Skip to main content
. 2022 Mar 31;12(4):312. doi: 10.3390/metabo12040312

Table 5.

The table shows the prediction of Parkinson’s by using AI.

SN Citations IC DS GT FE TOC ML vs. DL ACC % AUC
1 Bikias et al. [199] (2021) LBBM (FoG) 18 PD vs. Non PD SVM CNN DL 90.00 NR
2 Pramanik et al. [200] (2021) LBBM (Voice) 252 PD vs. Non PD NB RF ML 95.00 NR
3 Borzì et al. [201] (2021) OBBM, LBBM (FoG) 11 PD vs. Non PD RF NB ML 84.10 NR
4 Aich et al. [202]
(2020)
OBBM, LBBM
(FoG)
20 PD vs. Non PD RF SVM, RF, KNN ML 97.35 0.74
5 Pramanik et al. [203] (2021) LBBM (Voice) 169 PD vs. Non PD NB SVM, RF ML 78.97 0.78
6 Zahid et al. [204]
(2020)
LBBM (Voice) 50 PD vs. Non PD SVM RF HDL 99.1 NR
7 Nissar et al. [205]
(2019)
LBBM (Voice) 188 PD vs. Non PD NB XGBoost ML 92.76 NR

SN: serial number, IC: input covariates, DS: data size, GT: ground truth, OBBM: office-based biomarker, LBBM: laboratory based biomarkers, FE: feature extraction, TOC: type of classifier, ACC: percentage accuracy, AUC: Area Under Curve, FoG: freezing of gait, NR: not reported.