes in NIH policies, under-acknowledgement 
of awards is now likely greatly reduced. Today, it is more likely that 
some publications acknowledge grants to which they are only loosely 
related. Here, because we focus on all publications by people 
touched by funding, our outcome variable includes publications 
that are not directly connected to the PI’s grants but are produced 
by the people employed on those grants and who may benefit from 
an indirect “ripple effect.” Figure 3B repeats the FE estimates from 
Fig. 3A and adds FE estimates when the dependent variable cap-
tures all the publications that do acknowledge a PI’s award and are 
authored by one or more employees, including the PI her/himself. 
These estimates show a broadly similar pattern but are far lower 
than the estimates we obtained for the larger set of publications—
roughly 0.12 articles per $100,000. This difference suggests very 
large ripple effects through people supported on grants, which are 

Fig. 1. Allocation of science funding. (Top) It shows how (direct) spending is allocated across employees, vendors, and subawards for a lab of the mean size of $362,198 in 
2018 BRDPI dollars (baseline) and a lab with $100,000 in additional funding. (Bottom) Percentage change in spending in each category when the lab experiences a 
$100,000 increase in total funding (calculated using the changes in spending in each category from a $100,000 increase in funding divided by the initial spending on that 
category) along with 95% confidence intervals. SEs are clustered at the lab level. These are estimated from a regression of spending in each category on total funding for 
that lab in each year controlling for lab or PI FEs, calendar year FEs, and for the number of years since a PI first received NIH funding. We divide the estimate on funding 
by the mean spending in each category across all lab years. Tot spending, total spending.
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not captured in analyses that only consider publications acknowl-
edging grants.

One way of assessing the role of ripple effects is to look at which 
personnel are listed on publications. We start from the assumption 
that publications that involve the PI are most likely directly related 
to a grant, while those without the PI are less likely to be directly 
supported by the grant. Figure 3C shows that the effects of funding 
on publications that include the PI as author are substantially lower 
and, interestingly, much closer to the ones found by (18), who con-
sider PIs as their unit of analysis. These estimates suggest that the 
ripple effects of funding are quite large, that underreporting likely 
does not account for the gap between publications of people attached 
to grants and publications that acknowledge awards (in panel B), 
and that even if one is interested solely in the research outputs of 
grants, it is essential to study all the people that are supported on 
projects and their subsequent publications even when not directly 
related to the project itself.

Because funding leads labs to expand, one possible explanation 
for the increase in publications is that increases in funding simply 
increase the number of people who are connected to a PI whose 
publications are then counted. To address this concern, fig. S2B 
shows that our estimates are robust to controlling for the number of 
employees in the lab.

Given that the ultimate goal of biomedical research is to inform 
clinical practices and improve health, fig. S2C focuses on “clinical” 

publications, defined as clinical trials, systematic reviews, and clini-
cal guidelines and also on “research” publications, as defined by the 
iCite database from NIH’s Office of Portfolio Analysis. A limitation 
of this measure is that only a small share of publications are clinical 
by this definition (2.1 per lab per year versus 27 publications of all 
types per lab per year). Therefore, as expected, the estimates for 
clinical publications are considerably smaller than the overall esti-
mates. Nevertheless, they show a similar pattern, indicating that the 
effect of funding on clinical work is similar to the overall impact. In 
percentage terms, the effects on clinical publications are slightly 
smaller, with an elasticity of 0.025 for clinical publications versus 
0.03 overall. On the other hand, given that most publications are 
research publications, the estimates for research publications are 
quite close to the estimates for all publications (e.g., in Fig. 3A).

Since funding increases the quantity of publications, it is natural 
to explore whether funding is associated with an increase or de-
crease in the quality of research. Figure S2D explores this question 
using the mean of NIH’s Relative Citation Ratio (RCR) and the 
maximum RCR of all the papers published by a given lab in a given 
year (22). It shows that the mean RCR is essentially flat in funding. 
The RCR of the top paper is higher in labs that receive more 
funding, but this relationship holds for funding both before and 
after the publication, suggesting that labs that are producing higher 
RCR work receive more funding but that funding does not increase 
the maximum RCR. Overall, funding does not appear to have a 

Fig. 2. Allocation of science spending across occupations. (Top) It shows how (direct) spending is related to the employment measured in full-time equivalent workers 
for different types of employees for a lab of the mean size of $362,198 in 2018 BRDPI dollars (baseline) and a lab with $100,000 in additional spending. Full-time equivalent 
workers are estimated by prorating people by the share of their time charged to each project, their full-time/part-time status, and the number of days worked during the 
year. (Bottom) Percentage change in employment measured in full-time equivalent workers in each category from a $100,000 increase in funding (along with 95% confidence 
intervals). SEs are clustered at the lab level. These are estimated from a regression of employment in each category on total funding for that lab in each year controlling 
for lab or PI FEs, calendar year FEs, and for the number of years since a PI first received NIH funding. We divide the estimate on funding by the mean spending in each 
category across all lab years. Tot emp, total employment.
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large effect on the quality of research. Our results are again broadly 
consistent with existing causal estimates (16, 21), although they 
consider forward citations per publication.

The impact of funding may vary across funding mechanism 
and/or research area. Figure S2E provides estimates by funding 
mechanism—R01s only and all research grants and research pro-
gram grants including R01s. The estimates for all research grants 
are similar to those for all funding, but the estimates for R01s turn 
out to be quite noisy. This is due to the reduction in sample size and 
variation in funding amounts.

We also explore possible heterogeneity of these results by insti-
tutional characteristics and career age of the PIs. Figure S2 (F to H) 
shows that our results are mainly driven by institutions in the top 
quartile in terms of the number of doctoral degrees awarded, enroll-
ment, and federal funding. Furthermore, although the estimates are 
somewhat noisier, fig. S2I suggests that PIs with more experience 
benefit more from an increase in funding.

In understanding ripple effects, some publications occur after a 
grant ends, and/or people move to different projects. To quantify 
these effects, table S2 reports the distribution of papers by occupa-
tion and timing of publication relative to the employment in a 
specific lab. More precisely, we report the number of papers that 
were published before a researcher is paid by a certain lab for the 
first time in our sample, after the last transaction in our records, and 
between the two times. Note that we already exclude from our sam-
ple any paper published more than 1 year before a certain PI (or her 
institution) appears in UMETRICS. The plurality of papers (43.5%) 
were published while working in a specific lab, almost one fifth 
(19.3%) before the first payment and 37.3% after the last payment. 
Moreover, the rates vary in an intuitive way across occupations. For 
faculty, who are more closely attached to labs and likely to have 
flatter productivity profiles, only 32.5% of publications are after the 
last payment. By contrast, for trainees, who are expected to have 
steeper productivity profiles and less attachment to labs, 52.7% of 
postdoc publications, 60.2% of graduate student publications, and 
65.0% of undergraduate publications are after leaving labs.

Again, to get at topical differences, we generate estimates for the 
NIH ICs for which we have sufficient data. For these estimates, we 
assign each PI to the IC that provides the most funding for her/his 
research in each year funded by NIH and then estimate the effect of 
all funding for each group of PIs. Note that although, in principle, 
the primary funder can change between years for a given PI, we 
have gone back to 2001 and found that the primary funder never 
changes for 90% of PIs over the course of their observed careers. 
The results, reported in fig. S3, tend to be clustered around the 
overall estimate (represented by the dashed line) and noisy. The 
National Eye Institute, National Institute on Aging (NIA), NIAAA, 
and the National Institute of Allergy and Infectious Diseases all 
have estimates that are statistically below the mean, while only the 
National Institute of Arthritis Musculoskeletal and Skin Diseases is 
statistically above the overall mean.

Who does science funding support?
If, as we have shown, a full understanding of the role of funding 
requires an understanding of the people supported and their output, 
then it is interesting to study the characteristics of the people that 
publish as a result of increased funding. Figure 4 uses UMETRICS 
data on job titles to identify the effects on publications across roles 
and show how publications change for different types of people. 
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Fig. 3. Event study analysis of funding and publications. (A) Publications 
authored by people on awards, FE estimates. (B) Publications authored by peo-
ple on awards versus those that also acknowledge awards. (C) Publications with 
and without the PI as author. Note: The figure plots the relationship between 
funding to a lab (measured in 2018 BRDPI dollars) and unique publications au-
thored by the people in that lab, from publications 3 years before funding is received 
(−3) to 3 years after funding was received (+3). (A) Estimates for all unique publi-
cations using lab or PI fixed effects (FE) models, which account for all time- 
invariant differences across labs. (B) FE estimates for all unique publications 
authored by people in that lab and the subset of those publications that also 
acknowledge the awards that fund that lab. (C) FE estimates for all unique publi-
cations authored by people in that lab, those including the PI as an author 
(with or without other lab personnel), and those without the PI as an author. In 
some cases, we are not able to determine whether the PI is an author on a publi-
cation, so the latter two series do not sum exactly to the former. All estimates 
control for calendar year FEs and for the number of years since a PI first re-
ceived NIH funding. Ninety-five percent confidence intervals are shown in all 
panels. SEs are clustered at the lab level.
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Unfortunately, when the estimates are disaggregated by occupation, 
they become considerably noisier, especially for smaller groups 
(on the other hand, research staff are a relatively large group and 
experience a relatively smaller increase in SEs) and show pretrends 
for some occupations and therefore need to be interpreted with 
caution. The disaggregated point estimates suggest an increase in 
publications for all categories of employees, which is greatest in the 
last year, although the imprecision of the estimates makes it hard to 
draw firm conclusions or say whether the process is building 
gradually over time or is more discontinuous in year 3.

If one is willing to interpret magnitudes for imprecise estimates, 
the differences across groups are interesting. Specifically, the largest 
effects are for faculty (0.25 additional publications per $100,000), 
but most of the effect is among faculty other than the PI (as can be 
seen by comparing Fig. 4A for all faculty and the series for publica-
tions including PIs in 3C). However, given that the mean number of 
publications by faculty is 20.1, the percentage effect on faculty 
is more modest (1.2%). The effects on publications by graduate 
students, research staff, and nonresearch staff taken together are 
comparable to those for faculty, and, given that their baseline 
publication rates are considerably lower (2.1, 4.2, and 0.80, respec-
tively), they all experience percentage effects around 3 to 4% per 
$100,000. Even undergraduates experience a ripple effect, albeit a 
relatively modest one. It is interesting to note that Fig. 4B suggests 
that postdocs also experience an increase in publications the year 
before their lab receives a grant. This increase might be due to 
anticipatory effects with PIs scaling up the lab before a grant 
becomes active. If correct, then such an anticipatory effect suggests 
that PIs have the ability to use money from one project to hire peo-
ple for another project. If so, this is evidence that it is important to 
define labs using PIs instead of awards. Thus, the estimates at least 
suggest that the ripple effects from funding potentially spread across 
different types of employees, including faculty, with large percentage 
effects on staff and trainees.

The effects that we observe for graduate students and under-
graduates might be driven by mobility. For example, it might be the 
case that graduate students obtain faculty positions after a couple of 
years working for a lab that receives more funding and start their own 
labs publishing more than otherwise. By contrast, students in under-
funded labs might get discouraged and leave academia and therefore 
publish less than their peers. While table S2 suggests that these 
mechanisms are unlikely to be the primary drivers of our estimates, 
to the extent that these mechanisms operate, mobility might be con-
sidered part of the ripple effect if people working in a lab that experi-
enced an increase in funding tend to move to more productive teams.

Last, we study the demographic characteristics of the researchers 
who are touched by funding to explore representation in the re-
search workforce and how it changes with funding. Figure 5A plots 
the gender composition of people working in a lab with the mean 
funding amount of $362,198 in 2018 BRDPI dollars (baseline) and 
one with $100,000 in additional funding. Gender is imputed using a 
modified version of Ethnea (23), an algorithm that predicts 
demographic characteristics using names. A limitation of this 
approach, in addition to the accuracy of the algorithm, is that it 
produces binary, nonfluid imputations of gender. The mean sized 
lab has slightly more women (3.89, SD  =  8.60) than men (3.58, 
SD = 6.45), while gender is ambiguous for 1.78 (SD = 4.36) employees. 
A $100,000 increase in spending increases the employment of women 
by 0.26  percentage point (pp) (SE  =  0.06) and men by 0.22  pp 

(SE = 0.04), which yields almost identical changes in percentage 
terms. Thus, larger projects do not seem to differ markedly from 
smaller projects in terms of their gender mix. The share of employ-
ees whose names are ambiguous declines slightly as projects grow. 
This appears to be a consequence of larger projects having a small-
er share of Asian employees, for whom it is more difficult to im-
pute gender.

Figure 5B reports estimates for four racial and ethnic groups 
[non-Hispanic Asians, Hispanics (of any race), non-Hispanic blacks, 
and non-Hispanic whites] imputed using Ethnicolr (https://pypi.
org/project/ethnicolr/). The mean project has 6.88 (SD  =  13.13) 
non-Hispanic whites compared to 1.67 (SD = 2.90) Asians and 
0.3 to 0.4 Hispanics and non-Hispanic blacks. In percentage terms, 
the employment of non-Hispanic blacks followed by non-Hispanic 
whites increases the most as projects grow. Consequently, larger 
projects have lower shares of Asians and Hispanics. Figure S4 shows 
results with a richer ethnic classification based on Ethnea but without 
an explicit racial dimension. It shows considerable variation within 
the Asian category with the employment of Indians and Arabs 
responding considerably more positively to increases in funding 
than that of Chinese and other Asians.

Figure 5C reports estimates by age. The mean project employs 
1.16 (SD = 3.26) people under age 25. The number of employees in 
each age bin declines monotonically from the 25-to-35 category 
until the 65+ category, with the mean project employing 1.60 
(SD = 5.46) employees aged 65 and higher. In percentage terms, the 
employment of “prime” career workers (those 36 to 65 years old) 
responds the most to increases in funding (in percentage terms), 
with a peak for the 45 to 54 year old category. The employment of 
the youngest workers—under age 25—is, in percentage terms, as 
responsive as the 25 to 34 group, but the baseline employment of 
young workers is considerably lower. These estimates are broadly 
consistent with our occupation results (in Fig. 2), showing that the 
employment of faculty, research staff, other staff, and undergraduates 
is the most responsive to increases in funding.

Figure S5 shows demographic breakdowns for individual NIH 
ICs. Again, there are not only considerable similarities across ICs but 
also interesting differences. For instance, the NIA and National 
Institute of Child Health and Development tend to have a larger share 
of Western researchers and more women (and fewer researchers 
with uncertain gender predictions).

Overall, the amount of funding does not seem to greatly shift the 
demographic composition of projects. At the same time, there is some 
tendency for larger projects to be composed of older workers, more 
non-Hispanic blacks and non-Hispanic whites, and also slightly 
more women. Thus, the impact of funding on diversity is neither 
markedly different nor uniform across dimensions of representation.

DISCUSSION
Funding stimulates research by supporting the teams that conduct 
it so that opening the black box of research projects requires ac-
counting for how funding ripples through the people employed on 
research teams. We do this using unique, new data to study who is 
supported conducting research, what roles they play in labs, and 
how support from research projects ripples through to productivity. 
We find that large labs are more professionalized than smaller 
labs—with more faculty and staff. It seems plausible that this 
professionalization helps explain how large labs produce a high 

https://pypi.org/project/ethnicolr/
https://pypi.org/project/ethnicolr/
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quantity of research without a diminution in the overall quality of 
research. This interpretation is consistent with our finding that 
larger and more research-active institutions and PIs with more 
experience are the driving force behind our results. We hypothesize 
that at these institutions, there are greater opportunities to pro-
fessionalize labs as they grow.

While faculty—both PIs and other faculty—and their productivity 
are heavily affected by funding, so are other classes of employees, 
including trainees and staff. Our results show that the greatest 
effects of funding on research output are ripple effects on pub-
lications that do not include PIs. While funders often focus on 
research output from projects, they would be well advised to 
consider how funding ripples through the wide range of people 
employed in them.

If one thinks of science as being produced by a mix of labor, 
materials/capital, and knowledge, then the possible causes behind 
the increase in productivity from funding are an increase in these 
inputs. While we obtain similar estimates controlling for lab size, 
additional funding may well have benefits in terms of continuity of 
funding and attention devoted to research production (e.g., as 
opposed to proposal writing). We also show that the effects on 
purchased inputs are relatively modest. It is possible that expan-
sions of labs generate higher productivity and ripple effects through 
knowledge spillovers and network effects. For instance, new people 
may bring new ideas and contacts into the lab that might influence 
the productivity of their colleagues in complex ways. Unfortunately, 
these effects are difficult to estimate because these three variables 
are determined simultaneously. To estimate these effects, one would 
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A Faculty

C Graduate students 

B Postdocs

D Undergraduate students

E Research staff F Other staff

Fig. 4. Event study analysis of funding and publications by occupation of author. (A) Faculty. (B) Postdocs. (C) Graduate Students. (D) Undergraduate Students. 
(E) Research Staff. (F) Other Staff. Note: The figure plots the relationship between funding to a lab (measured in 2018 BRDPI dollars) and unique publications authored 
by the people in that lab, from publications 3 years before funding is received (−3) to 3 years after funding was received (+3). Estimates are broken down by occupation 
of the author. An article is counted once (and only once) for each type of employee who is an author [i.e., if two authors are faculty and one is a postdoc, it will be counted 
once in (A) and once in (B)]. All estimates control for lab or PI FEs, which account for all time-invariant differences across labs., calendar year FEs, and for the number of years 
since a PI first received NIH funding. Ninety-five percent confidence intervals are shown on all figures. SEs are clustered at the lab level.
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need (quasi-) random variation in each of these inputs. We view 
identifying these variations and conducting such an analysis as an 
exciting avenue for future research.

MATERIALS AND METHODS
Data
UMETRICS and publication data
The UMETRICS data contain administrative information on all 
grant-related transactions at 72 public and private university 
campuses, which collectively account for 41% of federally funded 
academic R&D. While these institutions are not a random sample, 
they provide a valuable window into the academic research enter-
prise, especially at research intensive institutions. The data are 
drawn from transaction records on payments on research grants, 
making it possible to identify all the personnel, including trainees 

and staff, working on sponsored research projects, including people 
who are not included as authors on articles. The employee data have 
been annotated with imputed gender, race, and ethnicity (24) and 
include binned administrative data on birth years. We have self- 
reported, administrative data on gender for 12,867 faculty from one 
participating institution and, for that population, are able to impute 
gender for 95% of people with a precision of 93% overall, for men 
and for women. Using the same self-reported, administrative data 
on race and ethnicity, we are able to impute race and ethnicity for 
60% of people with a precision of 90%. The employee data also 
include detailed job titles that have been classified into six categories: 
faculty, undergraduate students, graduate students, postdocs, re-
search staff, and other staff, which includes all employees not classi-
fied elsewhere, who are themselves overwhelmingly staff (25). A 
more detailed breakdown is in table S2. Also included are transac-
tions for purchased inputs, including equipment, services, and 

A B

C

Fig. 5. Demographic composition of projects. (A) Gender. (B) Race and ethnicity. (C) Age. Note: The top portion of each panel shows how (direct) spending is related to 
the employment measured in full-time equivalent workers with different characteristics for a lab of the mean size of $362,198 in 2018 BRDPI dollars (baseline) and a lab 
with $100,000 in additional spending. Full-time equivalent workers are estimated by prorating people by the share of their time charged to each project, their full-time/
part-time status, and the number of days worked during the year. The bottom portion of each panel shows the percentage change in full-time equivalent workers of each 
type of employee from a $100,000 increase in funding (along with 95% confidence intervals). SEs are clustered at the lab level. These are estimated from a regression of 
employment of each type of employee on total funding for that lab in each year controlling for lab or PI FEs, calendar year FEs, and for the number of years since a PI first 
received NIH funding. We divide the estimate on funding by the mean employment in each category across all lab years.
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materials and supplies. Spending on subawards is calculated as the 
difference between total (direct) costs and spending on employees 
and purchase inputs.

The second core data asset is an update of the Author-ity dis-
ambiguation of the PubMed database (14, 15). The dataset has 
been recently completely recomputed and updated to cover all the 
PubMed publications up to 2018. Torvik and Smalheiser probabilis-
tically impute high-quality (98% accuracy) author clusters matched 
to funding records from NIH and National Science Foundation (NSF).

In this paper, we combine these two data assets first by matching 
PubMed to UMETRICS and then augmenting this match with the 
Author-ity publication clusters. Matching researchers to publica-
tions based on names is a challenging task. Here, we leverage the 
specific characteristics of PubMed, UMETRICS, and Author-ity 
data to overcome this issue. The matching procedure, which is 
sketched here, follows three steps. First, we assign each publication 
in PubMed to one or more projects in UMETRICS based on the 
grants acknowledged in the article. This importantly reduces the 
search space and consequently the computational time. We then try 
to associate each author on the article with researchers that have 
worked on at least one of the reported grants. Second, every re-
searcher who was assigned at least one publication in the previous 
step is linked to her/his Author-ity cluster. Here, the matching is 
straightforward since the PubMed identification number (PMID)/
authorship position pairs provide one-to-one links between the two 
datasets. Using Author-ity, we are able to attach UMETRICS re-
searchers to all the articles they publish. Because Author-ity is 
generated independently of UMETRICS from publication data, it 
allows us to identify researchers’ publications regardless of whether or 
not (and for whatever reason) they acknowledge a UMETRICS proj-
ect and to include publications that are outside of the UMETRICS 
coverage window, including those published before or after the 
researcher even works at a UMETRICS institution. Last, we iter-
atively extend the thus-obtained dataset by looking for coauthors 
that we might have missed in the first step taking advantage of the 
UMETRICS network of collaborators. More precisely, we take all the 
papers associated with a given researcher, and we search for his/her 
coauthors’ names among the people who collaborated with her/him on 
at least one UMETRICS project (not necessarily the ones acknowledged 
in the paper). Because the set of coauthors in Author-ity is small rela-
tive to the entire population of authors and the set of collaborators in 
UMETRICS is small relative to the entire population of employees, 
we have two well-defined populations with high probabilities of 
matching. The second and third steps are repeated until convergence.
PI and funding data
Once the publications are matched to authors in UMETRICS, we 
use a two-step procedure to combine these data with NIH ExPORTER’s 
comprehensive data on PIs and their funding. First, we identify 
unique PIs and all of their awards in NIH’s ExPORTER database. 
These are aggregated to generate funding at the level of PI years. 
During this process, we also generate a list of all transactions related 
to purchases, subawards, and personnel in UMETRICS who are 
paid on any of these NIH grants (regardless of whether they ever 
authored any publications). These too are aggregated to the level of 
PI years to generate a measure of inputs and lab composition. 
Second, we identify the specific people employed on any PI’s projects 
and link them to all their publications to the lab or PI with which 
they are associated. Descriptive statistics on the final sample of lab 
years are shown in Table 1.

Methods
Regression specifications
In Figs. 1, 2, and 5 and fig. S4, we estimate contemporaneous FEs 
regressions

   Y  it   =  α  i   + β ·  Funding  it   +  Year  t   +  CareerAge  it   +  ϵ  it    (1)

where Yit is the outcome of interest, either lab spending on a particular 
category of expenses or the number of lab employees of a particular 
occupation or other category, and  is the coefficient of interest 
representing the association of lab funding with the given spending 
or employment category.

We also control for a full set of year dummies Yeart, a full set of 
career age dummies CareerAgeit, and the lab FE i, which captures 
all effects of time-invariant lab characteristics. ϵit is the residual 
error. We also cluster SEs at the lab level to account for correlated 
errors in the within-lab observations.

In our analysis of research outputs, we primarily use an event 
study design where the publication output of a lab is related to 
contemporaneous funding received as well as to leads and lags in 
funding. More concretely, the equation is given as

   Y  it   =  α  i   +  ∑ n=−3  3     β  n    Funding  it+n   +  Year  t   +  CareerAge  it   +  ϵ  it    (2)

where Yit denotes publications authored by employees of lab i and 
published in year t, and Fundingit is the amount of NIH funding 
received by this lab in that year. In other specifications, Y is publica-
tions authored by various subsets of the lab employees or the mean/
maximum RCR of the publications by this lab. The control variables 
remain the same as in Eq. 1.

Table 1. Lab year summary statistics. The table reports summary 
statistics (mean and SD) of the main variables used for the empirical 
analysis at the lab year level. 

Mean SD

Unique publications authored by 
all employees 26.8 58.6

Unique research publications 
authored by all employees 23.3 49.8

Unique clinical publications 
authored by all employees 2.1 6.3

Total NIH funding $362,198.1 $729,693.3

Mean Relative Citation Ratio (RCR) 
of publications 1.8 2.4

Highest RCR of publications 11.5 27.7

Total direct spending $210,396.9 $433,997.1

Vendor spending $41,495.4 $251,135.8

Subaward spending $26,118.8 $150,416.1

Employee spending $142782.7 $388,484.4

Total employees 9.3 17.0

Total Full Time Equivalents (FTEs) 1.9 4.6

Number of labs 10,202

Number of lab years 78,701
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The event study is implemented by including three past values 
(n < 0) and three future values (n > 0) of this variable in addition 
to the contemporaneous one (n = 0). The coefficients n, which we 
plot in Figs. 3 and 4 and fig. S2 (fig. S3 plots the sum, 1 + 2 + 3 for 
NIH ICs), represent the association of funding in year (t + n) with 
publications in year t.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abb7348
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