Skip to main content
. 2022 Mar 31;12(4):312. doi: 10.3390/metabo12040312

Table 3.

The table shows the prediction of CVD by using AI.

SN Citations IC DS GT FE TOC ML vs. DL ACC % AUC
1 Suri et al. [189] (2022) OBBM, CUSIP 117 CVD, Bias NR NR ML NR NR
2 Kandha et al. [190] (2020) OBBM, LBBM 346 Death DCNN NB, SVM, KNN, DT DL 83.33 0.833
3 Jamthikar et al. [30] (2020) OBBM, LBBM, CUSIP 202 CVD SVM NR ML 92.53 0.92
4 Skandha et al. [191] (2020) OBBM, LBBM 246 Stroke 11 Models NR HDL 98.30 0.983
5 Saba et al. [192] (2020) OBBM, LBBM, CUSIP 246 Death 6 Models NR HDL 89.00 0.898
6 Jamthikar et al. [177] (2019) OBBM, LBBM (US) 395 CVD PCA RF ML 95.00 0.80
7 Biswas et al. [193] (2018) OBBM, LBBM (US) 407 Stroke, Diabetes NR CNN DL 99.61 0.99

SN: serial number, IC: input covariates, DS: data size, GT: ground truth, OBBM: office base biomarker, LBBM: laboratory based biomarkers, FE: feature extraction, TOC: type of classifier, ACC: percentage accuracy, US: ultrasound, NR: not reported.