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Background. The treatment success rate of drug-resistant (DR) tuberculosis is alarmingly low. Therefore, more effective and less 
complex regimens are urgently required.

Methods. We compared the efficacy of an all oral DR tuberculosis drug regimen consisting of bedaquiline (25 mg/kg), delamanid 
(2.5 mg/kg), and linezolid (100 mg/kg) (BDL) on the mycobacterial load in the lungs and spleen of tuberculosis-infected mice during 
a treatment period of 24 weeks. This treatment was compared with the standard regimen of isoniazid, rifampicin, pyrazinamide, and 
ethambutol (HRZE). Relapse was assessed 12 weeks after treatment. Two logistic regression models were developed to compare the 
efficacy of both regimens.

Results. Culture negativity in the lungs was achieved at 8 and 20 weeks of treatment with BDL and HRZE, respectively. After 
14 weeks of treatment only 1 mouse had relapse in the BDL group, while in the HRZE group relapse was still observed at 24 weeks 
of treatment. Predictions from the final mathematical models showed that a 95% cure rate was reached after 20.5 and 28.5 weeks of 
treatment with BDL and HRZE, respectively.

Conclusion. The BDL regimen was observed to be more effective than HRZE and could be a valuable option for the treatment 
of DR tuberculosis.
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It is estimated that in 2018 10 million people contracted tuber-
culosis, drug-resistant (DR) tuberculosis in 500  000 [1]. The 
treatment duration of DR tuberculosis is ≥9 months, and fre-
quently >1.5 years, requiring a combination of many different 
drugs. Even with this intensive therapy, the treatment success 
rate for DR tuberculosis is only 54% in case of multidrug-
resistant (MDR) and 30% for extensively-drug resistant (XDR) 
tuberculosis [1]. Therefore shorter, less toxic, and more effec-
tive regimens are required.

Despite the urgent need for new treatments, only 3 new tu-
berculosis drugs have become commercially available in the 
last 4 decades. Bedaquiline is the first member of a new class 
of drugs called diarylquinolines. Its mechanism of action re-
lies on blocking a proton pump of Mycobacterium tuberculosis 

that is required for adenosine triphosphate synthase, resulting 
in the loss of energy production and cell death [2]. Delamanid 
and pretomanid belong to another novel class of drugs, the 
nitroimidazoles. Exposure to delamanid blocks methoxy-
mycolic and keto-mycolic acid synthesis causing destabilization 
of the mycobacterial cell wall [3]. In addition to these new tu-
berculosis drugs, linezolid has recently been repurposed as a 
core second-line agent for MDR tuberculosis and belongs to the 
oxazolidinones, which inhibit protein synthesis [4].

Each of the drugs mentioned above possesses different mech-
anisms of antimycobacterial action. Therefore, by combining 
the 3 orally administered drugs bedaquiline, delamanid, and 
linezolid (BDL) we aimed to provide further evidence that this 
regimen can shorten the duration of DR tuberculosis treatment. 
Experiments were performed in our previously validated mouse 
tuberculosis model using a drug-sensitive clinical M. tubercu-
losis strain [5, 6], and compared it with the standard regimen of 
isoniazid, rifampicin, pyrazinamide, and ethambutol (HRZE). 
We used a drug-sensitive strain, because no “gold standard” DR 
tuberculosis regimen has yet been defined, enabling the com-
parison of the performance of the BDL regimen with that of 
the classic tuberculosis drug regimen HRZE, as well as with 
other studies in this field [7]. The treatment-shortening poten-
tial of the BDL regimen is supported by a hollow-fiber model 
study, indicating the synergistic activity of the combination 
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of bedaquiline and linezolid against M. tuberculosis in various 
metabolic states [8]. 

A previous in vivo study investigated the combination of 
bedaquiline, pretomanid, and linezolid (BPaL) in a mouse tu-
berculosis model, showing good efficacy [7]. Subsequently, this 
particular combination was assessed in the Nix-TB trial, with 
promising results regarding efficacy and safety in patients with 
either MDR or XDR tuberculosis [9]. Studying the efficacy of 
delamanid in this DR tuberculosis drug regimen (as a replace-
ment for pretomanid) is of interest, because some mutations in 
the deazaflavin-dependent nitroreductase enzyme are associ-
ated with resistance to pretomanid but do not seem to affect 
susceptibility to delamanid [10]. This is particularly relevant, as 
such a mutation was already found to be present in a clinical 
M. tuberculosis Beijing strain without the isolate ever being ex-
posed to either pretomanid or delamanid [10]. In this respect, 
delamanid could be a viable alternative for pretomanid in the 
BPaL regimen in cases of pretomanid resistance.

METHODS

Animals

Specified pathogen-free female BALB/c mice were obtained 
from Charles River. Only female mice were used since some 
studies have shown sex differences in pharmacokinetic profiles 
in mice [11]. Animals were 13–15 weeks old at the start of the 
experiments, with experimental protocols adhering to the rules 
specified in the Dutch Animal Experimentation Act—con-
cordant with the European Union animal directive 2010/63/EU 
(license nos. 117-14-04 and AVD1010020173687).

Bacterial Strain and Tuberculosis Drugs

Experiments were performed using the drug-sensitive M.  tu-
berculosis Beijing VN 2002-1585 genotype strain [6] with MICs 
of 0.125 mg/L for isoniazid, 0.25 mg/L for rifampicin, 5 mg/L 
for ethambutol [12], 0.06 mg/L for bedaquiline, 0.015 mg/L for 
delamanid, and 0.25 mg/L for linezolid. MICs were determined 
according to Clinical and Laboratory Standards Institute stand-
ards [13]. The antibiotic drugs used were prepared as described 
elsewhere (Supplement 1) [5, 14].

Experimental Setup

Using previously described power calculations (Supplement 2) 
[5], a total of 378 mice were needed, 210 for efficacy assess-
ment and 168 for pharmacokinetic analysis. Mice were infected 
with M.  tuberculosis suspensions as described elsewhere [15]. 
In short, a suspension of M. tuberculosis, stored at −80°C, was 
defrosted at room temperature and centrifuged for 10 min-
utes at 14 000g. The mycobacterial pellet was resuspended in 
phosphate-buffered saline and centrifuged again for 1 minute 
at 1900g to eliminate any aggregated bacteria. The mycobacte-
rial suspension was then diluted in phosphate-buffered saline to 
obtain the intended bacterial load. Mice under anesthesia were 

infected via intratracheal instillation with a suspension con-
taining 1.2 (range, 0.8–2.0) × 105 colony-forming units (CFUs) 
of M. tuberculosis, followed by inhalation to ensure the forma-
tion of a bilateral tuberculosis infection. Therapy was started 
2 weeks after infection. Mice were checked daily and were eu-
thanized when humane end points (instability, dark eyes, de-
creased response to stimuli) were reached.

To assess the dose-response of monotherapy, mice were ex-
posed to 0.5×, 1×, or 2× the human pharmacokinetic equiva-
lent doses (HED) of bedaquiline (ie, 12.5, 25, or 50 mg/kg) and 
delamanid (1.25, 2.5, and 5 mg/kg) and 0.25×, 0.5×, or 1× the 
HED of linezolid (25, 50 and 100  mg/kg). Mice intended for 
combination therapy were divided into 2 groups. The first group 
received a combination of 25-mg/kg bedaquiline, 2.5-mg/kg 
delamanid, and 100-mg/kg linezolid (BDL). The second group 
received standard (HRZE) therapy, that is, 25-mg/kg isoniazid, 
10-mg/kg rifampicin, 150-mg/kg pyrazinamide, and 100-mg/
kg ethambutol. All drugs were administered orally 5 times per 
week, using a feeding cannula and a total drug combination 
volume of 0.2 mL per day.

Pharmacokinetic Analyses

To quantify the drug concentrations, 2 blood samples per 
mouse were obtained via venous tail puncture. Samples were 
taken after 4 weeks of treatment and for a period of 24 hours. 
These 24-hour samples were taken in duplicate 0.25, 0.5, 0.75, 
1, 1.5, 2, 3, 4, 6, 8, 12, and 24 hours after drug administra-
tion. Blood was collected in microcentrifuge tubes containing 
ethylenediaminetetraacetic acid and centrifuged at 10  000g 
for 5 minutes to obtain plasma, which was stored at −80°C. 
Methods for drug quantification by liquid chromatography–
tandem mass spectrometry can be found in Supplementary File 
3. Pharmacokinetic-pharmacodynamic parameters were deter-
mined using Prism 8 software (GraphPad).

Mycobacterial Load (Efficacy) Assessment

Mice receiving bedaquiline monotherapy were euthanized 
0, 1, 2, or 4 weeks after the start of treatment (n = 3 per dose 
per time point). Mice receiving delamanid or linezolid mono-
therapy were euthanized 0, 1, 2, or 3 weeks after the start of 
treatment (n = 3 per dose per time point) because they reached 
humane end points before week 4 owing to severe tuberculosis 
infection. After euthanasia, the mycobacterial load was meas-
ured by CFU counting for assessment of early bactericidal 
activity (EBA). For CFU counts, the lungs and spleen were re-
moved aseptically and homogenized, followed by serial dilution 
and culture. To prevent drug carryover, therapy was stopped 72 
hours before euthanasia of the mice, with samples cultured on 
7H10 Middlebrook agar containing activated charcoal.

Mice receiving combination therapy (total n = 90) were eu-
thanized at the start of treatment (n = 3) and—to assess the 
CFU count immediately after treatment—after a treatment 
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duration of 8, 12, 16, 20, or 24 weeks (n = 3 per time point). To 
assess relapse, mice were also euthanized 12 weeks after treat-
ment was stopped, after a treatment duration of 8, 10, 12, 14, 
16, 18, 20, 22, or 24 weeks (n = 3 per time point), as described 
previously (Supplement 4) [5].

Statistical Analysis

The CFU counts per milliliter were log10 transformed before 
analysis and multiplied by 2.3 and 2.1 for lung and spleen, 
respectively. Group mean CFU counts were compared 3 or 4 
weeks after the start of monotherapy (along with the control), 
using 1-way analysis of variance with a Dunnett posttest to as-
sess monoactivity. Differences in CFU count between the BDL 
and HRZE control groups were assessed at the start of treatment 
using unpaired 2-sample t test. The difference in cumulative 
time to relapse between both combination therapy groups was 
assessed using the log-rank test. The statistical significance level 
adopted was P < .05. Analyses were performed using Prism 8 
software (GraphPad).

A logistic regression model was used to predict the treat-
ment lengths required to reach 85%, 90%, and 95% cure rates 
in mice treated with either the BDL or the HRZE regimen. 
CFU counts were transformed into a binary outcome vari-
able, describing relapse or no relapse. Relapse was defined 
as a positive culture 12 weeks after discontinuation of treat-
ment and no relapse (ie, cure) as a negative culture result. 
To describe the relationship between probability of relapse 
and treatment length, 2 logistic regression models were de-
veloped, 1 for each regimen. During model development, all 
parameters were estimated simultaneously using NONMEM 
software (version 7.4) [16]. Model development is described 
in Supplement 5.

To compare the efficacies of BDL and HRZE regimens, the 
cure rate at any treatment length, as well as the minimum treat-
ment lengths needed to reach 85%, 90%, and 95% cure, were 
predicted based on the final model for each regimen. Because 
the observed data consisted of 3 mice per time point, we could 
create cure rates of only 0%, 33%, 67% and 100% and used math-
ematical modeling to generate continuous cure rates between 
0% and 100%. While the probability of relapse was modeled in 
the logistic regression model, the probability of no relapse (ie, 
cure) was used in the simulations.

Because the probability of cure is the complementary to 
the probability of relapse, the probability of cure (Pcure) was 
obtained by subtracting the probability of relapse (Prelapse) from 
1, as described in Equation 1 in Supplementary File 5. The pro-
portion of cured mice was then simulated at each time point. 
Predicted cure rates were simulated for treatment lengths be-
tween 0 and 30 weeks in 0.5-week increments for 1000 mice per 
arm and time point to achieve a high resolution in the predic-
tions. Samples were randomly drawn from a uniform distribu-
tion, using Monte Carlo sampling.

RESULTS

Pharmacokinetic Analyses

Plasma concentration-time profiles and pharmacokinetic 
parameters of the BDL combination and the metabolites of 
bedaquiline and delamanid are shown in Figure 1 and Table 1.

Pharmacodynamic Analyses—Mycobacterial Load Assessment

During monotherapy, bedaquiline was well tolerated. However, 
mice treated with delamanid or linezolid showed stress during 
therapy, and all mice receiving monotherapy of 25-mg/kg 
linezolid were euthanized before 3 weeks of treatment as hu-
mane end points were reached. The mycobacterial loads in 
the lungs during 3 or 4 weeks of treatment with bedaquiline, 
delamanid, and linezolid are presented in Figure 2. The median 
total amount of mycobacteria in the lungs at the start of treat-
ment with bedaquiline was 7.89 log10 CFUs (range, 7.87–7.92 
log10 CFUs), which declined significantly (P < .01) after 4 weeks 
of treatment to 4.96, 4.55, and 5.28 log10 CFU, at 0.5×, 1×, and 
2× the HED, respectively. Delamanid significantly reduced the 
CFU count in the lungs of mice after 3 weeks of treatment and at 
all doses tested (approximately 2 log10 CFUs were observed for 
all doses; P < .001). Linezolid did not have a significant effect 
on the CFU count after 3 weeks of treatment (P = .63). Results 
in the spleen were comparable for all drugs (data not shown).

Both BDL and HRZE combination treatments were well 
tolerated. The mycobacterial load in lungs and spleen are pre-
sented in Figure 3. The median total amounts of mycobacteria 
were 7.80 log10 CFUs (range, 7.66–8.07) in the lungs at the start 
of BDL treatment and 8.03 log10 CFUs (7.89–8.22) at the start of 
HRZE treatment (P = .26). At 8 weeks of treatment with BDL, 
culture negativity in the lungs and spleens was achieved. As 
of 16 weeks of treatment, no relapse was observed in the BDL 
group, except in 1 mouse at week 20. In HRZE-treated mice, 
culture negativity in the lungs was achieved after 20 weeks of 
treatment. However, mice in the HRZE treatment arm relapsed 
even after 24 weeks of treatment. Results for the spleen showed 
a similar pattern. Significantly fewer relapse episodes were ob-
served in the BDL group than in the HRZE group (P < .001) 
(Figure 4).

Pharmacodynamic Analyses—Modeling

For the BDL regimen, none of the assessed functions that re-
lated treatment length and probability of relapse (linear, the 
maximum reachable probability of cure [Emax] and sigmoidal 
Emax function (Supplementary File 6)) led to a significant 
improvement in model fit compared with the base model 
(P < .05). Therefore, a “surge” function was evaluated (in ad-
dition to the already assessed functions) as graphic analysis 
revealed an initial increase, followed by a decrease, in the prob-
ability of relapse as a function of treatment length (Figure 3C). 
This use of a surge function resulted in a statistically signifi-
cant improvement in model fit compared with the base model 
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(P < .001) and was consequently retained in the final model re-
lating length of BDL treatment with the probability of relapse. 
For the HRZE regimen, the probability of relapse in relation to 
different treatment lengths was best described by a sigmoidal 
Emax relationship. The model parameter estimates and param-
eter uncertainties are described in Supplementary File 6.

The required treatment lengths for the BDL regimen to reach 
cure rates of 85%, 90%, and 95%, were predicted to be 17.5, 18.5, 
and 20.5 weeks, respectively. For the HRZE regimen, simula-
tions of the predicted cure rates at different treatment lengths 
showed that a 95% cure rate was reached after 28.5 weeks of 
treatment, and for cure rates of 85% and 90%, 26.0 and 27.0 
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Figure 1. Mice were treated with 25-mg/kg bedaquiline, 2.5-mg/kg delamanid, and 100-mg/kg linezolid 5 times per week. Bedaquiline (A), N-desmethyl bedaquiline (B), 
delamanid (C), DM-6705 (D), and linezolid © plasma concentration-time profiles after 4 weeks of bedaquiline, delamanid, and linezolid therapy in tuberculosis-infected 
BALB/c mice. Plasma concentrations are plotted as mean and standard errors of the mean for 2 mice per study drug per time point.
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weeks, respectively. A 95% cure rate was thus predicted to be 
reached 8 weeks faster in mice treated with the BDL regimen 
than in those treated with the HRZE regimen, which corres-
ponds to a 28.1% decrease in treatment length. The predicted 
cure rates at different treatment lengths for both BDL and 
HRZE regimens are shown in Figure 5 and Table 2.

DISCUSSION

The current study indicated a higher efficacy for the BDL 
combination treatment regimen, than for the standard HRZE 
regimen, when using a mouse tuberculosis model and the 
clinically relevant M.  tuberculosis Beijing genotype strain 
[6]. In the early phase of treatment, efficacy appeared to be 
mainly bedaquiline driven, as illustrated by the EBA results 
obtained using the 3 drugs separately as monotherapy. The 
observed dose-dependent activity of bedaquiline was com-
parable to other murine studies [17, 18]. Delamanid showed 
only minor bactericidal activity, and linezolid no bactericidal 
activity in the first 3 weeks of monotherapy, and mice were 
consequently euthanized 1 week before schedule. The lim-
ited EBA of delamanid is in line with other published murine 
studies. For example, 1 study showed a decrease of 2.5 log10 
CFUs/mL after 28 days of treatment with a dose of 2.5-mg/kg 
delamanid [3], and in another study a dose of 100 mg/kg (40 
times as much as in our study) reduced the CFU count in the 
lungs by 1 log10 after 4 weeks of treatment [19]. In line with 
the present study findings, linezolid showed no bactericidal 
activity in previous murine studies [20].

Our results indicated that a minimal treatment length of 
20.5 weeks was predicted to be required in order to reach a 
95% cure rate using the BDL regimen. This was 8 weeks shorter 
than for the HRZE regimen. Interestingly, 2 other murine 
studies assessed the efficacy of the combination of bedaquiline, 
pretomanid, and linezolid (BPaL), showing good results for 
this combination regimen [7, 21]. Xu et al showed that the ad-
dition of pretomanid increased the bactericidal activity of the 

bedaquiline-linezolid combination and prevented the emer-
gence of bedaquiline resistance [21]. 

Although the individual contribution of delamanid to the 
total efficacy of the BDL regimen was not assessed, it could be 
speculated that the same effect holds true for the contribution of 
delamanid in the current combination regimen. Furthermore, 
the additional value of delamanid is supported by a study in 
patients with MDR tuberculosis showing increased sputum 
conversion when delamanid was added to a backbone treat-
ment regimen [22]. Moreover, the combination of bedaquiline 
and delamanid also appears to be promising in patients with 
tuberculosis. In studies reviewing the activity of these drugs in 

Table 1. Results of Pharmacokinetic Analysis (n = 2 per Time Point)

Drug Tmax, h Cmax, range, ng/mL AUC0–24, mean (SEM), ng/mL⋅h)

Bedaquiline 
(25 mg/kg)

1.00 1920–1310 19 661 (1121)

N-Desmethyl-
bedaquiline

0.75 5960–8700 111 273 (6312)

Delamanid 
(2.5 mg/
kg)

0.75 864–1080 11 234 (841.7)

DM-6705 0.25 18.9–23.7 352.4 (34.9)

Linezolid 
(100 mg/
kg)

2.00 90 500a 251 269 (14 931)

Abbreviations: AUC0–24, 24-hour area under the receiver operating characteristic curve; Cmax, 
maximum plasma concentration; SEM, standard error of the mean; Tmax, time to maximum 
plasma concentration.
aFor linezolid, the drug concentration was assessed in only 1 mouse. 
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combination, 84% sputum conversion after 4 months of treat-
ment [23] and 88% culture negativity after 24 weeks of treat-
ment was observed when both drugs were added to a backbone 

regimen (92% of these patients also received linezolid) [24]. 
Therefore, it is reasonable to assume that the BDL combination 
may also be a potent tuberculosis drug regimen for patients, 
which would be in line with the first results of the Nix-TB trial 
studying the efficacy of BPaL in patients with MDR and XDR 
tuberculosis [9].

As such, delamanid seems to be a reasonable alternative to 
pretomanid in specific situations such as pretomanid resist-
ance [10, 25]. Other murine studies showed robust efficacy 
of the combination of bedaquiline and pretomanid combined 
with moxifloxacin and pyrazinamide (BPaMZ) with a relapse-
free survival of only 2 months of treatment [21, 26]. Given the 
results of our present study, it would be interesting to study 
whether the substitution of pretomanid for delamanid in the 
BPaMZ regimen results in similar efficacy.

In the present study, the EBA of linezolid as monotherapy 
was low, prompting questions about the contribution of this 
drug to the total efficacy of the BDL regimen. However, Tasneen 
et al [7] revealed the treatment shortening potential of linezolid 
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Figure 3. Mycobacterial load in lung (A, C) and spleen (B, D) expressed as medians and  ranges (error bars) of the colony-forming units (CFUs) per organ. Results at weeks 
8, 12, 16, 20, and 24 of treatment are expressed as white bars, and relapse assessment was performed 12 weeks after a treatment duration of 8, 10, 12, 14, 16, 18, 20, 22, 
and 24 weeks, expressed as gray bars. Mice were treated with bedaquiline, delamanid, and linezolid (BDL) (A, B) or isoniazid, rifampicin, pyrazinamide, and ethambutol (HRZE) 
(C, D). Numbers above bars are the numbers of culture-positive mice of total numbers of mice at that time point. *CFU counting was not performed since the culture plates 
were contaminated. †One mouse reached humane end points before planned euthanasia.
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in the BPaL regimen by showing that the addition of linezolid to 
the combination of bedaquiline and pretomanid resulted in no 
relapse in mice after 3 months of treatment, while mice treated 
with only bedaquiline and pretomanid relapsed after 4 months 
of treatment. These findings further strengthen the hypothesis 
that EBA should not be solely used as a guide for regimen effi-
cacy [27]. In addition, the efficacy of linezolid was assessed in 
patients with XDR tuberculosis. The treatment success rate in 
the linezolid therapy group was significantly higher (70%) than 
in the nonlinezolid group (34%) [28]. Therefore, despite the dis-
appointing performance of linezolid in terms of EBA, it appears 
to be a valuable component of the drug combination studied in 
present publication.

Our pharmacokinetic results for bedaquiline, delamanid, and 
linezolid fell within the range of those reported in previous mu-
rine tuberculosis studies [3, 29–31] and were also comparable to 
human pharmacokinetic findings [22, 32–34]. Our bedaquiline 
concentration-time curve showed a remarkable second peak 
after 8 hours of treatment. This second peak has not been 

observed in other murine studies [3, 29], although it has been 
reported in a human pharmacokinetic study [35]. In this clin-
ical study the double peak was explained by better absorption 
after food intake, which has also been shown in another study 
for rifapentine [36].

We also assessed the concentration versus time curves 
of the major metabolites of bedaquiline and delamanid, 
N-monodesmethyl bedaquiline (M2) and DM-6705 (M1), re-
spectively. In humans, it is assumed that M2 does not have a 
significant effect on the total efficacy of bedaquiline since its 
exposure is 4–5 times lower, and the antimicrobial activity is 
3–6-fold lower, compared with the parent compound [18]. 
However, Rouan et al [18] showed that the exposure of M2 in 
mice (in terms of area under the receiver operating character-
istic curve [AUC]) was 3 times higher than with bedaquiline, 
and in our study it was actually 5 times higher. Because the 
AUC is the driver of efficacy for bedaquiline, and M2 plus 
bedaquiline has an additive effect, the efficacy of bedaquiline 
in mice might be overestimated when translated to humans. 
However, this effect is assumed to be limited owing to the lower 
antimicrobial activity of M2 [37]. 

In our study, the exposure of M1 was 32 times lower com-
pared with delamanid, which is in line with the findings of 
Sasahara et  al [31]. Their study showed that, after repeated 
drug administration, metabolite exposure in humans was much 
higher compared with mice and rats. However, in our study, 
we reasoned that this finding did not lead to an underestima-
tion of the effect of delamanid, since antimicrobial activity of 
the 3 major metabolites of delamanid (DM-6704, 6705, and 
6706) was previously reported to be poor, with MICs ranging 
from 6.25 to 50 mg/L [38].
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Figure 5. Model-predicted cure rates at different treatment lengths for both bedaquiline, delamanid, and linezolid (BDL) and isoniazid, rifampicin, pyrazinamide, and etham-
butol (HRZE) regimens. Dashed line represents 85%, solid line 90% and dotted line 95% cure rate. HRZE regimen included 25-mg/kg isoniazid, 10-mg/kg rifampicin, 150-mg/
kg pyrazinamide, and 100-mg/kg ethambutol. BDL regimen included 25-mg/kg bedaquiline, 2.5-mg/kg delamanid, and 100-mg/kg linezolid.

Table 2. Model Predicted Treatment Lengths Required to Reach 85%, 
90%, and 95% by Regimen

Regimena

Minimal Treatment Length Required to Achieve Cure Rate, 
wk

85% Cure Rate 90% Cure Rate 95% Cure Rate

BDL 17.5 18.5 20.5

HRZE 26.0 27.0 28.5

Abbreviations: BDL, bedaquiline, delamanid, and linezolid; HRZE, isoniazid, rifampicin, 
pyrazinamide, and ethambutol.
aBDL included 25-mg/kg bedaquiline, 2.5-mg/kg delamanid, and 100-mg/kg linezolid. HRZE 
included 25-mg/kg isoniazid, 10-mg/kg rifampicin, 150-mg/kg pyrazinamide, and 100-mg/kg 
ethambutol 5 times per week.
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A limitation of this study was that it was powered on 3 mice 
every 4 weeks for CFU assessment immediately after treatment 
and 3 mice every 2 weeks to asses relapse, as based on previous 
modeling experience [5]. Unexpectedly, we observed zero relapse 
after week 8, while in the following 6 weeks the proportion of re-
lapsing mice increased. Subsequently, after 14 weeks of treatment, 
no mice relapsed, except 1 mouse in week 20. Although this could 
be a sampling artifact, this event resulted in an incomplete fit of 
the BDL regimen to the sigmoidal Emax model. This issue was over-
come by using a surge model, which enabled the assessment of 
expected treatment duration of the BDL regimen in relation to 
HRZE. Another limitation was the use of a drug-sensitive strain 
to assess this DR tuberculosis regimen. However, many previous 
studies have also used drug sensitive tuberculosis strains to model 
DR tuberculosis treatment regimens [7, 21, 26] and are now evalu-
ated in clinical trials, and some of them already showing a good 
translation to clinical practice [9].

In conclusion, BDL seems to be a promising combination 
for the treatment of DR tuberculosis. Furthermore, since all 3 
drugs are commercially available, this combination could be 
readily implemented in clinical practice after assessment in 
clinical studies and might be a good alternative for BPaL when 
pretomanid is not available for inclusion in combined tubercu-
losis treatment regimens.
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