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Abstract

Anti-cytokine autoantibodies (ACAAs) can cause immunodeficiency or dysregulate immune 

responses. They may phenocopy genetically defined primary immunodeficiencies. We review 

current anti-Type 1 and 2 interferon, anti-interleukin-12/23, anti-interleukin-17, anti-granulocyte-

macrophage-colony-stimulating-factor autoantibodies, HLA associations, disease associations, and 

mechanistically based treatment options. Suspecting and identifying patients at the onset of 

symptoms should ameliorate disease and improve outcomes.
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INTRODUCTION

High titer neutralizing anti-cytokine autoantibodies (ACAAs), typically polyclonal IgG, are 

increasingly recognized in diverse infectious and/or immunological conditions (1–3). Anti-

interferon-gamma (IFN-γ) autoantibodies are seen in disseminated mycobacterial disease; 

anti-interleukin-17 (IL-17) in chronic mucocutaneous candidiasis (CMC); anti-granulocyte-

macrophage-colony-stimulating-factor (GM-CSF) in cryptococcosis, nocardiosis and 
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pulmonary alveolar proteinosis; anti-IL-6 in staphylococcal sepsis; and anti-Type I 

interferons in viral infections and severe COVID-19 (4–12).

ACAAs are common, even in healthy individuals (12, 13). They may affect cytokine biology 

by diminishing or augmenting signaling or by altering their half-life in the circulation 

(13–19). In contrast to pathogenic ACAAs associated with immunodeficiency, regulatory 

ACAAs are not as inhibitory, and are typically detected at lower binding titers (20, 21). 

With age, the frequency of ACAAs increases, and their respective titers and functionality 

may change in the setting of endogenous ligands, such as in ARDS and sepsis, or anti-Type 

1 interferons during the onset of acute COVID19 (22, 23). The probability that ACAAs 

are deterministic (have an immunoregulatory function) rather than stochastic (appear 

independent of physiological effects) increases as their neutralizing activity increases.

Anti-interferon-γ autoantibodies

Interferon-γ is the key macrophage-activating factor secreted by αβ+ (including natural 

killer T (NKT), mucosal associated invariant T (MAIT) cells, conventional CD4+ and CD8+ 

T cells), γδ+ T cells, B cells, NK cells, and some innate lymphoid cells (ILCs) (24). Patients 

with neutralizing anti-IFN-γ autoantibodies (or any of the known inborn errors of IFN-γ 
due to defects in 16 distinct genes) are prone to mycobacterial disease and related infections 

by intra-macrophagic microbes (25, 26). Over 600 cases have been reported since the first 

fatal cases were described in 2004 (27–29). There is a preponderance of HIV-uninfected 

individuals of East Asian descent (including Filipino, Thai, Taiwanese, Laotian, Japanese, 

Chinese but not Koreans) with HLA-DRB1*15:02/16:02 and HLA-DQB1*05:01/05:02 (30, 

31). However, recent reports in Caucasians, two children, a Surinamese individual of African 

descent, a Sri-Lankan man, and an HIV-positive individual with opportunistic infections 

years after immune reconstitution, suggest that this autoimmune phenomenon may be more 

widespread (32–36).

Lymph nodes, bones/joints, and lungs are most affected, with occasional soft tissue 

and skin involvement (in the form of reactive neutrophilic dermatosis, erythema 

nodosum, or exanthematous pustulosis) (37, 38). Lymph node histopathology may be 

mistaken for T-cell lymphoma (50% show monoclonality, 33% may be indistinguishable 

from angioimmunoblastic T-cell lymphoma by criteria), IgG4-related disease, or 

multicentric Castleman disease. These episodes of mimicry highlight the need to 

culture and stain for mycobacteria in the evaluation of lymphadenopathy or to at least 

consider anti-IFN-γ autoantibodies before chemotherapy or corticosteroids (39–41). The 

microbial spectrum includes Salmonella, Burkholderia, Bacillus species, Cryptococcus, 

Talaromyces, Coccidioides, Histoplasma, Toxoplasma and varicella-zoster, herpes simples 

and cytomegalovirus (4, 42–45).

Anti-IFN-γ autoantibodies block IFN-γ binding to its receptor and downstream 

phosphorylation of Signal Transducer and Activator of Transcription 1 (STAT1). Blockade 

of IFN-γ induced STAT1 phosphorylation by patient plasma or serum in vitro is the simplest 

assay for anti-IFN-γ autoantibodies (46, 47). However, one of the most common and 

clinically accessible tests is the QuantiFERON Gold In-Tube, which relies on detection 

of IFN-γ elaborated in response to antigen or mitogen; it is blocked by anti-IFN-γ 
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autoantibodies. Therefore, either a positive or a negative QuantiFERON Gold result indicate 

that IFN-γ produced in response to mitogen was detected and argue strongly against the 

presence of anti-IFN-γ autoantibodies; in contrast, an indeterminate result is consistent with 

anti-IFN-γ autoantibodies (48, 49).

Exogenous IFN-γ does not ameliorate disease since these autoantibodies are typically 

quite high titer (4, 50). In contrast, immunomodulation with cyclophosphamide, rituximab, 

bortezomib, abatacept and daratumumab have all been partially successful in severe or 

refractory cases (37, 51–55). These reports suggest that reducing autoantibody-producing 

B-cells or plasma cells may help control infections (56). However, not all cases require 

immune directed therapy and in many patients the levels of anti-IFN-γ autoantibodies 

declines over time in conjunction with treatment of the mycobacterial disease (38). The 

direction of the causality here is unresolved.

Anti-IL-12 and IL-23 autoantibodies

IL-12 and IL-23 share the p40 subunit and both use the IL12Rβ1 receptor and are essential 

for optimal production of IFN-γ (57, 58). Therefore, it is unsurprising that autoantibodies 

against them are also associated with opportunistic infections. Anti-IL12 and anti-IL23 

autoantibodies are found in 33–45% of patients with thymoma overall, but in patients with 

recurrent sinopulmonary or disseminated infections, anti-IL12 and anti-IL23 frequencies 

increase to >95% (16, 59–61) and unpublished data).

Anti-GM-CSF autoantibodies

Cryptococcosis (particularly C. gattii) and nocardiosis may disseminate to the brain in 

seemingly immunocompetent individuals and have been associated with neutralizing anti-
GM-CSF autoantibodies, which also cause autoimmune pulmonary alveolar proteinosis 

(aPAP)(62–66). Anti-GM-CSF-mediated disruption of STAT5 signaling and PU.1 nuclear 

translocation results in alveolar macrophage dysfunction, intra-alveolar accumulation of 

surfactant lipoproteinaceous material, and the insidious onset of interstitial lung disease 

(67, 68). Anti-GM-CSF autoantibodies are associated with HLA-DRB1*08:03 in Japanese 

patients with aPAP (69). Treatments for aPAP have included whole lung lavage, inhaled 

recombinant human GM-CSF, and rituximab (70–72). Anti-GM-CSF autoantibodies 

concentration are lower in bronchoalveolar lavage than in the blood, hence exogenous 

inhaled GM-CSF, unlike exogenous IFN-γ, may overcome some of the neutralizing activity 

at the site of tissue pathology (73). Rituximab is less effective against anti-GM-CSF 

autoantibodies than anti-IFN-γ autoantibodies, suggesting that anti-GM-CSF autoantibodies 

may be produced by long-lived plasma cells and memory B-cells which no longer express 

CD20 (74).

Anti-IL-17 autoantibodies

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) patients 

with biallelic mutations in AIRE and to a lesser degree, patients with thymic epithelial 

tumors, have been described to have neutralizing autoantibodies to Th17 cytokines including 

IL17A/F, IL22, and Type 1 interferons (5, 6). Chronic mucocutaneous candidiasis (CMC), 

characterized by chronic, non-invasive Candida spp. infections of the skin, nails, and mucus 
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membranes is the most notable infectious manifestation in APECED patients, whereas 

in thymoma patients, CMC may be accompanied by recurrent sinopulmonary infections 

exacerbating bronchiectasis or overshadowed by disseminated infections associated 

with anti-IL12/23 autoantibodies or Good syndrome (61, 75). While these anti-IL17 

autoantibodies phenocopy some of the primary immune defects (IL17F, IL17RA, IL17RF, 

ACT1), recent data have also shown excessive IFN-γ production by mucosal T cells to 

cause candidiasis in APECED (76). Therefore, the exact role of anti-IL-17 autoantibodies in 

APECED is still under investigation.

Anti-Type I interferon autoantibodies

Neutralizing autoantibodies against Type I IFNs have been associated with >10% of life-

threatening COVID-19 cases in multiple cohorts, particularly in men over sixty (11, 77–

79). These neutralizing anti-IFN-α and anti-IFN-ω autoantibodies are found in 4% of 

the population > 70 years, in 5–6% of patients with systemic lupus erythematosus, in 

59–64 % of thymoma patients with myasthenia gravis, and in 100% of APECED patients 

(15, 22, 61, 80, 81). Clinical penetrance for severe COVID-19 is incomplete across these 

diverse populations with pre-existing anti-Type I interferon autoantibodies (82). Some 

APECED patients with high titer neutralizing anti-IFN-α and anti-IFN-ω autoantibodies 

who contracted SARS-CoV-2 have had only mild COVID-19, whereas in the general 

population, no individuals with mild COVID-19 had detectable anti-IFN-α and anti-IFN-

ω autoantibodies (78, 83, 84). Anti-IFN-α and anti-IFN-ω autoantibodies in APECED 

patients are unchanged by COVID-19. In contrast, serial sampling during and after severe 

COVID-19 in otherwise normal people identified highly dynamic and declining levels of 

anti-IFN-α, sometimes to undetectable levels in convalescence (Elana Shaw, submitted). 

Neutralization of IFN-β-induced STAT1 phosphorylation in vitro was seen in only 2% of 

those with anti-IFN-α and anti-IFN-ω autoantibodies (11, 22, 84). Preemptive use of IFN-β 
in an individual with with incontinentia pigmenti and autoantibodies against IFN-α and 

IFN-ω was successful despite a high initial viral load of SARS-CoV-2 (85). Individualized 

approaches will be needed in those with chronic autoimmunity and multiple ACAAs, since 

some may have compensatory alterations in interacting cytokine pathways (85, 86). Outside 

of COVID-19, neutralizing Type 1 IFNs autoantibodies have been found when looked for in 

unusually severe viral illnesses (12, 87).

CONCLUSIONS

High throughput autoantibody screening will certainly identify new targets and new 

mechanisms of infectious and organ-specific diseases. We recommend screening for anti-

interferons, anti-IL17, anti-GM-CSF and anti-IL23 in appropriate patients with otherwise 

unknown etiologies for opportunistic infections and/or in those with known autoimmunity, 

but more importantly, correlating binding specificities with appropriate functional assays. 

The clinical penetrance of ACAAs is incomplete, suggesting that these syndromes result 

from a combination of factors including environmental and genetic ones. It is imperative 

to consider ACAAs in the setting of unexplained or severe infections, as directed therapies 

may ameliorate their effects. These often silent and underappreciated modulators of severe 

infections are increasing in recognition and clinical importance.
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LIST OF ABBREVIATIONS (alphabetical)

ACAAs anti-cytokine autoantibodies

aPAP autoimmune protein alveolar proteinosis

APECED autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy

ARDS adult respiratory distress syndrome

CMC chronic mucocutaneous candidiasis

COVID19 coronavirus virus disease 2019

IFN-α interferon-alpha

IFN-β interferon-beta

IFN-γ interferon-gamma

IFN-ω interferon-omega

IL12 interleukin-12

IL17 interleukin-17

IL-22 interleukin-22

IL23 interleukin-23

GM-CSF granulocyte-macrophage colony stimulating factor

STAT1 Signal Transducer and Activator of Transcription

STAT5 Signal Transducer and Activator of Transcription
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Figure 1: 
Pictorial abstract of the disease associations and mechanistic-based therapy of anti-cytokine 

autoantibodies.
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