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Abstract
Background.  Inhibition of the sonic hedgehog (SHH) pathway with Smoothened (SMO) inhibitors is a prom-
ising treatment strategy in SHH-activated medulloblastoma, especially in adult patients. However, the 
problem is that tumors frequently acquire resistance to the treatment. To understand the underlying resist-
ance mechanisms and to find ways to overcome the resistance, preclinical models that became resistant to 
SMO inhibition are needed.
Methods. To induce SMO inhibitor resistant tumors, we have treated a patient-derived xenograft (PDX) model 
of SHH medulloblastoma, sensitive to SMO inhibition, with 20 mg/kg Sonidegib using an intermitted treatment 
schedule. Vehicle-treated and resistant models were subjected to whole-genome and RNA sequencing for molec-
ular characterization and target engagement. In vitro drug screens (76 drugs) were performed using Sonidegib-
sensitive and -resistant lines to find other drugs to target the resistant lines. One of the top hits was then validated 
in vivo.
Results.  Nine independent Sonidegib-resistant PDX lines were generated. Molecular characterization of 
the resistant models showed that eight models developed missense mutations in SMO and one gained an 
inactivating point mutation in MEGF8, which acts downstream of SMO as a repressor in the SHH pathway. 
The in vitro drug screen with Sonidegib-sensitive and -resistant lines identified good efficacy for Selinexor in 
the resistant line. Indeed, in vivo treatment with Selinexor revealed that it is more effective in resistant than 
in sensitive models.
Conclusions. We report the first human SMO inhibitor resistant medulloblastoma PDX models, which can be used 
for further preclinical experiments to develop the best strategies to overcome the resistance to SMO inhibitors in 
patients.

Predictive modeling of resistance to SMO inhibition in 
a patient-derived orthotopic xenograft model of SHH 
medulloblastoma
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Key Points

•	 Intermittent treatment with Sonidegib induces resistance in human SHH 
medulloblastoma PDX model.

•	 Acquired resistance mainly due to missense mutations in SMO.

•	 Detected mutations overlapping with mutations known of patients’ samples.

Importance of the Study

Medulloblastoma and basal cell carcinoma 
with upstream activation of the SHH pathway 
can be treated with SMO inhibitors. Initial 
clinical responses are promising, but tumors 
often develop resistance to the treatment. To 
overcome resistance and evaluate new treat-
ment strategies appropriate preclinical models 
reflecting the patients’ situation are needed. 
Previously, genetically engineered mouse 
models with Ptch1/Tp53 mutations were used 
to model resistance. However, TP53 mutations 
almost never co-occur with PTCH1 mutations 

in human medulloblastoma. Here we report 
about an orthotopic PTCH1-mutated PDX 
model of medulloblastoma that was treated 
in cycles with Sonidegib to develop resistant 
lines. Genomic analyses of the resistant 
sub-lines showed re-activation of the SHH 
pathway by mutations that have also been 
found in patients’ tumors. The models gener-
ated here are a good resource for translational 
research to improve treatment strategies for 
medulloblastoma patients that are resistant to 
SMO inhibitors.

Introduction

The hedgehog (HH) signaling pathway is a highly con-
served pathway that was first identified in fruit flies.1 
It transmits signals from the cell membrane to the nu-
cleus and plays an important role during normal embry-
onic development but is mostly inactive in adult tissues.2 
Nevertheless, it is involved in maintenance of somatic stem 
cells and pluripotent cells and plays a crucial role for tissue 
repair of different cell types including epithelial cells.3,4 In 
other tissues, the HH pathway is active in primary cilia, 
which receive mechanical, chemical, and thermal signals.5 
The HH genes Sonic HH (SHH), Indian HH (IHH), and Desert 
HH (DHH) are ligands of the pathway and are relevant for 
polarity of organisms.6 In the inactive state of the pathway, 
patched 1 (PTCH1), a transmembrane protein, inhibits the 
seven-pass transmembrane protein Smoothened (SMO) 
and Suppressor of fused (SUFU) is bound to glioma-
associated oncogene (GLI) in the cytoplasm (Figure 1). If 
one of the ligands, such as SHH, binds to PTCH1, the trans-
membrane protein undergoes internalization and degrada-
tion, and SMO gets activated and is released to enter the 
primary cilia. This promotes the dissociation of the SUFU-
GLI complex and detached GLI is translocated to the nu-
cleus where it acts as a transcription factor activating the 
expression of HH target genes such as GLI1/2 (in a feed-
forward loop) and MYCN as well as PTCH1 that acts as a 
negative feedback loop regulator.7

Dysfunction or aberrant activation of the HH pathway 
can lead to developmental problems such as in patients 
with Gorlin syndrome who have germline mutations in 

HH pathway members PTCH1 or SUFU.8,9 HH signaling 
can also be activated in many different adult tumor 
types, including basal cell carcinoma (BCC) and brain tu-
mors.10–13 In children, tumor entities that are well known 
for activated HH signaling are rhabdomyosarcoma and 
medulloblastoma (MB).7,14–16 Especially in MB, where ac-
tivated SHH signaling is characteristic for the SHH sub-
group, representing ~30% of all MB patients, the pathway 
has been intensively studied and many mutations affecting 
different pathway members have been identified in large 
genomic studies.17–19

Since aberrant activation of the HH pathway is the 
driving force in many different tumor types, inhibiting the 
pathway for therapy is a promising strategy and many dif-
ferent drugs have been developed.20 Most of the drugs 
that are on the market and approved target SMO.21 Early 
preclinical and clinical experiences have shown that these 
SMO inhibitors were highly effective in BCC and SHH MB 
tumors with aberrant activation of the HH pathway up-
stream of SMO, e.g. harboring a mutation in PTCH1.17,22,23 
Tumors with mutations downstream of SMO, for instance 
in SUFU or with amplification of MYCN/GLI2 were intrinsi-
cally resistant to the treatment.17,24,25 Moreover, in contrast 
to the assumption stated in Kool et al. 2014, tumors har-
boring a mutation in SMO are also primarily resistant to 
the treatment with SMO inhibitors as the inhibitors cannot 
bind anymore.17,26

Even though SMO inhibitors were highly effective in pre-
clinical and clinical studies, side effects such as premature 
closure of growth plates in young children are a major con-
cern, thereby restricting the use of these inhibitors to post-
pubertal and adult patients only.24 The other concern is 
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that tumors frequently become resistant against these in-
hibitors. For instance, metastatic MB patients treated with 
Vismodegib rapidly developed resistance caused by muta-
tions in SMO.27 Also BCC tumors treated with Vismodegib 
showed frequent resistance to SMO inhibition with 50% of 
resistant cases harboring mutations in SMO but also other 
mutations downstream of SMO in the SHH pathway were 
observed.26

Based on clinical data from patients treated with SMO 
inhibitors and the resistance they developed against these 
inhibitors there is a high need to either prevent the devel-
opment of resistance against SMO inhibitors or to over-
come resistance and find new treatment strategies for 
resistant tumors. To develop such new strategies, preclin-
ical models mimicking the patients’ situation are urgently 
needed. Initial studies used mouse MB models harboring 
Ptch1 and Tp53 mutations to study the resistance mech-
anisms against SMO inhibitors. Mouse MB models were 
treated with either Sonidegib or Vismodegib and resistant 
tumors developed quickly depending on the applied treat-
ment schedules.28,29 Molecular characterization of the re-
sistant tumors revealed Gli2-amplifications in 50% of the 
models. Only 7/135 resistant tumors harbored missense 
point mutations in Smo. However, acquired mutations 
in SMO is the prevalent resistance mechanism seen in 
patients.26,30

Even though these mouse MB models provided first 
insights into the mechanisms that may explain the resist-
ance these tumors developed against inhibition of SMO, 

they do not fully mimic the human situation. The main dif-
ference are the Tp53 mutations in these mouse models 
as mutations in TP53 almost never co-occur with PTCH1 
mutations in human SHH MB patients.18 TP53 mutations 
that are found in SHH MB patients are most prevalent in 
older children and almost always occur in the context of 
the Li-Fraumeni syndrome where the first hit in TP53 is al-
ready present in the germline. However, in human MB they 
almost always co-occur with MYCN and/or GLI2 amplifica-
tions and these tumors are resistant to SMO inhibitors.17,25 
Moreover, the presence of Tp53 mutations in the mouse 
tumors makes them also more genomically unstable, 
which may facilitate the development of drug resistance 
through genomic rearrangements or amplifications. To 
study resistance mechanisms against inhibition of SMO, 
a better model mimicking the human situation is needed. 
Here, we describe the first Sonidegib-resistant SHH MB 
PDX models.

Material and Methods

Animal Studies

All experiments were conducted in accordance with legal 
and ethical regulations and approved by the regional 
council (Regierungspräsidium Karlsruhe, Germany; 
G259/14, G228/19). Mice were monitored daily for the 
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Figure 1.  Schematic overview of the SHH signaling pathway. In inactivated status PTCH1 inhibits SMO and SUFU is bound to GLI1, GLI2 or GLI3 in 
cytoplasm (left panel); if SHH (ligand) binds to PTCH1 transmembranal SMO gets activated; GLI1/2/3 is released and translocted to nucleus where it 
functions as transcription factor (right panel); Adapted from “Hedgehog Signaling Pathway”, by BioRender.com (2021). Retrieved from https://app.
biorender.com/biorender-templates.
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presence of tumor-related symptoms. Animals were eu-
thanized when termination criteria described in the pro-
tocol were observed. All in vivo work was performed 
with immune-compromised NSG mice (Nod-scid 
IL2Rgammanull) obtained from the laboratory breeding 
colony (German Cancer Research Center).

Intracranial injections (analgesia: 5  mg/kg Carprofen or 
200 mg/kg Metamizol; depending on used protocol) and bi-
oluminescence imaging were performed as published pre-
viously.31 The PDX models need to be propagated in vivo by 
re-injection and cannot be cultured indefinitely in vitro.

Extracted tumors were split and stored either as viable 
cryostocks with dissociated cells in medium (NeuroCult + 
10% Proliferation Supplement) with 10% DMSO, as snap-
frozen samples, or fixed in 10% formalin-solution for 
embedding in paraffin using standard procedures.

For treatments, animals were randomized into vehicle 
(0.5% methyl cellulose/0.5% Tween-80) or Sonidegib group 
(20  mg/kg; p.o.; MedChem Express, HY-16582), or into 
vehicle (0.6% Plasdone PVP K-29/32  +  0.6% Poloxamer 
Pluronic F-68 in water) and Selinexor group (5  mg/kg; 
Karyopharm Therapeutics) respectively, and treated in a 
five days on/2 days off schedule. The chosen dosings en-
sure clinically relevant drug exposures as well as good tol-
eration of the mice.32

Histological Stainings

After antigen retrieval with citrate buffer, FFPE sections 
were blocked (1hr) with 10% normal donkey serum in 0.1% 
Tween20/PBS. Primary antibody (anti-cleaved Capsase-3, 
1:500, #9661, Cell Signaling, USA) was incubated o/n at 
room temperature. Secondary antibody (anti-rabbit-biotin-
SP-conjugated, 1:400, Jackson ImmunoResearch, USA) and 
ABC-staining (Vectastain Elite ABC Kit, Vector Laboratories, 
USA) were added and sections were stained with DAB 
(DAB-2V, Nichirei Bioscience). Staining for Ki67 (clone MIB-
1, Dako Agilent, USA) was done on a Ventana BenchMark 
ULTRA Immunostainer using the OptiView DAB IHC 
Detection Kit for Ki67 (Ventana Medical Systems, USA). 
Hematoxylin and Eosin (H&E) staining was performed for 
1.5 min and 5 min, respectively.

Methylation and Sequencing Analysis

DNA and RNA isolation, as well as whole-genome, whole-
exome, and RNA sequencing, were performed as pub-
lished previously.31 DNA methylation analysis using the 
EPIC (850k) BeadChip (Illumina, San Diego, USA) was per-
formed as published previously.33

In Vitro Drug Screen With a Library of 76 
Compounds

Cryopreserved cells were taken in short-term culture in 
TSM complete 34 and seeded in drug-preprinted 384-well 
round bottom ultra-low attachment spheroid microplates 
(Corning, #3830; 1000 cells/well; 25 µl TSM complete/well). 
The drug library consisted of 76 drugs of which most were 

approved and some were investigative compounds and the 
plate production was performed as previously published.35 
All concentrations were tested in duplicates, readout (after 
72 hrs) was done on a PHERAstar FS microplate reader 
(BMG Labtech) using CellTiterGlo 2.0 (Promega) according 
to the manufacturer’s protocol. Drug sensitivity analyses 
were performed using the web-based drug analysis pipe-
line BREEZE (https://breeze.fimm.fi), developed at the 
Institute for Molecular Medicine Finnland (FIMM).36

Results

Intermitted Dosing of Sonidegib Induces 
Resistance in SHH MB PDX

To study SMO inhibitor resistance mechanisms in human 
MB, we used the patient-derived orthotopic xenograft 
(PDX) model Med-1712FH.31 Methylation-based TSNE clus-
tering of a reference cohort published in Cavalli et al. 2017 
showed that the model Med-1712FH clusters within the 
SHH subgroup and can be further subtyped as MB-SHH-3 
(previously annotated as SHH-α) (Figure 2A).37 Other mo-
lecular characteristics of the primary tumor and the model 
are missense mutations in PTCH1, ELP1, and CREBBP as 
well as heterozygous loss of chromosome 9q and ampli-
fication of YAP1 (Figure 2B). To generate resistant clones 
of the model we used luciferase-labeled PDX cells of the 
model intracranially injected in mice. Tumor volume was 
determined weekly using bioluminescence and mice were 
randomized into treatment (SMO inhibitor Sonidegib) or 
vehicle group after a threshold of luciferase signal of 2 x 
106 p/s was reached (Figure 2C).

To induce resistance over time we went for an inter-
mittent dosing schedule based on tumor burden meas-
ured by luciferase intensity. Treatment was stopped when 
luciferase intensity dropped below 1 x 106 p/s, tumors were 
allowed to re-grow and treatment was reinitiated when the 
IVIS signal reached 2 x 106 p/s again (Figure 2C). The treat-
ment in cycles was conducted until we reached a stage that 
IVIS signals increased under treatment indicating that the 
tumors were not responding to treatment anymore and 
mice had to be euthanized because of tumor symptoms. 
The mice developed resistance to Sonidegib after 3–6 treat-
ment cycles and the intermittent treatment was performed 
for 30–51 weeks (Figure 2D). The vehicle animals had to be 
euthanized 4–10 weeks after treatment start and treatment 
with Sonidegib led to significant survival benefit (Figure 
2E). All nine resistant tumors were resected, parts were re-
served for molecular analysis and other parts were cryo-
preserved as single cell suspension to allow re-passaging 
of the PDX for future preclinical testing.

To confirm that the resistant models can indeed be cryo-
preserved and used for further experiments, frozen cells 
of two generated resistant lines Med-1712FH_#812 and 
Med-1712FH_#799 were thawed and re-injected into 10 
NSG mice each. This time treatment was started when a 
threshold of 1x106 p/s in IVIS was reached. All mice showed 
constant tumor growth and no effect of Sonidegib could 
be observed indicating that the tumors were resistant to 
Sonidegib (Figure 2F).

https://breeze.fimm.fi
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Molecular characterization of resistant 
models reveals eight different 
mutations in SMO and one mutation 
in MEGF8

To determine the mechanism(s) how resistant lines be-
came resistant to Sonidegib treatment all nine lines were 

subjected to whole-genome sequencing (WGS) and DNA 
methylation analysis. Cluster analyses of methylation data 
showed that all nine resistant and the three vehicle-treated 
lines cluster closely with the original med-1712FH model 
(Supplementary Figure S1A+B) and they are all classified 
as MB-SHH-3 (Supplementary Figure S1C). The models 
form a separate cluster in proximity to the SHH and the 
SHH-3 clusters, respectively, since the methylation pro-
files of the original and resistant lines are highly similar. 
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Figure 2.  Intermittent dosing of Sonidegib induces resistant SHH MB sub-lines. (A) Clustering of MB reference cohort published by Cavalli et al. 2017 
showing the different subgroups of MB (left; n = 764) and further division of the SHH MB sugroup into four different subtypes (right; n = 224)37; the used model 
Med-1712FH clusters with the SHH MB group and in more detail as SHH-3 (highlighted by black arrow); (B) Copy number profile of the model Med-1712FH 
showing loss of chromosome 9q and amplification of 11q including YAP1; (C) PDX cells were injected intracranially and mice were randomized based on 
IVIS signal; treatment was started when threshold of 2 x 106 p/s was reached and stopped when IVIS signal was below 1 x 106 p/s; (D) Plots showing IVIS 
signal for time of treatment; each plot shows IVIS signal of vehicle-treated mice in gray (n = 6) and IVIS signals of one mouse in Sonidegib-treatment group; 
IVIS signals during time on treatment are shown in red, values measured during treatment breaks are shown in black; (E) Kaplan-Meier plot showing survival 
of vehicle- (n = 6) and Sonidegib-treated (n = 9) group; (F) two generated resistant models (#799, #812) were re-injected after cryopreservation and treated 
with Sonidegib as soon as IVIS signal reached 1 x 106 p/s; all mice (n = 10) show constant tumor growth indicating resistance to Sonidegib.
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Histological analyses of the original, treatment-naïve, 
and the resistant models did not show any differences for 
HE-staining, proliferation (Ki67-staining), and apoptosis 
(cleaved Caspase-3-staining) (Supplementary Figure S1D). 
Sequencing data showed that 8/9 resistant lines acquired 
missense mutations in SMO as compared to the original 
Med-1712FH_#140 model used as starting material for in-
jections (Figure 3 A+B). All mutations occurred in the prox-
imity of the frizzled heptahelical membrane region of the 
protein that spans from amino acid 221 to amino acid 558 
38 and partly overlapped with previously published muta-
tions, one with a mutation of a GEMM model and four with 
mutations detected in Vismodegib-resistant MB or BCC pa-
tients (Figure 3B). Only one of the resistant lines did not 
have a mutation in SMO but instead had an inactivating 
mutation (S1358X) in MEGF8 (multiple epidermal growth 
factor-like domains protein 8). Expression of MEGF8 is 
also significantly lower in the MEGF8-mutated model com-
pared to the other models (Figure 3C). MEGF8 is a single-
pass type I transmembrane protein that acts as a negative 
regulator of HH signaling.39 The protein is involved in deg-
radation of SMO and thereby involved in regulating HH 
signaling. If MEGF8 is mutated, SMO accumulates and HH 
signaling is elevated.40 Besides the mutations in SMO or 
MEGF8 each resistant model gained only few additional 
SNVs (1–5) and InDels (1–2) (Figure 3D). Copy number pro-
files of the original and the resistant models did not show 
any differences (data not shown).

To investigate transcriptional differences between ve-
hicle and resistant lines RNA sequencing of three vehicle 
samples and nine resistant lines was performed. Analysis 
revealed that 240 genes were significantly (P-value < .05) 
up- and 283 genes downregulated in the resistant sam-
ples (Figure 4A). The data also showed that GLI1/2 was still 
expressed and not significantly downregulated in the re-
sistant lines indicating that the HH pathway was still active 
(Figure 4B+C). This is also depicted by expression of MYCN 
and SUFU (Figure 4D+E). Ingenuity Pathway Analysis (IPA) 
of resistant models compared to vehicle samples revealed 
three increased (activation z-score > 2) and five decreased 
(activation z-score < –2) pathways (Figure 4F). However, 
none of these annotated pathways seem to be related to 
HH signaling, growth of (cancer) cells, or tumorigenesis.

Short-Time Treatment of Models with Sonidegib 
Reveals Intermediate Response in Gene 
Expression

To better understand the initial response of the SHH PDX 
model to Sonidegib treatment, three vehicle-treated an-
imals were treated with Sonidegib (20  mg/kg) on two 
consecutive days and euthanized four hours after the 
second dosing. Tumor cell pellets were subsequently 
used for RNA-sequencing identifying 105 down- and 17 
upregulated genes in the treated samples (P-value < .05) 
(Figure 5A). GLI1 and MYCN expression were significantly 
downregulated in short-time treated samples compared 
to vehicle samples (Figure 5C+E), but expression of SUFU 
and GLI2 was not altered (Figure 5D+F). Gene set enrich-
ment analysis (GSEA) of the short-time treated samples 
compared to vehicle but also to resistant samples showed 

that the KEGG HH signaling pathway was upregulated in 
vehicle and resistant samples but not in short-time treated 
samples (Figure 5B), indicating that the HH signaling 
pathway was inhibited in the short-time treated samples. 
Pathway analysis with IPA showed that pathways or func-
tions related to organismal death and growth failure were 
increased (activation z-score > 2) in short-time treated sam-
ples. In contrast, pathways related to the MAPKKK cascade 
and body size were decreased (activation z-score < –2) in 
short-time treated samples, indicating that cell prolifera-
tion and cell division was downregulated (Figure 5G).

Selinexor Treatment Prolongs Survival of 
Resistant Lines

To evaluate new treatment strategies a drug screen with 
76 drugs was performed using the Sonidegib-sensitive, 
treatment-naïve Med-1712FH model, and a resistant 
model with a SMO mutation (#791). One of the top hits, 
being effective in both models was Selinexor (Figure 6A), 
a blood-brain-barrier penetrant XPO1-inhibitor that is ap-
proved and in clinical use for multiple myeloma. It inhibits 
nuclear export of many tumor suppressor proteins as for 
example TP53 and was already shown to be effective for 
a MB model with SUFU mutation.41,42 For the in vitro used 
treatment-naïve sample the IC50 of Selinexor was 86.1 nM, 
for the resistant model it was 65.6 nM (Figure 6B). To verify 
efficacy of the XPO1-inhibitor in vivo, cells of one vehicle-
treated model (#806) and of two resistant models (#812, 
SMO-mutated and #799, MEGF8-mutated) were injected 
intracranially into NSG mice. After bioluminescence signal 
reached 1x106 p/s, mice were randomized into vehicle or 
Selinexor group and treated with solvent control or 5 mg/
kg Selinexor (p.o.) respectively in a 5 days on/2 days off 
schedule. Comparison of tumor volumes showed that for 
the sensitive model treatment with Selinexor did not in-
duce huge differences in tumor volumes between the two 
groups, however, mice in the treatment group survived 
12 weeks longer (Figure 6C). Treatment of both mutated 
models revealed a significant difference in tumor volumes 
between the vehicle-treated and Selinexor-treated group 
and the mice treated with Selinexor also lived significantly 
longer (Figure 6C). For the SMO-mutated model (#812), tu-
mors treated with Selinexor did grow during the first week 
of treatment but then stopped growing and disease was 
stable for five weeks. Between weeks six and eight mice 
showed tumor regression with slow growing tumors 
afterwards. Mice with the MEGF8-mutated model (#799) 
showed stable disease for 13 weeks under treatment and 
growth of tumor after this time point.

Discussion

Treatment of pediatric cancer patients is mostly a combina-
tion of surgery, radiation, and/or chemotherapy. Although 
this treatment strategy can lead to stable disease, patients 
often suffer from long-term side effects of the aggressive 
treatment, and more precise and less toxic treatments are 
thus needed. With increasing use of sequencing methods, 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac026#supplementary-data
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Figure 6.  In vitro and in vivo treatment with Selinexor of sensitive and resistant med-1712FH-models does show higher efficacy in resistant 
cells. A) Drug sensitivity scores (DSS) of the in vitro drug screen with 76 drugs using sensitive (treatment-naïve) and resistant (#791) Med-1712FH 
cells reveals Selinexor as one of the top hits; B) IC50-values for both sensitive (86.1 nM) and resistant (65.6 nM) cells were low and treatment 
showed good dose-dependency; C) In vivo treatment of one sensitive (#806) and two resistant (#812, SMO-mutated; #799, MEGF8-mutated) models 
does lead to tumor growth inhibition in resistant but less in the sensitive models; vehicle group is shown in gray (n = 4), Selinexor group (5 mg/kg; 
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11Krausert et al. Generation of SMO inhibitor resistant MB PDX models
N

eu
ro-O

n
colog

y 
A

d
van

ces

tumor samples can be better molecularly characterized 
and tumor-specific driving alterations can be identified. 
Treatment strategies can become more personalized and 
precise when targeting those alterations in tumors with 
specific inhibitors. However, an arising problem of using 
specific inhibitors is that tumors often become quickly re-
sistant to these monotherapies. Understanding the primary 
and acquired resistant mechanisms and how to overcome 
or prevent them with other drugs or combination therapies 
is thus important to improve treatment efficacy.

SMO inhibitors have been shown to be very effective in 
MB and BCC tumors with aberrant activation of the SHH 
pathway.26–28 However, not all MB and BCC tumors with 
SHH activation will respond and tumors that harbor muta-
tions in SMO or downstream of SMO will be resistant.17,24,25 
Moreover, also responding tumors may rapidly become 
resistant due to aquired mutations in SMO or other genes 
downstream of SMO.26–28 To overcome resistance, either 
with monotherapy with another drug or with a combination 
therapy, more research using model systems that mimic the 
patient’s situation is necessary. Here we generated for the 
first time a human SMO inhibitor resistant MB PDX model.

The MB SHH PDX model with a PTCH1-mutation util-
ized here responded well to the treatment with 20  mg/kg 
Sonidegib. With an intermitted dosing schedule based on 
bioluminescence signals of the tumors it was possible to 
generate tumors resistant to Sonidegib. Molecular charac-
terization of the nine resistant models revealed that 89% (8 
of 9) developed a tumor with a single, newly acquired SMO 
mutation, which leads to constitutive activation of the SHH 
pathway. Only one treated tumor developed a mutation 
downstream of SMO, in MEGF8, a negative regulator for 
HH signaling.39 More than half of the detected mutations in 
SMO (5/8 mutations) are overlapping with mutations found 
before in BCC tumors treated with Vismodegib or MB mouse 
allografts treated with Sonidegib.26,29,30,43 The remaining 
mutations in SMO were not detected before in a resistant 
model. Interestingly, one of the generated resistant PDX 
models harbors a mutation at position D473, which was also 
found mutated in a patient’s biopsy taken after developing 
resistance to treatment with Vismodegib.27 This overlap 
shows that the generated resistant PDX models mimic the 
patient’s situation and can be used for further development 
of treatment strategies to overcome the resistance.

Besides the different mutations in SMO, only one gen-
erated model harbored a mutation downstream of SMO 
in MEGF8. In contrast to previous published studies about 
models with aquired resistance to SMO inhibitors, none of 
the models generated here harbored mutations in SUFU or 
showed amplification of GLI1/2. Analyzed BCC tumor pa-
tient samples that were resistant to Vismodegib harbored 
mutations in SMO but also mutations or gene amplifica-
tions downstream of SMO.26 Published Sonidegib-resistant 
MB mouse models showed only few mutations in Smo and 
50% of generated resistant models harbored amplification 
of Gli2.29 However, the resistant allograft models became re-
sistant already after 16 days of constant treatment compared 
to more than 100 days of intermitted dosing in our study. This 
significant difference in dosing time is probably due to the 
homozygous loss of tp53 in these allograft mouse models.

More in-depth analysis of our generated resistant models 
by RNA-sequencing revealed no changes in expression 

levels of GLI1/2 and MYCN in resistant and vehicle lines 
indicating that in both conditions the HH signaling pathway 
is active. Compared to this, expression of the genes is de-
creased in short-time treated samples and confirms target 
engagement of the applied drug leading to suppression 
of the HH pathway. GSEA analysis of vehicle, short-time 
treated and resistant samples gave evidence that the HH 
signaling pathway is upregulated in vehicle and resistant 
samples when compared to the short-time treated models. 
IPA analysis revealed up- or downregulation of pathways 
related to organismal death or proliferation respectively 
for the short-time treated samples. These findings indicate 
that even the short treatment of only two days sensitizes the 
cells to apoptosis. In contrast, IPA analysis of the resistant 
samples does not reveal any affected pathways related to 
growth of (cancer) cells suggesting that the resistant models 
do not have alterations in their tumor-related metabolism.

The generated resistant models can be used to evaluate 
futher treatment strategies to overcome resistance. With 
an in vitro drug screen Selinexor was detected as one of 
the top hits being effective in both models, a treatment-
naïve and a resistant, and even slightly more effective in 
the resistant model. The XPO1-inhibitor Selinexor was al-
ready used in a previous study with a SUFU-mutated MB 
model, where it showed good efficacy.42 The mutation in 
SUFU leads to aberrant activation of the SHH pathway and 
likely primary resistance to treatment with SMO inhibi-
tors. To further evaluate efficacy of the drug in our resistant 
models we used one sensitive and two resistant models 
in vivo and treated them with Selinexor. Even though we 
observed a survival benefit of all the Sonidegib-treatment 
groups, weekly bioluminescence measurements showed 
that tumor growth was significantly inhibited for the two 
mutated samples. We were able to show that the treatment 
with Selinexor prolonged the survival for both groups with 
a resistant tumor significantly (P  =  .0027). For the sensi-
tive group the effect seemed to be still present but smaller, 
though this could not be proven here in either direction.

In the study presented here we were able to generate, for 
the first time, an SMO inhibitor resistant patient-derived 
tumor in an orthotopic setting. With these resistant models, 
additional experiments to develop new treatment strategies 
can be performed. On the one hand, resistant tumors can 
be treated with inhibitors targeting proteins downstream of 
SMO as for example GLI. Unfortunately, until now, no spe-
cific GLI-inhibitors are on the market or in clinical trial. On 
the other hand, and more likely, combinatorial approaches 
as for example described in Hau et al. 2021 to prevent re-
sistance can be applied and studied in vivo.44

Supplementary material

Supplemental material is available at Neuro-Oncology 
Advances online.
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