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Abstract

1. Social network methods have become a key tool for describing, modelling, and testing 

hypotheses about the social structures of animals. However, due to the non-independence of 

network data and the presence of confounds, specialized statistical techniques are often needed to 

test hypotheses in these networks. Datastream permutations, originally developed to test the null 

hypothesis of random social structure, have become a popular tool for testing a wide array of null 

hypotheses in animal social networks. In particular, they have been used to test whether exogenous 

factors are related to network structure by interfacing these permutations with regression models.

2. Here, we show that these datastream permutations typically do not represent the null hypothesis 

of interest to researchers interfacing animal social network analysis with regression modelling, and 

use simulations to demonstrate the potential pitfalls of using this methodology.

3. Our simulations show that, if used to indicate whether a relationship exists between network 

structure and a covariate, datastream permutations can result in extremely high type I error 

rates, in some cases approaching 50%. In the same set of simulations, traditional node-label 

permutations produced appropriate type I error rates (~ 5%).

4. Our analysis shows that datastream permutations do not represent the appropriate null 

hypothesis for these analyses. We suggest that potential alternatives to this procedure may 
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be found in regarding the problems of non-independence of network data and unreliability of 

observations separately. If biases introduced during data collection can be corrected, either prior 

to model fitting or within the model itself, node-label permutations then serve as a useful test for 

interfacing animal social network analysis with regression modelling.

Keywords

group living; null hypothesis significance testing; null model; permutation test; randomisations; 
regression; social networks

Introduction

Social structure, defined as the patterning of repeated interactions between individuals 

(Hinde 1976), represents a fundamental characteristic of many animal populations with far-

reaching consequences for ecology and evolution, including for gene-flow, social evolution, 

pathogen transmission, and the emergence of culture (Kurvers et al., 2014). The last two 

decades have seen widespread adoption of social network methods in animal behaviour 

research to quantify social structure (Webber & vander Wal, 2019). The network framework 

is appealing because it explicitly represents the relationships between social entities from 

which social structure emerges (Hinde, 1976), and thus allows tests of hypotheses about 

social structure at a variety of scales (individual, dyadic, group, population). Social networks 

can be based on direct observations of interactions, or inferred from other data types, such 

as groupings of identified individuals (Franks et al., 2010), GPS tracks (Spiegel et al., 2016), 

proximity loggers (Ryder et al., 2012), or time-series of detections (Psorakis et al., 2012).

The analysis of animal social network data presents a statistical challenge. Specifically, 

two separate issues must be addressed. First, network data are inherently non-independent, 

thus violating the assumptions of independent observations inherent to many commonly 

used statistical tests. Second, factors outside of social structure, such as data structure and 

observation bias, may influence the structure of observed animal social networks, potentially 

leading to both type I and type II errors in statistical tests (Croft et al., 2011).

To address the problem of non-independence, a wide array of statistical tools have been 

developed, primarily in the social sciences. These methods include permutation techniques 

that allow for hypothesis testing in the presence of non-independence. These permutations 

normally test relationships between exogenous variables and network properties, such as the 

presence and strength of social ties, or the centrality of nodes in the network. These methods 

typically build empirical null distributions by randomly assigning the location of nodes 

in the network, while holding the network structure constant (“node-label permutations”), 

therefore representing the null hypothesis that the network measure serving as the response 

is unrelated to the predictor, while controlling for network structure and non-independence. 

The resulting null distribution maintains the non-independence inherent to the network while 

breaking any relationship that exists between network structure and potential covariates 

(Dekker et al., 2007).
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While these methods are useful for dealing with the issue of non-independence, they do 

not address the second issue, from which studies of animal social systems in particular 

often suffer. Because the methods developed in the social sciences only permute the final 

constructed network, they do not inherently account for common biases in the collection 

of the raw observational data used to construct the final network. These biases may be 

introduced by the method of data collection (e.g. group-based observations), individual 

differences in identifiability, or demographic processes (James et al., 2009). For example, 

consider a situation where researchers are interested in differences in social position between 

sexes, but females are more cryptic and thus observed with a lower probability. This would 

lead to incorrect inferences due to biases in the observed network structure that are unrelated 

to the true social processes of interest (Farine, 2017). To deal with these problems, a 

suite of alternative permutation procedures has been developed. Rather than permuting the 

final network, these methods permute the raw data used to construct the network. These 

methods are therefore sometimes referred to as “pre-network permutations” or “datastream 

permutations.” The goal is to construct permuted datasets that maintain structures of the 

original data that may influence the observed network structure (e.g. the number of times 

individuals were observed and the sizes of observed groups), while removing the social 

preferences that underpin the social network (Farine & Whitehead, 2015).

The original datastream permutation technique for animal social data was proposed by 

Bejder et al. (1998), based on the procedure outlined by Manly (1997) for ecological 

presence-absence data. Bejder et al.’s procedure was designed to test whether a set of 

observed groupings of identified animals showed signs of non-random social preferences. 

This procedure permutes a group-by-individual matrix, where rows are groups and columns 

are individuals, with 1 representing presence and 0 indicating absence. The algorithm finds 

2 by 2 “checkerboard” submatrices, with 0s on one diagonal and 1s on the other, that can 

be “flipped” (0s replaced with 1s and vice versa). These flips maintain row and column 

totals (the group size and observations per individual, respectively), but permute group 

membership. In biological terms, matrices generated with this procedure represent the null 

hypothesis that individuals associated completely at random, given the observed distribution 

of group sizes and the number of sightings per individual.

Refinements of this method were later developed that constrained swaps within time periods, 

classes of individual, or locations (Whitehead et al., 2005). One alteration also controls for 

gregariousness, and allows for permutation of data not constructed using group membership 

(Whitehead, 1999). Controlling for gregariousness and sighting history is possible when 

each sampling period is represented as a square matrix, where 1 indicates that individuals 

associated in that period and 0 indicates no association. In this format, the data can be 

permuted in a way that maintains the number of associates each individual had in each 

sampling period (Whitehead, 1999).

In recent years, datastream permutation methods have been developed that can handle 

more complex data structures, such as GPS tracks (Spiegel et al., 2016), time-series of 

detections (Psorakis et al., 2015), and focal follow data (Farine, 2017). All of these methods 

have in common that they essentially randomise raw observations of social association (or 

interactions) data and thus remove social structure while maintaining most other features 
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of the data, including features potentially causing biased measurements of social structure. 

They thus provide a robust null distribution to test for non-random social structure in a 

dataset, which is a key step in understanding the behavioural ecology of wild populations.

Many empirical studies and methodological guides have suggested interfacing these null 

models with other statistical techniques, particularly regression models (including ordinary 

least squares, generalized linear models, and mixed-effects models), to test hypotheses 

about network structure. The logic of this recommendation is that permutation-based null 

models allow researchers to account for sampling issues when testing hypotheses using 

these common statistical models. However, it is important to recognize the limitations of 

this approach, and to think carefully about the null hypothesis that these methods specify. 

In common datastream permutation null models, the null hypothesis specified is that the 

population’s social structure is random, once we control for the structure of the data 

and other confounds. For a particular quantity of interest, such as edge weights or node 

centralities, this null hypothesis can be equivalently stated as proposing that all variance in a 

given network metric is due to data structure, confounds, and residual variance. In network 

terminology, this null hypothesis is a random graph, within a set of constraints. This is 

precisely the null hypothesis that these permutations were designed to test, as they were 

originally intended as a tool for detecting non-random social structure. However, we feel 

there has been a lack of consideration about whether this null hypothesis is appropriate in 

other contexts, such as regression modelling.

Regression models in the context of social network analysis

Most regression applications in social network analysis can be broadly considered in two 

broad categories: nodal regression and dyadic regression. In the case of dyadic regression, 

researchers are interested in determining if the strength or presence of social relationships 

themselves are predicted by some dyadic variable, such as kinship or similarity in some 

trait. Nodal regression, on the other hand, represents hypotheses linking individual level 

traits, such as age, sex, or personality, with the position of nodes within the network, 

as summarized by any number of centrality measures. Here, we will investigate whether 

datastream permutations specify the appropriate null hypothesis for the typical inferences in 

these two regression contexts.

Consider the basic linear model:

Y = βX + ϵ (1)

where Y is a response variable, X is a matrix of predictor variables, ε is the error term, and β 
is a vector of estimated coefficients. The structure of Y, X, and ε differ between dyadic and 

nodal regression contexts. In dyadic regression, Y is the N x N adjacency matrix (where N is 

the number of individuals in the network), X is a p x N x N array of predictors (where p is 

the number of predictors), and ε is a square matrix. In nodal regression, Y is instead a vector 

of centrality measures of length N, X is a p x N matrix, and ε is a vector of length N.

We are typically interested in testing the null hypothesis ϐ = 0, representing no relationship 

between the response Y and the predictor(s) X. In permutation based hypothesis testing 
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procedures, this null hypothesis is tested by calculating a test statistic (such as the coefficient 

ϐ or the t statistic) in the observed data, and then repeatedly shuffling either X or Y to 

build a null distribution of this statistic. These permutations maintain the distribution of 

both X and Y, but break the covariance between them (Anderson & Robinson, 2001). This 

is the logic behind traditional permutation tests for regression in social networks, such as 

node-label permutations and multiple regression quadratic assignment procedures (MRQAP) 

(Croft et al., 2011).

Datastream permutations, however, do something very different, which is inappropriate for 

testing the null hypothesis of no relationship between the response Y and the predictor(s) 

X. By permuting the data underlying network measures and then re-calculating the response 

variable, these procedures change the distribution of Y, instead of breaking relationships 

between the variables (Figure 1). If the network has non-random social structure, even 

structure entirely unrelated to X, then we will typically see a reduction in the variance of Y 
as we permute the raw data. When Y has a larger variance in the observed data than in the 

permutations, more extreme values of ϐ are more likely to occur in the observed data, even if 

the null hypothesis is true. This procedure is therefore likely to result in much higher rates of 

false-positive (type I) error than is acceptable (Figure 1).

The problem here extends beyond the technical issue of reduced variance in the permuted 

datasets. There is a fundamental problem with this approach when it comes to testing 

hypotheses using regression models. When researchers fit regression models to predict 

network properties from exogenous variables, the null hypothesis they will typically be 

testing against can be stated as “the variation in network structure is not related to the 

exogenous variable.” This, however, is not the null hypothesis tested by the commonly 

used datastream permutation methods. Rather, the null hypothesis that is proposed by these 

datastream permutations could be stated as “the degree of variation in network structure 

and its relationship to the exogenous variable are both due to random interactions of 

individuals within constraints.” The researcher cannot disentangle the null hypothesis of 

no relationship between the network and the predictor from the null hypothesis of random 

social structure. In other words, a significant result from this procedure could be due 

to a relationship between the predictor and the network, or because individuals do not 

interact at random, whether or not the true social structure is related to the predictor. 

This fundamental mismatch between the null hypothesis of interest and that tested by the 

datastream permutation algorithm makes tests of regression models using this procedure 

nearly uninterpretable.

To further illustrate the problems that occur when combining datastream permutations of 

animal social network data with regression we provide two simulated scenarios. In these 

scenarios, we generate datasets with simple, but non-random social structure. We then 

introduce a random exogenous variable that has no relationship to social structure, and 

test for a relationship between network structure and this variable with linear models, 

using datastream permutations to determine statistical significance. We show that even in 

the absence of any true relationship between exogenous variables and social structure, 

datastream permutations are highly prone to producing significant p-values when social 

structure is non-random. We caution against using these datastream permutations to test the 
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coefficients of regression models, and we discuss possible solutions and alternative methods 

for regression analysis in social networks.

Materials and Methods

General framework

We carried out simulations across two different scenarios, reflecting common research 

questions in animal social network analysis. The first scenario simulates a case in which 

researchers are interested in whether dyadic covariates (e.g. kinship or phenotypic similarity) 

influences the strength of social bonds, which we will refer to as a case of “dyadic 

regression”. The second scenario simulates a case when researchers are interested in how a 

quantitative individual trait (e.g. age or personality) influences individual network position, 

which we refer to as “nodal regression.”

While the methods of network generation differ slightly for each scenario, the general steps 

are the same:

1. Generate observations of a network in which the quantity of interest (edge 

weight or node centrality) has inherent variation.

2. Generate values for a trait that are unrelated to this variation.

3. Fit a linear model with the network property as the response variable and the trait 

as the predictor.

4. Create permuted versions of the observed network via a common datastream 

permutation.

5. Compare the original model’s test statistics to those from the permuted data sets 

to calculate a p-value.

For each simulation, we perform 200 runs, with varying parameter values (Table 1). For 

each run of both simulations, we produce six outputs. The first two outputs are the p-values 

from the datastream permutation test when using either the coefficient or t-value as the 

test statistic. We additionally calculate the p-values for the same two test statistics using 

node-label permutations, although further analysis showed that the t statistic and coefficient 

always produced identical results in these cases. The final two outputs give information 

about the characteristics of the dataset not given by the initial inputs. The first is the standard 

deviation of the response variable (either the edge weights or strengths), indicating the 

degree of non-randomness in the social structure, and the second is the average number of 

sightings per individual, a common measure of sampling effort in social network studies.

All simulations and subsequent analyses were performed in R (R Core Team 2020), using 

the packages asnipe (Farine 2019), lhs (Carnell 2019), and truncnorm (Mersmann et al. 

2018).

Dyadic regression: Does similarity in a trait predict the strength of social relationships?

In our first simulation, we investigate the case in which the researcher is interested in the 

influence of a dyadic predictor (such as similarity in phenotype or kinship) on the rates at 
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which dyads associate or interact. Our simulation framework is heavily inspired by those of 

Whitehead & James (2015) and Farine & Whitehead (2015). We simulate a population of N 
individuals, and assign each dyad an association probability pij from a beta distribution with 

mean μ and precision ϕ (α = μϕ, ϐ = (1-μ) ϕ). By assigning association probabilities in this 

way, we create non-random social preferences in the network, and thus larger variance in 

edge weights than would be expected given random association (Whitehead et al., 2005).

We then simulate τ sampling periods. For simplicity, individuals are sighted in each 

sampling period with a constant probability o, and associations between dyads where both 

individuals are sighted occur with probability pij. We then build the observed association 

network by calculating dyadic simple ratio indices (SRI):

SRIij = Xij
Dij

(2)

Where Xij is the total number of sampling periods in which i and j were observed 

associating, and Dij is the total number of periods in which either i or j was observed 

(including periods where they were observed, but did not associate with any individuals).

We then assign each individual a trait value from a uniform distribution (0,1). We do not 

need to specify what this trait represents for our simulation, but it could represent any 

quantitative trait used as a predictor in social network studies (age, personality, cognitive 

ability, dominance rank, parasite load, etc.). Note that the trait value is generated after the 

observations of association and has no influence on any network property.

We then fit the linear model:

SRIij = β0 + β1 ∣ traiti − traitj ∣ + εij (3)

and save the estimate of β1 and the associated t statistic. We compare this coefficient and t 
statistic to a null model generated using the sampling period permutation method proposed 

by Whitehead (1999). There are several algorithms available to perform these swaps. We use 

the “trial swap” procedure described by Miklós & Podani (2004) and suggested for social 

network studies by Krause et al. (2009). For each trial, this procedure chooses an arbitrary 2 

by 2 submatrix of the lower triangle within a random sampling period. If a swap is possible, 

it is performed (and symmetrized), otherwise the matrix stays at its current state. These 

steps when the matrix is not changed are referred to as “waiting steps.” This algorithm is 

ideal because it ensures that the Markov chain samples the possible matrices uniformly, 

while other algorithms that do not include waiting steps exhibit biases in their sampling 

of the possible matrices (Miklós & Podani, 2004). We generate 10,000 permuted datasets 

for each simulation, with 1,000 trial swaps between each permutation, and re-fit our linear 

model to each permuted dataset, recording the coefficient and t statistic. We then use these 

distributions to calculate p-values for the linear model’s coefficient. Across the 200 runs, we 

vary the parameters of the simulation by drawing μ, ϕ, N, o, and τ randomly using Latin 

hypercube sampling (Table 1).
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Nodal regression: Do individual traits influence network centrality?

We next investigate the same concept in the context of nodal regression. This form of 

analysis tests whether some individual attribute is related to variation in network position. 

This is perhaps the most common use of datastream permutation null models for testing 

the significance of linear regression coefficients in animal social networks (e.g. Cowl et 

al., 2020; Poirier & Festa-Bianchet, 2018; Zeus et al., 2018). For simplicity, we focus on 

strength, which is simply the sum of an individual’s edge weights.

In this simulation, we consider the case where networks are derived from patterns of shared 

group membership (“gambit of the group”). This form of data collection is extremely 

common in animal social network studies, and was the basis for the original datastream null 

model developed by Bejder et al. (1998).

The framework for this simulation is based on that used by Firth et al. (2017). We simulate 

G observations of groupings in a population of N individuals. Each group is assigned a 

group size 5 from a discrete uniform distribution on [1,M]. We assign each individual a 

preference for a particular group size P from a truncated normal distribution with mean 

(1+M)/2, standard deviation σ, lower bound 0, and upper bound M. Higher values of σ will 

therefore lead to higher variation in gregariousness in the population. For each group g, 

membership is determined by sampling Sg individuals without replacement, with individual 

sampling probability determined by the size of group g and each individual’s group size 

preference:

P (i in g) ∝ 1
(Sg − Pi)2 (4)

This gives the simulation the property that individuals with higher assigned gregariousness 

scores tend to occur in larger groups, and vice versa. This leads to non-random differences 

in gregariousness (and thus strength centrality) between individuals. We then calculate the 

association network, again using the SRI:

SRIij = Xij
Xij + Y i + Y j

(5)

Where Xij is the number of groups in which the dyad was seen together, and Yi and Yj are 

the number of groups in which only i or only j were seen, respectively. After calculating the 

network, we determine each individual’s strength. We again generate a trait value for each 

individual at random from a uniform distribution on (0,1) and fit the linear model

∑jSRIij = β0 + β1traiti + εi (6)

and again save the estimate of β1, along with the associated t statistic. We compare these 

statistics to those derived from networks generated using the group-based permutation 

procedure proposed by Bejder et al. (1998). This procedure again sequentially permuted 

the observed dataset, while maintaining the size of each group and the number of groups per 
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individual. We again use the trial swap method to perform these permutations, generating 

10,000 permuted datasets with 1,000 trials per permutation, and derived p-values in the same 

way as above. We vary the parameters of this simulation by using Latin hypercube sampling 

to draw values of N, M, G, and V (see Table 1 for ranges).

Analysis

We use the outputs of the simulations primarily to derive overall type I error rates (calculated 

as the portion of runs in which a p-value less than 0.05 was obtained) when using either 

regression coefficient or t-value as the test statistic. We further investigated the sensitivity 

of these results to non-random social structure, sampling effort, and population size. 

Previous work suggests that the sensitivity of datastream permutation techniques are highly 

dependent on variation in social structure and sampling intensity (Whitehead, 2008). We use 

binomial generalized linear models to summarize how population size, response variance, 

and sampling intensity influence the probability of false positives. We further analyse these 

relationships qualitatively using conditional probability plots. We compare these results to 

those derived from node-label permutation tests on the same simulated datasets.

Results

Dyadic regression

The overall type I error rate for the dyadic regression case was high, with 41% (81/200) of 

runs giving false positives when using the coefficient as the test statistic, and 21% (42/200) 

when using the t-value. When using the regression coefficient as the test statistic, the false 

positive rate increased with greater sampling effort (ϐ = 0.012 ± 0.004, z = 2.82, p = 0.005) 

and variance in SRI values (ϐ = 6.35 ± 3.04, z = 2.09, p = 0.03), but was not strongly 

influenced by the network size (ϐ −0.007 ± 0.006, z = −1.085, p = 0.278). When the 

t-value was used as the test statistic, only the sampling effort significantly influenced the 

false positive rate (ϐ = 0.014 ± 0.004, z = 3.00, p = 0.003), while neither the number of 

individuals (ϐ = 0.0007 ± 0.008, z = 0.091, p = 0.927) or variance in edge weights (ϐ = 

−0.59 ± 3.72, z = −0.177, p = 0.859) were significantly correlated with the false positive 

rate. In contrast, the node-label permutation method had a much lower false positive rate of 

6% (12/200) and was unaffected by sampling effort (ϐ = −0.004 ± 0.008, z = −0.443, p = 

0.658), network size (ϐ = 0.001 ± 0.013, z = 0.086, p = 0.931), or edge weight variance (ϐ = 

3.574 ± 5.438, z = 0.657, p = 0.511).

Nodal regression

In the case of nodal regression, type I errors were once again high when using datastream 

permutations. When using the regression coefficient as the test statistic, our simulation 

resulted in a type I error rate of 43.5% (87/200), and when using the t-value the type I 

error rate was 28% (56/200). When using the regression coefficient as the test statistic, both 

sampling effort (ϐ = 0.029 ± 0.012, z = 2.434, p = 0.015) and variance in centrality (ϐ = 

1.444 ± 0.479, z = 3.017, p = 0.003) were positively correlated with type I errors, while the 

number of individuals was not related to type I errors (ϐ = −0.005 ± 0.007, z = −0.732, p = 

0.464). When using the t-statistic, sampling effort was still positively related to type I error 

rate (ϐ = 0.042 ± 0.013, z = 3.265, p = 0.001), however the variance in centrality was not (ϐ 
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= −0.287 ± 0.498, z = −0.577, p = 0.564), and, interestingly, the size of the network appears 

to be positively correlated with type I error (ϐ = 0.017 ± 0.009, z = 1.990, p = 0.047). As 

in the case of dyadic regression, the node-label permutations produced an acceptable false 

positive rate of 7% (14/200), which was unaffected by sampling (ϐ = 0.014 ± 0.021, z = 

0.663, p = 0.507) network size (ϐ = 0.008 ± 0.015, z = 0.579, p = 0.562) or variance in 

centrality (ϐ = 0.194 ± 0.868, z = 0.224, p = 0.823).

Discussion

These two simple simulated scenarios show that the commonly used datastream permutation 

procedures for animal social network data produce extremely high and thus unacceptable 

false-positive rates when used as a test of regression models. This is because datastream 

permutations represent a null hypothesis that is different from the typical null hypothesis 

that researchers are interested in testing when fitting regression models (that the model 

coefficients are 0).

It is important here to stress that the permutation procedure is not doing anything “wrong” 

in these examples. The permutations are in fact generating a distribution of statistics that 

is correct for the null hypothesis that the algorithm is designed to test, which is that the 

social structure is random. The “type I errors” that we discuss here are introduced when 

the rejection of this null hypothesis is taken as evidence that a relationship exists between 

the non-random structure of the network and an exogenous variable, when in fact these 

rejections in our simulations are simply indicating that social structure is not in fact random. 

For this reason, we recommend against datastream permutations as a test for regression 

models with social network data. Datastream permutations, however, will continue to play 

an important role in animal social network analysis; the results of datastream permutations 

can tell us whether a given dataset shows signs of non-random social structure. This is 

key, not just for social analyses generally but for regression analyses in particular. If a 

dataset does not show signs of non-random social structure, it likely does not make sense 

to continue with regression analyses that attempt to uncover the correlates of social network 

structure.

In this study, we focused on the case where network measures are the response variable 

in a linear model. A different, but related scenario is when we try to predict individual 

attributes (such as measures of fitness or personality) using network measures as a predictor. 

The statistical problems presented by this scenario are slightly different than those of the 

network response case. Here, the non-independence of the network data are not a problem, 

as linear models do not make any assumptions about the distribution or covariance structure 

of the predictors (n.b. there can still be covariance in the attribute used as a response 

variable related to network position that, if present, would need accounting for in the 

statistical model). The issue of data unreliability, however, may still be present. As in the 

simulations used here, datastream permutations alone would not serve as an adequate test. 

These models would test the null hypothesis that the relationship between the response 

and the network arose due to random social structure, when in fact the researcher is likely 

interested in whether the non-random social structure influences the individual attributes. 

A significant result from the datastream permutation method could simply indicate that the 
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social structure is not random, rather than serving as an indicator that a relationship exists 

between the network and the response.

The high false-positive rate we describe here is the result of decreased variance in the 

response variable after permuting the raw data, as the variation due to social processes has 

been removed. A potential “quick fix” that might be mooted is to simply standardize the 

response variable in the observed network so that all subsequent permutations to have a 

constant variance, for example by using Z-scores. This may reduce the type I error rate. 

However, we strongly recommend against this as a solution to the problem. Standardizing 

the variance does not address the inconsistency at the heart of the problem. The null 

hypothesis being specified by the null model, that the social structure is random, is still not 

the same as the null hypothesis of interest in the regression.

In the following sections, we highlight some potential ways forward for the application of 

regression in animal social network analyses, and give some general recommendations for 

researchers. We hope that this discussion will encourage further work that may provide an 

extended toolkit for ecologists interested in these kinds of problems.

Carrying out regression in social networks by separating non-independence and bias

If datastream permutations alone cannot be used to test regression models in animal social 

network analyses, how should we conduct these analyses? While there are numerous 

potential solutions, and a full accounting of them is beyond the scope of this paper, we 

suggest that a general way forward is to recognize that the two issues of non-independence 

and unreliability of the data are separate problems requiring distinct statistical solutions.

Not all animal network data will be subject to the issue of unreliability (e.g., in cases where 

sampling is balanced across subjects and relevant contexts) and in some instances data may 

be complete and unbiased. In these cases, node permutations or other statistical network 

models will be appropriate (Croft et al. 2011). When structure or bias in the observations 

need to be controlled for, we propose two general approaches that may be useful; other 

solutions are certainly possible, and we encourage further work on this matter.

The first method (Figure 4A) would first attempt to remove the bias from the network using 

generalised affliliation indices (GAIs; Whitehead & James, 2015) or similar corrections to 

account for confounding variables that may influence observed edge weights. GAIs fit the 

observed associations or interactions as the response in a binomial or Poisson generalized 

linear model, with confounding factors such as space use, sightings frequency, or joint 

gregariousness as predictors. The residuals of this model are then used as measures of 

affiliation, as they reflect the difference between observed and expected association rates 

given the confounding factors. While a flexible and appealing approach, GAIs require 

that potential confounds be properly specified in terms of dyadic covariates, and that 

the relationship between confounds and edge weights be linear. This second issue could 

be solved by deriving affiliations from generalized additive models (GAMs), where the 

relationship between covariates and the response can be represented by smooth functions. 

While GAIs represent the most well developed method for correcting social network edge 

weights, other methods are certainly possible. Once corrections are made, researchers 
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can use the corrected social network to derive responses to use in the statistical model. 

A potential drawback of GAIs is that avoidance between individuals is represented as 

negative edge weights. While this is not a problem for dyadic regression (in fact it better 

conforms to the assumptions of traditional linear models), this complicates the calculation 

of some centrality measures, requiring that negative edge weights be ignored or set to zero 

(Whitehead & James 2015). Inference would be carried out using post-network permutation 

methods, such as node-label permutations or MRQAP.

A second, different approach (Figure 4B) would be to incorporate confounds in the 

inferential model itself. If researchers identify likely confounds and summarize them 

quantitatively at the same level as the hypothesis being tested (e.g. dyadic or nodal), 

these could be used directly in the statistical model. Where potential non-linearity between 

confounds and responses exist, data transformations, polynomials, and smooth functions 

may present a possible solution. Again, post-network permutation methods would be 

employed for inference to correct for the non-independence of the data. Franks et al. (2020) 

explore this method in detail.

We feel that these approaches have the potential to address the current issue that we have 

identified and we strongly encourage new work to explore and validate these approaches. 

These suggestions are general, identifying the ways in which we might approach separately 

address non-independence and bias. It is important to note that the methods we propose 

are only useful if the question of interest is about the structure of social affinity, rather 

than the empirical pattern of encounters between individuals. If, instead, researchers are 

interested in the actual rates of contact (as is the case in disease research and studies of 

social learning), this approach may not be appropriate. Extensions of recent work using 

hidden state modelling may be more appropriate for disentangling true association patterns 

when detections are potentially biased or imperfect (Gimenez et al., 2019).

Building better null models

The problems we have identified here arise because the commonly used null models for 

animal societies do not generate datasets representing the null hypothesis of interest in a 

regression setting. These models were specifically designed to test the null hypothesis of 

random social structure, not the null hypothesis that aspects of social structure are unrelated 

to exogenous factors. An obvious way forward would be the development of permutation 

procedures that generate datasets that correctly represent the relevant null hypothesis. In 

the case of dyadic regression, these datasets would maintain the structure of the data (e.g. 

sightings per individual, associations per sampling period, spatial patterns of observations), 

randomise identities of associated individuals, and simultaneously preserve the variance in 

edge weights. In the case of nodal regression, permuted datasets would maintain the same 

(or at least a similar) distribution of individual centrality within the network, in addition 

to structural confounds such as the size of groups, sightings per individual, and timing of 

sightings. The design of such procedures is far from trivial, and is beyond the scope of 

this paper, but we suspect that the development of algorithms that simultaneously maintain 

aspects of data structure and features of the social system will be an important area of 

methodological research going forward. This area of research is still in its early days, 
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although there has been some potentially applicable work in other sub-fields of network 

science (e.g. Chodrow 2019).

Conclusions

The development of permutation techniques that control for sampling biases while 

maintaining temporal, spatial, and structural aspects of the raw data is an important 

development in the study of animal social systems, and we suspect that these procedures 

will remain a key tool for hypothesis testing in ecology and evolution. These techniques are 

particularly crucial when it is not clear whether a dataset shows signs of non-random social 

structure. However, a lack of consideration regarding the matching up of the null hypothesis 

being tested with the null model being generated using datastream permutations has led to 

unwarranted application of these techniques, particularly in the context of hypothesis testing 

using regression models. Here, we have shown that significant p-values from applying 

datastream permutations to regression models cannot be used as evidence of a relationship 

between the social network and exogenous predictors.

We recommend that researchers think critically and carefully about the null hypothesis they 

wish to test using social network data, and ensure that the null model they specify does in 

fact represent that hypothesis (Table 2). We suspect that in most cases, the null hypothesis 

of random social structure will clearly not be appropriate in regression analysis, and 

therefore traditional datastream permutations will not be a viable approach. We hope that 

our discussion of this issue and the results of our simulations will result in reconsideration 

of how researchers employ null models when analysing animal social networks, promote 

further research and discussion in this area, and lead to the development of procedures 

that correctly specify null hypotheses and allow robust inference in animal social network 

studies.
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Figure 1. 
Example of the mechanism by which datastream permutations may lead to false positives 

in linear regression. In the original network, there is variation in strength among individuals 

driven by differences in gregariousness (represented by node size in the social networks). 

Individuals are assigned a trait value (represented by colour in the social network) unrelated 

to their network position. By chance, there is a slight negative relationship between network 

strength and trait value in the observed network. After several permutations, there is a 

reduction in the variance in the strength of individuals in the permuted network, and thus 

the magnitude of the relationship is reduced. The bottom histogram shows the distribution 

of null coefficients after 10,000 permutations (black), and the coefficient from the original 

linear model (red).
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Figure 2. 
Conditional probability plots from dyadic regression simulation. Lines indicate smoothed 

conditional probabilities of a type I error (a p-value less than 0.05) for datastream 

permutations using the coefficient (red) or t-value (orange), and node-label permutations 

(blue) in relation to three covariates. Dotted line indicates target type I error rate of 0.05.
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Figure 3. 
Conditional probability plots from nodal regression simulation. Lines indicate smoothed 

conditional probabilities of a type I error (a p-value less than 0.05) for datastream 

permutations using the coefficient (red) or t-value (orange), and node-label permutations 

(blue) in relation to three covariates. Dotted line indicates target type I error rate of 0.05.
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Figure 4. 
Flowcharts of two approaches for regression analysis in animal social networks. In the first 

(A), a network is generated that attempts to adjust for confounding effects (through e.g. 

GAIs) which is then used to derive the response. In the second (B), the original network is 

used to derive the response variable, with confounds instead being incorporated as covariates 

in the inferential model. In both methods, inference is based on post-network permutations 

(such as MRQAP or node-label permutations).
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Table 1.

Ranges for varied parameters used in simulations

Parameter Meaning Dyadic Nodal Range

N Number of individuals in population ✓ ✓ 20 – 100

μ Mean association probability ✓ 0.01 – 0.5

t Number of sampling periods ✓ 20 – 200

ϕ Precision of beta distribution for association probabilities ✓ 1 – 10

o Observation probability per sampling period ✓ 0.1 – 1

G Number of observed groupings ✓ 20 – 500

M Maximum grouping size ✓ 5 – 10

σ Standard deviation of group size preference ✓ 0.1 – 2.0
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Table 2.

Comparison of datastream and node-label permutations

Datastream permutations Node-label permutations

Dyadic H0

There is no variation in the strength of social ties once data 
structure, sampling noise, and constraints (time, location, etc.) are 
accounted for.

The observed variation in the strength of social ties 
is unrelated to dyadic covariates (e.g. kinship, trait 
similarity)

Nodal H0
There is no variation in centrality once data structure, sampling 
noise, and constraints are accounted for.

Observed variation in centrality is unrelated to node 
characteristics (e.g. age, sex, personality)

Applications Testing for the presence of social preferences
Testing for non-random variation in social position

Testing relationships between observed social ties and 
dyadic predictors
Testing relationships between centrality and node 
attributes

Benefits

Corrects for bias in data collection from differences in detection 
probability and demographic processes
Accounts for complex data structures such as focal follows and 
gambit of the group

Corrects for the structure of the observed network
Specifies the null distribution of interest for most 
regression applications

Drawbacks

Results in a decrease in variance in network measures compared to 
observed data when social structure is non-random
Cannot be used to test regression models against the null hypothesis 
of zero effect

Does not account for data collection method or 
complex data structures
Does not correct for bias or uncertainty due to 
sampling
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