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Background. To examine the role of interferon regulatory factor-1 (IRF-1) and to explore the potential molecular mechanism in
ventilator-induced lung injury. Methods. Wild-type C57BL/6 mice and IRF-1 gene knockout mice/caspase-1 knockout mice were
mechanically ventilated with a high tidal volume to establish a ventilator-related lung injury model. The supernatant of the
alveolar lavage solution and the lung tissues of these mice were collected. The degree of lung injury was examined by
hematoxylin and eosin staining. The protein and mRNA expression levels of IRF-1, caspase-1 (p10), and interleukin (IL)-1β
(p17) in lung tissues were measured by western blot and quantitative real-time polymerase chain reaction, respectively.
Pyroptosis of alveolar macrophages was detected by flow cytometry and western blotting for active caspase-1 and cleaved
GSDMD. An enzyme-linked immunosorbent assay was used to measure the levels of IL-1β, IL-18, IL-6, TNF-α, and high
mobility group box protein 1 (HMGB-1) in alveolar lavage fluid. Results. IRF-1 expression and caspase-1-dependent pyroptosis
in lung tissues of wild-type mice were significantly upregulated after mechanical ventilation with a high tidal volume. The
degree of ventilator-related lung injury in IRF-1 gene knockout mice and caspase-1 knockout mice was significantly improved
compared to that in wild-type mice, and the levels of GSDMD, IL-1β, IL-18, IL-6, and HMGB-1 in alveolar lavage solution
were significantly reduced (P < 0:05). The expression levels of caspase-1 (p10), cleaved GSDMD, and IL-1β (p17) proteins in
lung tissues of IRF-1 knockout mice with ventilator-related lung injury were significantly lower than those of wild-type mice,
and the level of pyroptosis of macrophages in alveolar lavage solution was significantly reduced. Conclusions. IRF-1 may
aggravate ventilator-induced lung injury by regulating the activation of caspase-1 and the focal death of alveolar macrophages.

1. Introduction

Ventilator-induced lung injury (VILI) has been reported in
various experimental and clinical settings to potentially
cause acute respiratory distress syndrome (ARDS) [1, 2].
Mechanical forces may result in excessive deformation of
peripheral lung cells, following inflammatory mediators
either directly (released by injured cells) or indirectly
(mechanical forces transduced into the initiation of cell sig-
naling pathways), eventually leading to VILI [3–5]. Resident
alveolar macrophages (AMs) account for 5% of peripheral
lung cells and >90% of leukocytes in bronchoalveolar lavage
fluid (BALF) [6] under normal circumstances. Previous liter-

ature has described AM activation during mechanical venti-
lation, accompanied by air-blood barrier dysfunction and
VILI. Depletion of AMs in rats attenuated VILI, indicating
that AMs may participate in the pathogenesis of VILI [7].

Pyroptosis, a type of programmed cell death, is the pro-
cess of inflammasome activation and caspase-1/3/4/5/11-
dependent cell death [8–11]. In the canonical pathway, fol-
lowing activation and oligomerization of the inflammasome,
the caspase-1 zymogen in the inflammasome is cleaved and
self-activated. Activated caspase-1 cleaves interleukin (IL)-1
and IL-18 precursors into IL-1β and IL-18 and processes
gasdermin D (GSDMD) into GSDMD-N and GSDMD-C,
resulting in rapid plasma membrane swelling and the release
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of intracellular proinflammatory contents. With GSDMD-C
as inhibitory domain and GSDMD-N as active domain to
cause pore-forming and membrane lysis, GSDMD cleaved
by caspase-1/4/5/11 at the 272FLTD275 site in pyroptosis
[12–14]. Macrophages are major cellular contributors to
releasing of proinflammatory cytokines during VILI [15].
Meanwhile, high-mobility group box 1 (HMGB1) transloca-
tion, which could induce pyroptosis [16], from macrophages
contributes to danger signaling in mediating inflammasome
activation and cell death in VILI [17]. However, there is a
significant gap in our knowledge concerning the role of
AMs pyroptosis in VILI.

Interferon regulatory factor-1 (IRF-1) belongs to a fam-
ily of highly conserved transcription factors that regulate
the expression of specific innate and acquired immune-
related genes [18]. IRF-1 has been found to play an essential
role in lung injury by modulating the expression of inflam-
matory mediators [19, 20]. It is also related to the release
of inflammatory mediators and pyroptosis of AMs in LPS-
related acute lung injury (ALI) [18–20]. The action and the
underlying mechanism of IRF-1-mediated pyroptosis in
VILI are poorly understood yet.

In this study, we established a VILI mouse model to con-
firm whether IRF-1 and pyroptosis of AMs were involved in
the pathogenesis of VILI. We also explored whether IRF-1
could modulate AM pyroptosis via caspase-1 activation dur-
ing injurious ventilation.

2. Materials and Methods

2.1. Animals. Wild-type (C57BL/6J) mice were purchased
from SJA Laboratory Animal Co. (Changsha, China),
caspase-1 knockout (caspase-1-/-) mice were obtained from
the Model Animal Research Center of Nanjing University
(Nanjing, China), and IRF-1 knockout (IRF-1-/-) mice were
obtained from The Jackson Laboratory (Bar Harbor, ME,
USA). All the mice in this study were male, aged 6–8 weeks,
and maintained in the laboratory animal center of the Cen-
tral South University under specific pathogen-free condi-
tions. The environment has controlled temperature,
independent ventilation, and a 12-hour light/dark cycle. All
procedures were approved by the Laboratory Animal Ethics
Committee of Central South University. All surgeries were
performed under a mixture of xylazine and ketamine anes-
thesia, and all measures were taken to minimize suffering.

2.2. VILI Model. The modeling and grouping were per-
formed as described previously, but are briefly explained
below. Mice were anesthetized by intraperitoneal (i.p.) injec-
tion of ketamine (87.5mg/kg) and xylazine (12.5mg/kg) and
kept in a prone position on a thermostatic blanket to main-
tain a temperature of 35± 1°C. The anterior neck skin and
soft tissue were cut under sterile conditions to expose the
trachea to observe the condition of the airway. Orotracheal
intubation was then performed with a 20-gauge intravenous
catheter (Becton, Dickinson and Company, Piscataway, NJ,
USA). The catheter was connected to a ventilator (VentElite;
Harvard Apparatus, Holliston, MA, USA) with a fraction of
inspired oxygen (FiO2) of 0.2 and a volume-controlled set-

ting. Parameters for the low-tidal-volume ventilation and
the high-tidal-volume ventilation for 4 h were set as follows:
tidal volume of 8ml/kg body weight with 160 breaths/min
and deep inflation with 27 cmH2O for 1 s in every 5min
or 34ml/kg with 70 breaths/min. Spontaneous efforts were
terminated using rocuronium bromide (Esmeron, 0.02ml/
h, i.p., 10mg/ml) during mechanical ventilation. The sham
mice underwent the same surgery and LTV ventilation for
10min as control mice.

2.3. Lung Injury Assessment in Mice. The lung wet-to-dry
weight ratio was used as an indicator for the evaluation of pul-
monary edema. After the right lower lobe was excised and
rinsed quickly in saline, the excess water was drained off the
lobe and weighed to determine the wet weight after the mice
were killed. The dry weight was determined by weighing the
lobe again after drying in an oven at 65°C for 48h.

The level of protein in BALF was used as an indicator for
the evaluation of dysfunction of the alveolar barrier. The protein
level in the BALF was evaluated using a BCA protein assay kit
(Biomiga, USA) according to the manufacturer’s instructions.

For lung histology, a portion of the left lung was fixed
with 4% buffered paraformaldehyde and embedded in paraf-
fin, and 6-μm sections were sliced and stained with hema-
toxylin and eosin. Pathologists blinded to the experimental
protocol evaluated and scored the stained sections. The
severity of lung injury was scored according to the following
indicators: alveolar edema, hemorrhage, alveolar exudates,
and leukocyte infiltration.

2.4. Isolation of AMs from BALF. After mechanical ventila-
tion/spontaneous breathing, AMs were isolated from the
mouse lungs as previously described. In brief, mouse lung
was lavaged with 1mL of sterile saline containing 2% bovine
serum albumin and 10nM ethylenediaminetetraacetic acid
disodium through orotracheal intubation, and a total of
10ml of BALF was collected from each mouse. Leukocytes
in the BALF were precipitated by centrifugation at 200×g
for 10min at 4°C. AMs in these leukocytes were separated
by negative magnetic bead sorting. Magnetic nanoparticle-
conjugated antibodies such as antimouse Gr-1, CD4, CD8,
and CD45R/B220 antibodies (BD Biosciences Pharmingen,
San Diego, CA, USA) were used to label and remove neutro-
phils and lymphocytes in the immunomagnetic separation
system (BD Biosciences Pharmingen). Residual cells were
stained and examined by Wright’s staining, and the purity
of AMs was >95%.

2.5. Flow Cytometry. Purified AMs were incubated with Fc
block before staining with a fluorescently labeled inhibitor
of caspase-1 (FLICA Caspase Assay Kit; ImmunoChemistry
Technology, USA) and propidium iodide (ImmunoChemis-
try Technology) according to the manufacturer’s instruc-
tions. Flow cytometry analysis was conducted using a
FACSVerse BD flow cytometer (BD Biosciences, Sparks,
MD, USA). Raw data were analyzed using FlowJo software
(TreeStar Corporation, USA). Fluorescently labeled active
caspase-1- and propidium iodide-positive cells indicated
pyroptosis.
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2.6. Immunohistochemistry. IRF-1 and cleaved caspase-1
were immunohistochemically stained in paraffin-embedded
tissue sections by standard immunohistochemical protocol
as described previously [21]. Briefly, pathology slides of lung
tissues were incubated with antimouse IRF-1 and caspase-1
P10 (Santa Cruz, CA, USA) at a 1 : 100 dilution. The results
were measured by positive cell counts in the field using Leica
digital microscopy. All counts were performed by two inde-
pendent observers to reduce counting bias.

2.7. Quantitative Real-Time Polymerase Chain Reaction. The
quantification of IRF-1 and caspase-1 was performed as
described previously. Trizol reagent (Invitrogen, Carlsbad,
CA, USA) was applied to isolate total RNA from AMs. The
RNA was converted into reverse transcript (cDNA) using
the all-in-one first-stand cDNA synthesis kit (CeneCopoeia,
MD, US). The reaction of quantitative real-time PCR (qRT-
PCR) was carried out by All-in-One qPCR Mix (CeneCo-
poeia, MD, US). The reaction system (10μL) was pro-
grammed as follows: 95°C for 10 min followed by 40 cycles
at 95°C for 10 s, 60°C for 20 s, and 72°C for 40 s. GAPDH
was used as the reference gene. The sequences of primers
were as follows: IRF-1 forward: 5′-CTCACCAGGAACCA
GAGGAA-3′, reverse: 5′-TGAGTGGTGTAACTGCTGT
GG-3′; forward: 5′-ACAAGGCACGGGACCTATG-3′,
reverse: 5′-TCCCAGTCAGTCCTGGAAATG-3′; GAPDH
forward: 5′-TGCACCACCAACTGCTTAGC-3′, reverse:
5′-GGCATGGACTGTGGTCATGAG-3′.

2.8. Protein Extraction and Western Blotting. Cellular and
nuclear protein is extracted from AMs as described previ-
ously [22]. Total cellular protein extraction was processed
with cytoplasmic extraction reagent (Vazyme, China) and
protease inhibitor mix. Nuclear protein was isolated by using
nuclear extraction reagent (Nanjing, Vazyme, China) with a
protease inhibitor mix. Concentration of protein was
assessed by a BCA kit (Shanghai, Biyuntian, China). 50μg
protein for western blotting per sample added 4-fold volume
of 5Χ loading buffer and boiled for 8min. Protein samples
were electrophoresed in sodium dodecyl sulfate-
polyacrylamide gels and then transferred to polyvinylidene
fluoride (PVDF) membranes (Bio-Rad Laboratories, Berke-
ley, USA). The PVDF membranes were then incubated with
primary antibodies, including antimouse IRF-1 antibody
and caspase-1 P10 (Santa Cruz Biotechnology, USA), anti-
mouse GSDMD and histone3 (Abcam, England), GAPDH
(ImmunoWay Biotechnology, USA), and HSP90 (Aifang,
China) overnight at 4°C after blocking with 5% skimmed
milk for 1 h. After three washes with Tris-buffered solution
with 0.1% Tween-20, the membranes were incubated with
horseradish peroxidase-conjugated secondary antibody
(Sigma-Aldrich, USA) for 1 h at room temperature. Signals
were detected with a ClarityMax Western ECL Substrate
kit (Bio-Rad Laboratories) and were quantified using ImageJ
software (Rawak Software Inc., Stuttgart, Germany).

2.9. Enzyme-Linked Immunosorbent Assay. The levels of IL-
1β, IL-6, TNF-α, and HMGB-1 in the BALF and serum were
measured using commercially available mouse ELISA kits

from eBioscience (San Diego, CA, USA). The experimental
procedures were performed according to the manufacturer’s
instructions.

2.10. Statistical Analysis. Variables are presented as mean
± standard deviation. Student t-test was used for compari-
sons between the two groups, and one-way analysis of vari-
ance was used for more than three groups. Multiple
comparisons were corrected using the Bonferroni post hoc
test. Correlations between data were assessed using Pear-
son’s correlation analysis. The difference was considered sta-
tistically significant when p was less than 0.05. All
experimental results were repeated at least three times
(unless otherwise indicated), and the representative results
are shown. The sample sizes (n) are indicated in the figures.
Statistical analyses were conducted using GraphPad 8 soft-
ware (GraphPad Software, USA).

3. Results

3.1. Ventilation with a High Tidal Volume Induces Elevated
Caspase-1-Dependent Pyroptosis in AMs. Previously, we
demonstrated that lung injury occurred during high-tidal-
volume ventilation [23]. To further investigate if AM pyrop-
tosis had occurred, we randomized mice into three groups: a
spontaneous breathing control group, a protective ventila-
tion/low-tidal volume ventilation (low VT) group, and an
injurious ventilation/high-tidal-volume ventilation (high
VT) group. Caspase-1 is a biomarker of canonical pyropto-
sis. Therefore, we measured the number of active caspase-
1-positive and PI-positive to measure caspase-1-related
pyroptosis [24]. As illustrated in Figure 1(a), the flow cytom-
etry results shows that percentage of caspase-1-induced
pyroptosis was significantly increased in the high VT group,
whereas there was no difference between the control group
and the low VT group at 4 h after ventilation onset. The
same results are verified in western blot as shown in
Figure 1(b). The cleaved form of GSDMD, as a biomarker
of pyroptosis, increased obviously in the high VT group,
but not in low VT groups. The trend of activated caspase-1
was consistent with cleaved GSDMD at the protein level.

In addition, pyroptosis contributes to the mature and
release of the proinflammatory cytokine IL-1β. The expres-
sion of mature IL-1β is detected by western blotting, and
the release of IL-1β is measured by ELISA in BALF and
serum and is increased in high VT group compared to that
of low VT according to Figures 1(c)–1(e). These results sug-
gest that ventilation with a high tidal volume resulted in ele-
vated caspase-1-dependent pyroptosis in AMs in VILI.

3.2. Caspase-1 Deletion Abolishes VILI and Cytokine Release
in Mice. To investigate whether alveolar pyroptosis contrib-
utes to VILI, caspase-1-/- mice were ventilated with a high
tidal volume. As shown in Figure 2(a), caspase-1-/- mice that
underwent high-tidal-volume ventilation had barely any AM
caspase-1-induced pyroptosis and drastic reduction in the
proportion of death cells. The expression alteration in
GSDMD could be as a supporting information for AM
pyroptosis (Figure 2(b)). Protein level of cleaved GSDMD
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was significantly reduced after caspase-1 knockout. To assess
pyroptosis-related inflammatory factor, we found that IL-1β
and HMGB-1 in BALF was significantly increased in high
VT group, but sharp decrease upon caspase-1 knockdown
(Figures 2(c)–2(e)).

As shown in Figures 3(a)–3(d), the high-tidal-volume
ventilation caused significant lung inflammation, alveolar
congestion, alveolar septal thickening, and perivascular infil-
tration of inflammatory cells, whereas lung lesions showed
significantly reduced inflammatory cell infiltration in the
caspase-1-/- mice. Genetic caspase-1 deficiency significantly
alleviated the wet weight/dry weight ratio and reduced the
total proteins in the BALF with high VT (Figures 3(e) and
3(f)), which was consistent with our histopathological anal-

ysis. To further assess lung injury, we evaluate the levels of
IL-6 and TNF-α in BALF and shown as Figures 3(g) and
3(h). These cytokines increased dramatically in the wild-
type mice that received high-tidal-volume ventilation (high
VT group), but cytokines were partially reduced in the cas-
pase-1-/- mice. These findings indicate that genetic caspase-
1 deficiency decreases lung damage in VILI in mice.

3.3. IRF-1 Deletion Attenuates VILI and Cytokine Release in
Mice. We previously identified that IRF-1 has been implica-
ted in the regulation of ALI-induced inflammatory response
[21, 22]. To examine the functions of IRF-1 in VILI, we first
examined its RNA and protein content in the group of low
VT, high VT, and sham (Figures 4(a) and 4(b)). The
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Figure 1: Ventilation with a high tidal volume induces elevated caspase-1-dependent pyroptosis in AMs. Caspase-1-related death cells
detected by flow cytometry (a) and the protein level of GSDMD including full-length and cleaved forms (b) and mature IL-1β (c) in
alveolar macrophages were increased in high VT group compared with the group of control and low VT. The release of IL-1β in BALF
(d) and serum (e) was significantly increased after ventilation with high VT than that in the low VT group, compared with control
group. Results are representative of three independent experiments; the results of one representative experiment are shown (n = 5/group,
∗p < 0:05, ∗∗p < 0:01).
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expression of IRF-1 in lung homogenates was significantly
increased in the high VT group compared with the sham
and low VT group.

Next, IRF-1-/- mice were also used to investigate whether
IRF-1 mediates VILI and cytokine release. As shown in

Figures 4(e)–4(h), lung lesions showed significantly reduced
inflammatory cell infiltration in IRF-1-/- mice. Genetic IRF-1
deficiency significantly alleviated the wet weight/dry weight
ratio and reduced the total proteins in the BALF
(Figures 4(c) and 4(d)–4(f)), which was consistent with our
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Figure 2: Caspase-1 deletion abolishes VILI and cytokine release in mice. (a) The flow cytometry showed caspase-1 deletion abolished death
cells in alveolar macrophage. The protein level of GSDMD including full-length and cleaved forms (b) and mature IL-1β (c) in alveolar
macrophages was significantly decreased after caspase-1 knockout. Caspase-1 deletion attenuated pyroptosis-related cytokines in BALF of
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histopathological analysis. To further assess lung injury, we
evaluated the levels of IL-6 and TNF-α in BALF. All cyto-
kines increased dramatically in the wild-type mice that
received high-tidal-volume ventilation (high VT group),
but cytokines were partially reduced in the IRF-1-/- mice in
Figures 3(i)–3(j). These findings indicate that genetic IRF-1
deficiency decreases lung damage in VILI in mice. These
data indicate that IRF-1 plays an important role in the path-
ogenesis of VILI.

3.4. IRF-1 Was Required for Caspase-1 Activation in AMs.
Having shown that VILI is associated with pyroptosis of
AMs and IRF-1 expression, we then investigated whether
IRF-1 deletion enhances protection by inhibiting AM pyrop-
tosis. As shown in Figure 5(a), IRF-1-/- mice that underwent
high-tidal-volume ventilation had very little caspase-1-
induced pyroptosis. The levels of activated caspase-1,
cleaved GSDMD, and IL-1β were detected by western blot
analysis. Indeed, reduced expression of cleaved caspase-1,

cleaved GSDMD, and IL-1β was observed in AMs of IRF-
1-/- mice with high-tidal-volume ventilation compared to
that of the control group (Figures 5(b) and 5(c)). The levels
of IRF-1 are detected by western blot analysis as shown in
Figure 5(d). Indeed, reduced expression of IRF-1 was
observed in AMs of caspase-1-/- mice with high-tidal-
volume ventilation compared to those of the control group.
The concentration of IL-1β and HMGB-1 in BALF was
attenuated after high VT with IRF-1 deletion compared to
that wild type (Figures 5(e) and 5(f)). These data indicated
that IRF-1 was essential for caspase-1 activation and further
precipitated the pathogenesis of VILI.

4. Discussion

It has been identified that inhibition or knockout of caspase-
1 or IRF-1 has a protect effect against many inflammatory
diseases [25–27]. In this study, we demonstrated that
caspase-1-related pyroptosis may be an important
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Figure 3: Caspase-1 deletion abolishes VILI and cytokine release in mice. Caspase-1 deletion alleviated the high-tidal-volume ventilation-
induced lung injury measured by lung injury scores (d) for lung pathology. (a) Lung gross pathology is shown. Representative histologic
sections for lung pathology (b) (magnification, 20×) and (c) (magnification, 400×) are shown. Caspase-1 deletion alleviated lung
pathology in gross pathology (a) and HE-stained micrographs (b and c). Caspase-1 deletion reduced the wet/dry (W/D) ratio (e) and
BALF protein concentration (f) in the high VT group. Caspase-1 deletion attenuated the release of IL-6 (g) and TNF-α (h) in BALF of
high VT. Results are representative of three independent experiments; the results of one representative experiment are shown (n = 5
/group, ∗p < 0:05, ∗∗p < 0:01).
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mechanism in pathogenesis for experimental VILI. More-
over, IRF-1 may positively regulate caspase-1-dependent
pyroptosis and release of inflammatory factors in mechani-
cal lung injury. Therefore, our study found accumulating
evidence for the links between IRF-1 and pyroptosis-
related molecules [28].

Clinically, mechanical ventilation is the most dominant
treatment strategy for ARDS. VAP is one of the most com-
mon complications in severe pneumonia and ARDS patient.
The alveoli damage by mechanical force could further com-

plicate the condition and prognosis of ALI/ARDS. Excluding
infection, injurious mechanical ventilation only could
induce AM pyroptosis and be associated by caspase-1 in
our study. From our findings, caspase-1-dependent pyropto-
sis potentiates inflammatory response in VILI.

Prior studies have identified the pivotal role of IRF-1 in
mechanism of ALI/ARDS occurrence. As a transcription fac-
tor that is involved in tumor-related signaling pathways,
IRF-1 is often elevated in patients with ARDS [29]. In addi-
tion, we found that IRF-1 deletion in LPS-induced ALI
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Figure 4: IRF-1 deletion attenuates VILI and cytokine release in mice. The intranuclear protein level (a) and mRNA (b) of IRF-1 in alveolar
macrophages were increased in the high VT group compared with the control group and the low VT group. IRF-1 deletion alleviated lung
histopathologic damage in gross pathology (e), HE-stained micrographs for 20× magnification (f) and 400× magnification (g) induced by
the high-tidal-volume ventilation assessed using lung injury scores (h). IRF-1 deletion alleviated the wet/dry (W/D) ratio (c) and BALF
protein concentration (d) in the high VT group. The concentration of IL-6 (i) and TNF-α (j) in BALF was attenuated after high VT with
IRF-1 deletion compared to that wild type. Results are representative of three independent experiments; the results of one representative
experiment are shown (n = 5/group, ∗p < 0:05, ∗∗p < 0:01).
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mouse could alleviate lung injury significantly [21, 22].
These studies proposed that IRF-1 plays a critical role in
mediating cytokine storm of ALI/ARDS. No IRF-1-
related signaling pathway contributing to VAP or VILI

has been studied before. In our study, IRF-1 was signifi-
cantly upregulated in AMs in high VT-induced lung
injury. Moreover, caspase-1-induced pyroptosis of AMs
and inflammation was impaired after IRF-1 knockdown.
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Figure 5: IRF-1 was required for caspase-1 activation in AMs. The flow cytometry showed IRF-1 deletion attenuated alveolar macrophage
pyroptosis in high VT (a). Western blotting analysis of protein expression of caspase-1 p10 (b), IL-1β (b), and GSDMD including full-length
and cleaved forms (c) in alveolar macrophages. Analysis of IRF-1 protein levels (d) in the nucleus of alveolar macrophages indicated that
caspase-1 deletion did not affect expression of IRF-1. The concentration of IL-1β (e) and HMGB-1 (f) in BALF was attenuated after high
VT with IRF-1 deletion compared to that wild type. Results are representative of three independent experiments; the results of one
representative experiment are shown (n = 5/group, ∗p < 0:05, ∗∗p < 0:01).
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IRF-1 seems to be upstream in caspase-1 and pyroptosis-
related molecules. In other words, it suggested that IRF-1
is a potential transcription factor implicated in caspase-1-
related pyroptotic cell death. Previous studies showed that
caspase-1 gene might be regulated by IRF-1 via a CRE site.
Additionally, caspase-1 upregulation was unable to be
observed in oligodendrocyte progenitor cells after IFN
stimulation in absence of IRF-1 [30, 31].

In mechanical ventilation-induced lung injury, there
were fewer inflammatory factors in serum and BALF. It
was distinct from the pathophysiological processes of LPS-
induced ALI which could amplify the inflammatory
response at the beginning of onset. Nonetheless, caspase-1-
induced pyroptosis and the release of related inflammatory
factors including IL-1β, IL-18, and HMGB-1 were partially
responsible for pulmonary pathology in VILI. It has been
confirmed that myeloid differentiation factor 88 (MyD88)
adapter protein could recruit some members of IRF-1 family
of transcription factors to evoke certain genes such as toll-
like receptor (TLR) [32, 33]. In our study, IRF-1 knockdown
could markedly reduce these effects mentioned above. It
appears that IRF-1 regulate pyroptosis-associated cytokines.

In conclusion, our study highlights the important role of
caspase-1 and the promoting effect of IRF-1 in the patho-
genesis of VILI. IRF-1 and pyroptosis-related inflammatory
factors promise to be therapeutic targets or early warning
signals in patients undergoing mechanical ventilation. How-
ever, our animal experiment may further verify by a pro-
spective clinical study.
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