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a b s t r a c t

A new modification of the SIR epidemic model incorporating vaccination is proposed
in the present paper. The recent trend of vaccinating against COVID-19 pandemic
reveals a strong control of infectious disease. On the other hand, it is observed in
some countries that, the vaccine application offers less control over the spread of virus,
since some portion of vaccinated people is not totally protected/immuned and viable
to infection again after a while due to weak/loss immunity offered by the vaccine.
This requires transition from vaccinated department to infected for COVID-19. This
character of COVID-19 helps us reconsideration of the vaccinated department by letting
some part of it being exposed to the infection again. Taking this into account, as a
result of modification of the SIR model, the epidemiology is now governed with three
main epidemic dimensionless parameters, having provided an initial fraction of infected
individuals. The dimensionless model with these parameters is analyzed initially from
the stability point of view. The effects of weak immunity are then illustrated numerically
on some chosen parameter range. How some of the countries applying the COVID-
19 vaccine programs affected by weak/loss immunity is eventually examined with the
modified model. The rate of vaccination as well as the basic Reproduction number are
found to affect the epidemic demography of the population subject to weak or loss of
immunity. In the case of a high vaccination rate, the countries are not anticipated to be
highly influenced by the weak immunity of low level, whereas weak immunity prolongs
the contagious disease by appearance of secondary multiple peaks in the epidemic
compartments with relatively small vaccination rates and basic Reproductive numbers.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The epidemic compartmental SIR model originally proposed in the pioneering paper [1] for the beginning, spread and
nd of a disease in a population, despite the fact of being an approximate rough approach without considering dynamical
ngredients of the infection, keeps still illuminating the knowledge worldwide with the main trends of globally effective
nfectious diseases, like the COVID-19 pandemic [2] of nowadays. A number of variations of SIR mathematical model is
resent now taking into account new physiological, social and economical demands [3]. A strong control of spread of
llness can only be achieved through vaccination programs [4]. However, the vaccination does not always provide full
mmunity as current research in some countries clearly exhibited and temporal/weak immunity as a result of vaccination
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s still an open problem. The present attempt is to modify the vaccine SIR model in [4] (SIRV) to account for the weak/loss
mmune vaccination impacts.

Owing to its simplicity and easy access with many numerical schemes, most of the infective diseases are still preferred
o study with the well-documented SIR epidemic model, if not with the latency-based SEIR model [5]. Thus, scholars are
ontinuing their interest to investigate the SIR model via theoretical and computational tools with deterministic versus
tochastic aspects. Chronically, some epidemic diseases including Tuberculosis, HIV and Fever were analyzed numerically
ithin the SIR framework in [6]. The theoretical analysis in [7] proved from an optimal control problem approach that
he optimal vaccination policies are not unique as studied from the extended SIR model. The finale size of an epidemic
as computed for a two-group SIR epidemic model in [8]. In order to completely eradicate an infectious disease, pulse
accination was suggested in [9], which was also pointed out in [7]. In [10], the SIR model was extended to vaccinated and
einfected after vaccinated in order to simulate the direct and indirect effects of influenza vaccination within a population
xposed to seasonal transmission of four influenza strains, and it was concluded that when the reproduction number
s close to the endemic value, indirect vaccination effects are stronger. A modified SIR model accounting for nonlinear
ncidence and recovery rates was given in [11]. The results were reported in [12] for the SIR model under a stochastic
erturbation term with vaccination.
To focus on the very recent literature on the SIR mathematical model, Crowley–Martin type functional response in

he fractional SIR epidemic model was investigated in [13]. The time homogeneity in the SIR model was introduced in
he methodology and applied to COVID-19 data in the United States in [14]. A time-independent reproduction number
as involved in [15] with potential approximate analytical solutions. How the peak time of infection can be forecasted
ccurately without a full simulation was formulated in [16,17]. With the effects of health system, the fractional SIR model
as analyzed in [18]. Prediction of the outbreak of COVID-19 in Iran/Isfahan in the long run was shown to be failure with
he traditional SIR model in [19]. The effect of vaccination on an epidemic with a constant removal from the susceptible
opulation was modeled in [20]. Social distancing was imbedded into SIR model in [21]. A diffusive age-structured SIR
pidemic model was studied in [22] to search for traveling wave solutions. [23] applied both variational iteration and
uccessive methods to estimate the time history of disease for a constant vaccination SIR epidemic model. A mathematical
nalysis was implemented in [24] on a diffusive SIR epidemic model with new treatments. [25] proposed a stochastic SIR
pidemic model considering Markov jump and low medical equipments. Numerical simulations were performed in [26]
onsidering a two patch setting of variable population SIR epidemic model.
Quite new variants of SIR can be further be encountered recently in the research papers [27] (ISIR), [28] (SIRS), [29]

Neuro-SIR), [30] (GSIR) and [31] (ASIR), amongst many others. The successful epidemic model with vaccination (SIRV)
ecently presented in [4] (adhering the theoretical bases established in [7] and [10]) assumes a full immunity long-lasting
n the society if a person in the susceptible compartment is vaccinated. However, the recent updates of COVID-19 program
n certain countries justifies that the vaccines developed so far are not fully protective, meaning that some vaccinated
re likely to be contracted the disease again. This necessitates the modification of the epidemic model with vaccination
n [4], taking into account the weak or loss immunity offered and possible transition between the vaccinated and infected
ompartments. Hence, the motivation here is to embed this feature of the vaccination into the epidemic model of [4].
lthough such a modification was previously offered in [10], it was approached to quantify the direct and indirect effects
f vaccination to the seasonal influenza. Interaction of vaccinated with infected brings a new weak/loss-immunity term
nto the model, leading to a new SIR model named as SIRVI in the present research. Impacts of this term on the time
volution of SIRV quantities are analyzed both theoretically and numerically. Finally, some countries applying the COVID-
9 vaccine program are analyzed with the newly proposed epidemic model SIRVI to conceive the changes in their epidemic
emography during COVID-19.

. The compartmental SIRVI model

Although there are other variants of SIR model with vaccination as cited in the Introduction, the recent SIRV model
n [4] is adopted here. As shown in Fig. 1, the SIRV model consists of fractions of susceptible S, infected I , vaccinated V
nd removed/recovered R. According to the model in [4] (without birth and death rates), an adaptive immunity to the
osts can be given by vaccine administration into the body reducing the number of susceptible and also preventing later
nfection and transmission. However, the SIRV model in [4] requires modification in the case of weak/loss of immune so
hat some portion of the vaccinated should be transferred back into infected class I , resulting in the following new variant
IRVI

dS
dt

= −βSI − νS, S(t = 0) = S0 = 1 − η (1a)

dI
dt

= βSI + αVI − γ I, I(t = 0) = η (1b)

dV
dt

= νS − αVI, V (t = 0) = V0 = 0 (1c)

dR
= γ I, R(t = 0) = 0. (1d)
dt
2
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Fig. 1. The SIRVI epidemic model with essential parameters.

It is noted that Eq. (1d) is redundant, since R can be solved from the fact that the cumulative time rate of the population
s zero, hence

S + I + V + R = 1. (2)

In (1a)–(1d), β is the parameter leading to illness transmission through an infected individual contacting with
susceptible population, immunity to the susceptible is gained to combat the disease with the parameter ν, α is the
arameter of reinfection disease transmit via weak or loss immune host in contact with the infected population and γ is

the effective recovery rate of infected arising both from susceptible and vaccinated. Although a general initial condition
set can be imposed, the overall character of the SIRVI model can be captured from the initial fractions of infective η and
of suspected 1 − η. Additionally, the reproduction number for the epidemic model (1a)–(1d), identifying the die out or
persistence of an infective disease is defined through

R0 =
S0β + V0α

γ
, (3)

which coincides with the Reproduction number of the classical SIR owing to the no vaccinated fraction assumption in
(1c).

3. The stability analysis

After a sufficient time span, the disease dynamics can be understood from the stability analysis of equilibria. We provide
the following Theorems for this purpose for the present SIRVI epidemic model.

Theorem 1. With non-zero (positive) infection parameters, the points leading to equilibria are given by

(I, S) = (0, 0),
V + R = 1 (0 ≤ V , R ≤ 1). (4)

uch equilibria in (4) are seen to occur at the extinct of disease within the presence of vaccination/removed combination, hence
hey can be termed as disease-free vaccination/removed equilibrium points.

roof. Equating the right hand sides of (1a)–(1d) to zero together with (2) yields the equilibrium points (4). ⋄

heorem 2. For stability of the disease-free vaccination/removed equilibrium points (4), it should hold true

V ≤ γ /α. (5)
3
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roof. Indeed, the Jacobian matrix corresponding to the system (1a)–(1d) with dying disease can computed in the form⎛⎜⎝ −ν −Sβ 0 0
0 Vα + Sβ − γ 0 0
ν −Vα 0 0
0 γ 0 0

⎞⎟⎠ . (6)

Two of the eigenvalues of (6) are already zero, and the other two eigenvalues λ are

λ = −ν,

λ = Vα + Sβ − γ . (7)

On account of the equilibria in (4), the eigenvalues in (7) are negative (if not zero), which implies stability when (5)
holds. ⋄

Theorem 3. The disease-free vaccination/removed equilibria (4) is globally asymptotically stable under the constraint (5).

Proof. Establishing the Lyapunov formalism

L(t) =
1
2
(S + I)2, (8)

and differentiating it with respect to time yields on the account of (1a)–(1b)

L′(t) = (−νS + αVI − γ I)(S + I). (9)

It is clear that L′(t) = 0 at the equilibria in (4). Moreover, it turns out to be strictly negative accounting for the positiveness
of the epidemic quantities as well as the constraint (5). This completes the proof. ⋄

4. Reduction to dimensionless form

With the assist of a dimensionless time t = β−1τ , the system (1) can be written in the subsequent reduced form
dS
dτ

= −SI − bS, S(0) = 1 − η (10a)

dI
dτ

= SI + σVI − kI, I(0) = η (10b)

dV
dτ

= bS − σVI, V (0) = 0 (10c)

dR
dτ

= kI, R(0) = 0, (10d)

here the epidemiology is affected by the physical parameters

b =
ν

β
,

σ =
α

β
,

k =
γ

β
, (11)

hich controls the effective vaccination rate (b), the recovery rate (k) and the loss immunity rate (σ ) (or the reinfective
ate of vaccinated).

orollary. Note that the initial rate of infection plays vital role in spread of disease; epidemic outburst (termed as epidemic
ersistence in [3]) occurs with initially rising rates of infection, i.e. I ′(0) > 0, so from (10b) we have S0 > k, meaning that the

Reproductive number R0 > 1 from (3).
It is also remarked that, no exact solutions to (10a)–(10d) are likely, except that we have

S = S0e
(
−bτ−

R
k

)
,

V = S
(
−1 + ebτ

)
(if σ = 1). (12)

. Numerical simulation results and discussions

It is anticipated from (12) that when τ → ∞, S decays to zero in the presence of vaccination. The final size of
accination, though, will be apparent as a limit of indefinite form (0.∞). Actually, there is no a specific restriction on
4
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Fig. 2. Impacts of vaccination with k = 0.9 and σ = 0. (a) (S, V ), (b) I (magnified 10 times when b = 0.001 and 100 times when b = 0.003) and
(c) R.

the admissible range of epidemic parameters, except that k lies in the interval (0, 1]. σ and b are also maintained in the
intervals [0, 2] and [0, 0.13], respectively, to comply with the COVID-19 data supplied in [4].

Numerical simulations are performed on the platform Mathematica. Initially, for k = 0.9 and σ = 0 with Reproductive
number R0 = 1.11111, the impacts of vaccination are depicted on the SIR variables in Figs. 2(a–c) with η = 10−6. In this
case, the vaccinating is fully protective. The vaccination helps to reduce the level of infected individuals in time; the more
the people are vaccinated, the peak of infected dramatically decreases and the final peak time is also decreased, after an
initial increase with smaller vaccination rates. This behavior of vaccination is in full agreement with the analytical results
in [4]. Susceptible hosts are rapidly transferred to vaccinated class, and it is seen that the disease free vaccinated/removed
equilibria in (4) are converged.

The influences of σ , loss immunity are next demonstrated in Fig. 3(a–d) for k = 0.9, with the level of vaccination rate
b = 10−3 and of initial infected η = 10−6. The main observations are that as the immunity gets weaker, infected and
removed compartments are filled with more hosts, while susceptible and vaccinated classes are decreased. The more the
vaccinated is prone to the reinfection, secondary peak (lower than the first) is reinforced in the infected people leading
to oscillatory character of the overall infectious disease. It is worthy to mention that although the effectiveness of the
vaccination at this low Reproduction number is in line with the simulations of [10], no such vibrational phenomena were
observed in the latter during vaccination study in influenza disease.
5



M. Turkyilmazoglu Physica A 598 (2022) 127429

t
u
w
c

Fig. 3. Impacts of weak-immune vaccination with k = 0.9 and b = 10−3 . (a) S, (b) V (c) R and (d) I .

In the case of a larger Reproduction number with R0 = 9.99999, and the mutual parameters k = 0.1 with full immunity,
he impacts of vaccination are depicted later on the SIR variables in Figs. 4(a,b) with η = 10−6. Curves correspond to
nbroken S, dashed V , dotted I and dot–dashed R. The prevention of epidemic disease is seen to be very successful again,
ith reduced infection peaks, declined removed and increased vaccinated curves. The inflective property of susceptible
lass is gradually turned into a monotonic decrease with higher vaccination rates.
The influences of σ are then revealed in Figs. 5(a,b) for k = 0.1, b = 5 × 10−2 and η = 10−6. The effects with the

high Reproductive number here are much distinct from those with close epidemic Reproductive number in Figs. 3(a–d).
Loss of immunity of vaccinated with higher rates results in reduction in susceptible and vaccinated, followed by boost
in infected and removed. Interestingly, the monotonic increase character of vaccinated department replaces its character
with inflective one, and after σ = 1, the vaccinated is totally emptied in the long run with fully removed remaining, refer
to the equilibria (4). Even with a larger σ = 2, no oscillatory behavior is encountered, unlike the epidemic behavior in
Figs. 3(a–d).

We now explore the impacts of our model on some selected countries, whose COVID-19 parameters with vaccinat-
ing [4] are listed in Table 1. The list is formed in accordance with increasing Reproductive number, rather than increasing
vaccination rates. The aim is to predict how the loss of immunity due to vaccination can lead to alteration in the response
of epidemiology in the population. For this purpose, Figs. 6–12 demonstrate the effects of σ , where the curves correspond
to unbroken S, dot–dashed V , dotted I and dashed R. Because countries have distinct epidemiological parameters and
Reproductive numbers, time evolution of epidemic variables are naturally different under vaccine program. It can be
6
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Fig. 4. Impacts of vaccination with k = 0.1 and σ = 0. (a) b = 0 and (b) 5 × 10−2 .

Fig. 5. Impacts of weak-immune vaccination with k = 0.1 and b = 5 × 10−2 . (a) σ = 0 and (b) σ = 2.

Table 1
COVID-19 data with vaccination in some selected countries [4].

k b η R0

FINLAND 0.997 0.0002 0.00140 1.00160
GERMANY 0.915 0.0012 0.00190 1.09082
FRENCH 0.886 0.0027 0.00065 1.12793
USA 0.868 0.0081 0.00195 1.14983
ISRAEL 0.855 0.1283 0.00835 1.15982
BRAZIL 0.790 0.0099 0.00505 1.25943
MEXICO 0.712 0.0044 0.00680 1.39494

commonly deduced from the analysis that the populations are slightly affected when the loss immunity rate is less than
or equal to unity with a fair increase in the infected people at the peak time, while vaccinated people decreasing and
removed people increasing. Literally, the reinfection is more stringent when the loss immunity rate is bigger than unity; in
particular, for Finland, Germany and French, where already vibrating response of model epidemic quantities are observed.
7
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Fig. 6. Immunity loss scenario for the vaccination program in Finland. I is magnified 200 times. (a) σ = 0 and (b) σ = 2.

Fig. 7. Immunity loss scenario for the vaccination program in Germany. I is magnified 100 times. (a) σ = 0 and (b) σ = 2.

Fig. 8. Immunity loss scenario for the vaccination program in French. I is magnified 20 times. (a) σ = 0 and (b) σ = 2.

otice that these three countries possess comparatively small Reproduction numbers and vaccination rates in Table 1. This
ehavior is in consistence with the previous findings shown in Figs. 3(a–d).
With a higher reinfective rate at σ = 2, now USA and Brazil (see Figs. 9(b) and 11(b)) also gives response with an

scillatory behavior, and the oscillations in Germany and Finland are now more severe. Still no oscillations yet appeared
n Israel and Mexico as inferred from Figs. 10(b) and 12(b); Israel having the best vaccination rate and Mexico having
he highest Reproductive number. Unexpectedly, Brazil in between the countries yields oscillations. Overall, it can be
oncluded that the appearance of oscillations in the epidemic model is highly dependent on the rate of vaccination as
ell as the basic Reproduction number. Persistence against the oscillatory epidemiology is anticipated when these two
pidemic parameters are high.
As a final remark, the present modification of SIR epidemic model with vaccination can be adapted for the countries

n order to guess how the program will be successful when these happens weak or loss of immunity in the vaccinated
ortion of the people.

. Conclusions

To control and reduce the effects of a contagious outbreak of an infectious disease, one of an effective strategy is to
pply vaccination programs. Vaccinating a population, on the other hand, modifies the well-known epidemic SIR model,
s implemented very recently in [4] with the SIRV model.
8
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Fig. 9. Immunity loss scenario for the vaccination program in USA. I is magnified 20 times. (a) σ = 0 and (b) σ = 2.

Fig. 10. Immunity loss scenario for the vaccination program in Israel. I is magnified 5 times. (a) σ = 0 and (b) σ = 2.

Fig. 11. Immunity loss scenario for the vaccination program in Brazil. I is magnified 10 times. (a) σ = 0 and (b) σ = 2.

Fig. 12. Immunity loss scenario for the vaccination program in Mexico. I is magnified 10 times. (a) σ = 0 and (b) σ = 2.
9
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The SIRV model of vaccination in [4] assumes a 100% immunity in an infected disease. However, this is almost
impossible, for instance in the case of COVID-19, since some countries applying vaccine programs still report uncontrolled
reinfection of vaccinated individuals ending with higher rates of death. Keeping this in view, the present motivation is to
improve the SIRV epidemic model in [4] by plugging the weak–loss immunity influences. Hence, a modification is proposed
to reduce the number of vaccinated hosts introducing a reinfection parameter. Therefore, the effects of vaccination and
infection of vaccinated individuals in an extension of the SIRV model introduced in [4] are the main goals and motivations
inspiring the current investigation.

The stability of equilibria for the new model is analyzed first. Then it is applied to the COVID-19 disease data of some
countries (refer to Table 1), wherein ambitious vaccination programs were started to fight against the pandemic. From
the presented model, how the epidemic demography of populations will be affected by loss of immunity can be estimated
efficiently from country to country, since each has its own inherent parameters. As a consequence, the rate and dose of
vaccination can be readjusted.

The main conclusion from the current work is that populations are slightly affected when the loss immunity rate is
less than or equal to unity with a fair increase in the infected people at the peak time, while vaccinated people decreasing
and removed people increasing. Relying on the rate of vaccination as well as the basic Reproduction number, oscillations
appear in the epidemic variables. Persistence against the oscillatory epidemiology is anticipated when these two epidemic
parameters are high, for instance in Israel and Mexico.

Simulations with more actual data gathered from more reliable/current resources would warrant further future work.
Also the problem of how would one gauge the predictive power of the SIRVI model over the SIRV or even a regular SIR,
SIRS, SEIRS, models can be further research activity.
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