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Abstract

Intracranial electroencephalographic (icEEG) recordings provide invaluable insights into neural dynamics in hu-
mans because of their unmatched spatiotemporal resolution. Yet, such recordings reflect the combined activ-
ity of multiple underlying generators, confounding the ability to resolve spatially distinct neural sources. To
empirically quantify the listening zone of icEEG recordings, we computed correlations between signals as a
function of distance (full width at half maximum; FWHM) between 8752 recording sites in 71 patients (33 fe-
male) implanted with either subdural electrodes (SDEs), stereo-encephalography electrodes (sEEG), or high-
density SEEG electrodes. As expected, for both SDEs and sEEGs, higher frequency signals exhibited a sharper
fall off relative to lower frequency signals. For broadband high y (BHG) activity, the mean FWHM of SDEs
(6.6 =2.5 mm) and sEEGs in gray matter (7.14 = 1.7 mm) was not significantly different; however, FWHM for
low frequencies recorded by sEEGs was 2.45 mm smaller than SDEs. White matter sEEGs showed much
lower power for frequencies 17-200Hz (q < 0.01) and a much broader decay (11.3 = 3.2 mm) than gray matter
electrodes (7.14 = 1.7 mm). The use of a bipolar referencing scheme significantly lowered FWHM for sEEGs,
relative to a white matter reference or a common average reference (CAR). These results outline the influence
of array design, spectral bands, and referencing schema on local field potential recordings and source local-
ization in icEEG recordings in humans. The metrics we derive have immediate relevance to the analysis and in-
terpretation of both cognitive and epileptic data.
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Human intracranial recordings have promising implications for clinical application, neuroscientific research,
and the design of brain computer interfaces. However, there are numerous factors that ambiguate the inter-
pretation of these neural recordings in humans, including electrode design and data analysis techniques.
The present findings compare the effects of electrode design, frequency of recorded neural activity, and
referencing scheme on the listening zone of intracranial recordings. These results suggest referencing
scheme and electrode design and location to be critical considerations when analyzing high-frequency re-
cordings. This comprehensive comparison of the listening zone of intracranial recordings is a pivotal step
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Introduction

Invasive neural recordings provide a unique window
into human cognition. Over the last several decades, in-
tracranial field potential recordings have yielded profound
insights into a variety of neural systems (Crone et al.,
2006), including speech production (Pasley et al., 2012;
Cogan et al., 2014), auditory processing (Sinai et al,
2009; Miller et al., 2021), language (Forseth et al., 2018;
Conner et al.,, 2019), visual perception (Martin et al,
2019), motor control (Salari et al., 2019), decision-making
(Bartoli et al., 2018), emotion (Guillory and Bujarski, 2014),
and memory (Foster et al., 2012; Derner et al., 2018). An
array of electrode designs and recording scales are now
being implemented and ongoing progress in neuroengin-
eering is yielding rapid advances in electrode design. The
gap between what recording scale is technologically pos-
sible and that which is optimal for understanding the neu-
robiology of cognition, epilepsy, or to provide inputs for
brain machine interfaces, remains unknown (Marblestone
et al., 2013; Pesaran et al., 2018). Answers to these ques-
tions, especially the optimal form factor required to re-
solve spatially distinct sources within the complex electric
field landscape of the brain will influence the design of
newer recording interfaces (Cybulski et al., 2015).

The uncertainty of reconstructing the spatial and tem-
poral sources based on multi-electrode field potentials,
the inverse source problem (Herreras, 2016; Pesaran et
al., 2018) is a direct consequence of the imperfect resolu-
tion of recording electrodes and the source properties of
the electric field landscape. While the complex geometry
of single neurons makes the precise modeling of even one
neuron’s activity in isolation difficult to model (Nunez and
Srinivasan, 2005), the field potential at any recording elec-
trode is an aggregate of quasi-synchronously active di-
poles from a multitude of spatially distributed neural
sources (Buzsaki et al., 2012; Leoski et al., 2013). Not all
neurons contribute to this electric field landscape at any
given instant, and different patterns of neural activity may
generate similar field potential measures depending on
the distance and the density of recording sites. The neural
tissue that comprises this electric field landscape is itself
heterogenous, with conductivity and dielectric constants
that vary based on cell packing density and cortical loca-
tion (Nunez and Srinivasan, 2005; Howell and Mcintyre,
2016; Bingham et al., 2020).
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At the resolution currently provided by macroelectrodes
used for human intracranial electroencephalographic
(icEEG) recordings, the measured field potential activity is
not a direct measure of the activity of local cell assem-
blies, but rather a larger-scale measure of activity con-
ducted through neural space. This volume conduction
can lead to linear relationships between simultaneously
recorded signals at neighboring electrodes, and it is hard
to disentangle whether high levels of correlated activity
between two electrodes are because of underlying neural
dynamics (such as common input to or coordination of
activity between multiple brain regions; Roelfsema et al.,
1997; Womelsdorf et al., 2007; Siegel et al., 2008; Seeber
and Michel, 2021) or because of volume conduction of
voltage from neighboring regions (Kellis et al., 2016). To
resolve this, we define and quantify volume conduction as
the instantaneous signal correlation at zero-time lag be-
tween electrode pairs, which quantifies common activity
because of volume conduction. The lower the instantane-
ous correlation between electrodes, the lower the signal re-
dundancy of each electrode’s listening zone and the greater
its uniqueness. Determining the optimal spacing and loca-
tion of electrodes to not only minimize signal redundancy,
but to also capture separable field potential recordings is a
pivotal hurdle for understanding and optimizing invasive
field potential recordings in humans (Cybulski et al., 2015).

To investigate the ability of multiple clinically used
electrode types in resolving spatially distinct activity,
we compared task-related cross-correlations in activ-
ity across subdural electrodes (SDEs), stereo-EEG
(SEEG) electrodes, and high-density sEEG (hdsEEG)
electrodes in patients undergoing monitoring for the
localization of medically intractable epilepsy. We ana-
lyzed the impact that referencing strategy, electrode
location, and frequency components of the signal have
on signal redundancy and the influence this could have
on neural array design.

Materials and Methods

Participants

A total of 71 patients (33 female, 18-65 years) partici-
pated in this research after providing written informed
consent. All participants were semi-chronically implanted
with intracranial electrodes for the localization of pharma-
co-resistant epilepsy. All experimental procedures were
reviewed and approved by the Committee for the
Protection of Human Subjects (CPHS) of the University
of Texas Health Science Center at Houston as Protocol
Number HSC-MS-06-0385.

Electrode implantation and data recording

Data were acquired from either subdural grid electrodes
(SDEs; 18 patients), stereotactically placed depth electro-
des (sEEGs; 47 patients) or high-density depth electrodes
(hdsEEGs; six patients; Fig. 1A). SDEs were subdural plat-
inum-iridium electrodes embedded in a silicone elastomer
sheet [PMT Corporation; top-hat design; 4.5 mm diame-
ter; 3 mm diameter cortical contact and are embedded
in SILASTIC sheets (10 mm center-to-center spacing)],

eNeuro.org


mailto:nitin.tandon@uth.tmc.edu
mailto:nitin.tandon@uth.tmc.edu
https://doi.org/10.1523/ENEURO.0492-21.2022
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

e rQﬂ euro Research Article: Methods/New Tools 3 of 13
B ! )
Raw Neural Data —> Re-Referencing Strategies
T ‘ Common average reference (CAR) ‘
= excluding channels with artifacts, epileptiform activity, and line noise.
NeuroPort Software
‘ Low Power CAR
= excluding channels with >20% increase in bhg power relative to baseline
T ‘ White Matter reference ‘
= only including channels located in white matter
’ Bipolar reference ‘
T « each channel re-referenced to nearest, non-noisy neighboring channel
Amplifier mm =-SDE = =sEEG =msEEG
c A D
a round red fruit apple 1 |
T -
]
| : ‘
I . i FWHM !
= = | ———
- | 1 |
c = !
o il I |
H505 — — © I !
© HWHM | [ I !
5 305
r=06 8 | o I HWHM'
I
| i |
| I
—
: . r : = = electrode 1 I 0 L L
-1000 0 1000 == glectrode 2 0 N | . b -10 Dist 0 10
time (msec) = = analysis window 0 10 20 30 istance (mm)
Distance (mm)

Figure 1. Experimental design. A, Schematic representation of the three electrode scales analyzed: SDEs 3 mm diameter disk,
sEEG electrodes 2 mm-long ring, and hdsEEG electrodes 0.5 mm-long ring. SEEG and hdsEEG contacts are depicted in gray.
Yellow arrows depict dipole orientation within pictured cortical gray matter. B, Schematic representation of the neural data acquisi-
tion and re-referencing strategies. C, Schematic representation of the auditory naming to definition task. Colored bar indicates task-
related analysis window (blue; 0-1000 ms), during which cross-correlation (r) is calculated between the waveforms of two exemplar
neighboring electrodes (red and black; exemplar traces). D, Example of full width at half maximum (FWHM) calculation. The correla-
tion coefficient was measured using the raw voltage of every combination of electrode pairs within 30 mm of each other, for each
frequency range. Correlation values were fit with an exponential decay function. Half width at half maximum (HWHM) correlation
was measured from this exponential decay function and doubled to generate the FWHM value for each condition.

surgically implanted via a craniotomy (Conner et al., 2011;
Tandon, 2012; Pieters et al., 2013; Tong et al., 2020). sEEGs
were implanted using a Robotic Surgical Assistant (ROSA;
Medtech; Tandon et al., 2019; Rollo et al., 2020). Each sEEG
probe (PMT corporation, Chanhassen, Minnesota) was 0.8
mm in diameter and had 8-16 electrode contacts. For the
standard sEEG electrodes, each contact was a platinum-
iridium cylinder, 2.0 mm in length and separated from the
adjacent contact by 1.5-2.43 mm. Each patient had 12-20
sEEG probes implanted. For hdsEEG electrodes, each con-
tact was a platinum-iridium cylinder, 0.5 mm in length and
separated from the adjacent contact by 0.5 mm. Each
hdsEEG probe contained 12 hdsEEG contacts and four
sEEG contacts. Each patient had one to four hdsEEG
probes implanted. Following surgical implantation, electro-
des were localized by co-registration of preoperative ana-
tomic 3T MRI and postoperative CT scans in AFNI (Cox,
1996). Electrode positions were projected onto a cortical
surface model generated in FreeSurfer (Dale et al., 1999),
and displayed on the cortical surface model for visualization
(Pieters et al., 2013). Intracranial data were collected during
research experiments starting on the first day after electrode
implantation for sEEGs and 2 d after implantation for SDEs.
Data were digitized at 2 kHz using the NeuroPort recording
system (Blackrock Microsystems), imported into MATLAB,
initially referenced to the white matter electrode used as a
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reference for the clinical acquisition system and visually
inspected for line noise, artifacts and epileptic activity.
Electrodes with excessive line noise or localized to sites of
seizure onset were excluded. Trials contaminated by interic-
tal epileptic spikes were discarded.

Signal analysis

Across all 75 patients, a total of 2546 SDE, 8493 sEEG,
and 204 hdskEEG electrode contacts were implanted. Of
these, 704 SDE, 1736 sEEG, and 51 hdsEEG were excluded
because of proximity to the seizure onset zone, frequent in-
terictal epileptiform spikes or line noise. The remaining elec-
trodes included were: 1842 SDE, 6757 sEEG, and 153
hdsEEG electrodes. Analyses were performed by bandpass
filtering raw icEEG data from each electrode into five fre-
quency bands [0, 4-8 Hz; «, 8-15Hz; B8, 15-30 Hz; narrow-
band vy, 30-60Hz; broadband high y (BHG), 70-150 Hz].
Line noise was removed using zero-phase second order
Butterworth band-stop filters to filter out 60 Hz, as well as
120- and 180-Hz harmonics. Following line noise removal,
band-limited voltage traces were obtained (zero-phase third
order Butterworth bandpass filters).

Referencing and re-referencing strategy
During the recording session, a non-noisy clinical hard-
ware reference electrode located in white matter was
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used as the reference electrode. For analysis, recordings
were re-referenced using one of the following schemes
(Fig. 1B):

Common average reference (CAR)

Offline, raw data were visually inspected and electrodes
exhibiting electrical noise or epileptiform artifacts were
excluded from the common average. Neural data were
then re-referenced to the average of all remaining electro-
des that were included in this CAR.

Low-power CAR

BHG activity (70-150 Hz) was extracted for each time se-
ries (using the original clinical reference) using a frequency
domain Hilbert transform and the percentage change in
power was measured relative to a baseline time window of
—500 to —100 ms before stimulus onset. If the percentage
change in mean power was <20%, electrodes were in-
cluded in the low-power CAR signal averaging.

White matter referencing

We identified all SEEG and hdsEEG electrodes located
in white matter, gray matter, and CSF based on their posi-
tion relative to their FreeSurfer surfaces and included all
white matter located electrodes.

Bipolar referencing

For the bipolar re-referencing, each electrode on the
sEEG and hdsEEG probes was re-referenced to its clos-
est neighboring non-noisy electrode located on the same
probe. Electrodes on the end of the probe or whose near-
est neighboring electrode was noisy were excluded from
the analysis.

Experimental design and statistical analyses
Experimental task

All patients participated in an auditory naming-to-def-
inition task (Fig. 1C; Forseth et al., 2018), producing sin-
gle word responses to an auditory presented definition.
A total of 70+ auditory stimuli (mean 87) were pre-
sented to each patient using stereo speakers (44.1 kHz,
15” MacBook Pro 2015; Forseth et al., 2018). Stimuli
had an average duration of 1970 = 360 ms, and an inter-
stimulus interval (ISI) of 5000 ms. The time period of in-
terest for this analysis was from 0 to 1000 ms following
auditory stimulus onset.

Full width at half-maximum (FWHM) measure. To com-
pare correlation between electrode pairs over distance,
we calculated the FWHM correlation. We first identified all
non-noisy pairs of electrodes that were <30 mm from
each other (in Euclidean distance). Pairwise Pearson’s
correlation was calculated between the band-limited volt-
age traces for all electrode pairs for each trial (Fig. 1C).
This correlation value was then averaged across all trials
to return one correlation value for each electrode pair and
frequency range. A decay function was fit to the absolute
values of the correlations within each individual patient
(Fig. 1D). The decay function was defined as r = (1 - 8)°,
where the correlation r decayed based on the decay fac-
tor B and the distance d. The decay factor was optimized
using a least-squares fit. From this decay function, we
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extracted the distance at which the correlation equaled
0.5, half the theoretical maximum correlation (half width at
half maximum; HWHM). The HWHM value was doubled to
generate the FWHM value for each condition (Fig. 1D). For
visualization purposes, the absolute values of these corre-
lations for each patient were binned based on Euclidean
distance into 2.5 mm bins.

Validation on simulated data

Simulated timeseries data were created using the neu-
ral digital signal processing toolbox (Cole et al., 2019). A
total of 100 unique power law timeseries were generated
in each of the five previously described frequency
bands of interest with a power-law exponent of -2, a
sampling frequency of 2000 Hz, and a simulation time of
1.5 s to account for the removal of filtering edge effects.
The Pearson’s correlation coefficient was calculated
between each pair of simulated signals to generate the
actual correlation measurement. To calculate the re-
constructed correlation dataset, timeseries from each
frequency range were first combined to generate a
summed electric field signal. Analyses were performed
by bandpass filtering combined simulated data into the
five previous described frequency bands using identical
methods to the main analysis. Signals were randomly
re-paired to create 75 simulated trials, approximately
matching experimental conditions.

Power spectral density (PSD) analysis

Thomson’s Slepian multitaper PSD estimate of the
signal was calculated. Significant differences between
power in gray and white matter was calculated with
Wilcoxon sign-rank tests, corrected for multiple com-
parisons using a Benjamini-Hochberg false detection
rate (FDR) threshold of g < 0.01.

Linear mixed effects (LME) modelling

LME models were used to incorporate random and fixed-
effects into a linear model. Fixed effects in our model were
electrode type and frequency band. The random effect in
our model was the participant. Electrode type was SDE,
SEEG, or hdsEEG. Data were assumed to be normal in dis-
tribution for statistical comparison.

Data visualization using raincloud plots

Raincloud plots, incorporating raw data points, prob-
ability density, and median, mean, confidence intervals,
were used to visualize data (Allen et al., 2019). Reported
values for each category are median =* interquartile
range.

Code accessibility

The raw datasets generated from this research study
are not publicly available because they contain informa-
tion that is not compliant with HIPAA. Additionally, the
human participants from whom the data were collected
have not consented to their public release. We have re-
leased anonymized summary statistics at https://osf.io/
3efdg/.
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Figure 2. Across-electrode differences in correlation over distance. Coverage map of locations of SDE electrodes (A; 18 patients, 1842
electrodes, 37,272 electrode pairs) and gray matter located sEEG electrodes (B; 47 patients, 2916 electrodes, 47,522 electrode pairs).
Average FWHM was calculated and plotted for each patient for SDE (C) and sEEG (D) electrode pairs. Frequency ranges of interest: 6
(4-8Hz), « (8-13Hz), B (13-30Hz), NBG (30-60 Hz), BHG (70-150 Hz). NBG, narrowband ; BHG, broadband high 7.

Results

We used a correlation-based analysis to compute the
falloff of cross-correlation as a function of distance, be-
tween pairs of all non-noisy electrodes regardless of corti-
cal location. We constrained our analysis to task-related
neural data, based on prior evidence that the spatial
spread of correlated activity is lower during activity as op-
posed to rest (Muller et al., 2016). Importantly, our analy-
ses compare differences in FWHM across referencing
conditions, thereby preserving interelectrode distance as a
variable. By preserving interelectrode distance in our FWHM
measures, we effectively compute a local reduction in corre-
lation, rather than a global reduction, as is captured in other
distance-averaged correlation comparisons.

Effect of electrode scale and signal frequency on
listening zone

We first compared the decay function (indexed by the
FWHM) for SDE versus sEEG electrodes in gray matter,
to determine whether a subdural or intracortical loca-
tion of the icEEG electrode significantly influences the
listening zone (Fig. 2). To compare differences in FWHM
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across frequency and electrode scale, we used a LME
model with fixed effects modeling frequency bands and
electrode scale (SDE or sEEG). This model explained a
large proportion of the variance of FWHM measures (*
= 0.65). The electrode type had a significant effect on
FWHM (fg21) = —4.5, B = —2.4, p <0.001, 95% CI —3.5
to —1.4), which was 2.45 mm smaller for sEEG electro-
des than for SDE electrode pairs, when comparing
across all frequency ranges. The FWHM of the decay
was smaller as frequency increased (LME: t351)= —16.0
B = —-1.8, p<0.001, 95% CI —2.0 to —1.6) and there
was a significant interaction between frequency and
electrode type (t321)=3.2, 8 = —0.42, p=0.001, 95% ClI
0.17-0.68) indicating that the spatial extent of correla-
tion is significantly dependent on frequency and elec-
trode scale.

For BHG alone, electrode type did not have a significant
effect on FWHM (fz4=1.42, B = 1.07, p=0.17, 95% ClI
—0.5-2.6). The mean FWHM in BHG for SDE electrodes
(6.6 = 2.5 mm) was slightly lower than for gray matter lo-
cated sEEG electrodes (7.14 + 1.7 mm); however, this dif-
ference was not significant.
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Figure 3. Anatomical location of sEEG contacts in gray or white matter significantly influences FWHM correlation measures. Pearson’s
correlation coefficient was measured between pairs of SEEG electrodes located in gray and white matter (A; 47 patients; 6757 electrodes;
244,621 electrode pairs), white matter only (B; 2649 electrodes; 43,957 electrode pairs), or gray matter only (C; 2916 electrodes; 47,522
electrode pairs). Each data point is binned into 0.5 mm bins based on distance between electrode pairs, colored based on frequency
range of interest and fit with an exponential decay function shown as colored solid lines. D, Mean PSD plots for SEEG electrodes located
in white matter (WM; red; 2649 electrodes) or gray matter (GM; black; 2916 electrodes). Notch filters were applied at 60 Hz and harmon-
ics. Results from Wilcoxon sign-rank test with significance threshold of <0.01 denoted by black bar along the x-axis. Raincloud plots de-
picting FWHM values for each patient in each frequency range for all pairs of white matter located (E; 2649 electrodes; 43,957 electrode
pairs) and gray matter located (F; 2916 electrodes; 47,522 electrode pairs) pairs. Frequency ranges of interest: 6 (4-8 Hz), a (8-13Hz), B8
(13-30Hz), NBG (30-60 Hz), BHG (70-150 Hz). NBG, narrowband y; BHG, broadband high .

Location dependence of sEEG electrode listening zone
SDEs sit on the cortical surface, proximal to local field
generators, whereas many individual sEEG electrodes
are located within white matter, distant from the cortical
surface and measuring far field potentials. Thus, the
physical location of SEEG electrodes could present po-
tentially confounding correlation measures across dis-
tance. An LME model with fixed effects modeling
frequency and electrode location (white matter or gray
matter located sEEGs) explained a large proportion of
the variance in FWHM measures (> = 0.78). sEEG elec-
trodes located in gray matter had a much smaller
FWHM (8.3 mm lower) compared with those located in
white matter (LME: t4ge) = —17.3, B = —8.3, p <0.001,
95% Cl —9.2 to —7.3; Fig. 3). Additionally, the interac-
tion between FWHM and frequency range significantly
depended on electrode location (fuee=6.6, 8 = 0.95,
p <0.001,95% CI 0.67-1.2) with low frequencies show-
ing a broader listening zone in white matter electrodes.
For 6 frequencies, the mean FWHM for sEEG
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electrodes located in white matter was 20.2 = 4.3 mm,
whereas the mean FWHM for gray matter sEEG electro-
des was 12.1 = 1.8 mm (Fig. 3E,F).

When comparing the effect of electrode location on
BHG activity, an LME model with fixed effects modeling
electrode location explained a large proportion of the var-
iance of the FWHM measures (* = 0.85). For BHG fre-
quencies, the mean FWHM for sEEG electrodes located
in white matter was 11.3 = 3.2 mm, whereas the mean
FWHM for sEEG electrodes located in gray matter was
7.14 =1.7 mm. For the BHG band, electrode location did
have a significant effect on FWHM of signal correlation
decay (t(gg) =-13.5, B = —-4.2, p < 0.001,95% Cl —4.8 to
—3.6). Of course, there is not much power in white matter
recordings and these correlations may be higher given
these lower amplitude signals. To assess this, we com-
pared mean PSD plots for SEEG electrodes located in
white matter or gray matter, demonstrating the much
lower power in white matter sEEG electrodes (for all fre-
quencies 18-200 Hz; g < 0.01; Fig. 3D).
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Figure 4. Referencing scheme comparison across SDEs and gray matter located sEEGs. Average FWHM was calculated and
plotted for each patient for SDE (A, B; n =18 patients) and sEEG (C-E; n =47 patients) electrode pairs in each frequency range of in-
terest. For SDE electrode pairs (1842 electrodes; 37,272 electrode pairs), average FWHM was compared using either CAR (A) or
low-power CAR scheme (B). For gray matter located sEEG electrode pairs (2916 electrodes; 47,522 electrode pairs), average
FWHM was compared using either CAR (C), white matter (D), or bipolar referencing schemes (E). Frequency ranges of interest: 0
(4-8Hz), a (8-13Hz), B (13-30Hz), NBG (30-60 Hz), BHG (70-150 Hz). NBG, narrowband vy; BHG, broadband high .

Referencing strategies for SDE and sEEG electrodes

Next, we examined the influence of referencing schemes on
measured correlation. Based on evidence that referencing strat-
egies can eliminate or increase spurious correlation between re-
cording electrodes (Li et al., 2018), we compared several
commonly used referencing schemes; CAR, low-power CAR,
white matter referencing, and bipolar referencing, across SDE
and gray matter located sEEG electrode pairs (Fig. 4).

A two-way ANOVA was conducted comparing effects of
referencing scheme and frequency range on FWHM meas-
ures. For SDE electrode pairs, there was no significant inter-
action between the referencing scheme and the frequency
band on FWHM measures (Fy 170=0.01, p= 0.99). There
was a significant effect of frequency (Fu170= 57.96,
p < 0.001) on FWHM, but no significant effect of referencing
scheme (F1,170=0.07, p=0.79). For BHG activity, SDEs
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showed a correlation decay of 6.6 = 2.5 mm FWHM for the
CAR scheme (Fig. 4A), and 6.6 = 2.6 mm FWHM for the low-
power CAR scheme (Fig. 4B). For BHG frequency specifi-
cally, a two-way ANOVA showed no significant effect of refer-
encing scheme on FWHM for SDE electrodes
(Fi1,35=5.5 % 1075, p=0.99). For ¢ activity, SDEs showed a
correlation decay of 13.0£2.3 mm FWHM for the CAR
scheme (Fig. 4A), and 13.1 £2.3 mm FWHM for the low-
power CAR scheme (Fig. 4B).

For gray matter located sEEG electrode pairs, a two-
way ANOVA showed a significant effect of referencing
type (F(2,690)=586.48, p <0.001) and frequency (Fu4,e90)=
207.83, p <0.001) on FWHM values. There was a signifi-
cant interaction between frequency and referencing
scheme on FWHM values (Fge90=9.92, p <0.001). For
BHG activity, SEEGs showed a correlation decay of 7.14 +
1.7 mm FWHM for the CAR scheme (Fig. 4C), 7.62 = 1.8
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Figure 5. Referencing scheme comparison across hdsEEG electrodes. hdsEEG electrodes are 0.5 mm in length and are on hy-
brid probes with sEEG 2 mm contacts (A). An exemplar hdSEEG electrode is shown in magenta in a coronal MRI slice (B) and
in a surface reconstruction of the same patient (C). Average FWHM was calculated and plotted for each patient for hdsEEG
electrode pairs in each frequency range of interest. For hdsEEG electrode pairs (6 patients; 153 electrodes; 1967 electrode
pairs), average FWHM was compared using either CAR (D), low-power CAR (E) or white matter referencing schemes (F).
Frequency ranges of interest: 6§ (4-8Hz), o (8-13Hz), B8 (13-30Hz), NBG (30-60Hz), BHG (70-150Hz). NBG, narrowband v;

BHG, broadband high v.

mm for the white matter referencing scheme (Fig. 4D), and
3.83 = 0.45 mm for the bipolar referencing scheme (Fig. 4E).
For BHG frequency specifically, a two-way ANOVA showed
a significant effect of referencing scheme on FWHM for
SEEG electrodes (Fp,140=94.4, p <0.001). For # activity,
sEEGs showed a correlation decay of 12.1=1.8 mm
FWHM for the CAR scheme (Fig. 4C), 14.4 = 3.8 mm for the
white matter referencing scheme (Fig. 4D), and 7.19 = 1.6
mm for the bipolar referencing scheme (Fig. 4E).

Listening zone of hdsEEG electrodes

The final group analysis compared pairwise correlation
between hdsEEG electrodes (six patients; 153 electro-
des) across referencing scheme. These electrodes were
cylinders of 0.5 mm length as compared with 2 mm con-
tacts in standard sEEGs. (Fig. 5A). For broadband y ac-
tivity, hdsEEG electrode pairs (CAR) had a mean FWHM
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of 6.5 = 1.4 mm relative to the FWHM for gray matter lo-
cated sEEG electrode pairs (7.14 =1.7 mm) and the
SDE electrode pairs (6.6 = 2.5 mm). For BHG frequency
specifically, a two-way ANOVA showed no significant
effect of referencing scheme on FWHM for hdsEEG
electrodes (F(»,17)=0, p =0.998). For ¢ activity, hdsEEG
electrode pairs (CAR) had a mean FWHM of 17.3 £ 6.7
mm relative to FWHM for gray matter sEEG electrode
pairs (12.1 £1.8 mm) and SDE electrode pairs
(18.0 2.3 mm).

We compared CAR (Fig. 5D), low-power CAR (Fig.
5E), and white matter (Fig. 5F) referencing schemes
for hdsEEG electrode pairs. A two-way ANOVA was
conducted comparing effects of referencing scheme
and frequency range on FWHM measures. There was
no significant interaction between the effects of re-
ferencing scheme and frequency range on FWHM
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Figure 6. Correlation analysis on simulated timeseries data reveals no spurious correlation because of the analytic pipeline.
Representative spectral power (A) and timeseries (B) of simulated neural data in each frequency range of interest (6, 4-8 Hz; a, 8-
15Hz; B, 15-30Hz; narrowband vy, 30-60 Hz; broadband high y, 70-150 Hz). Representative power spectrum (C) and timeseries (D)
of electric field signal comprised of summed timeseries in each frequency shown in B. Comparison of actual and reconstructed
Pearson’s correlation coefficient (r) between every combination of simulated timeseries (E) overlayed with 2D probability density es-
timation reveal no significant difference between actual and reconstructed correlation values on simulated data.

measures (Fg 75)=0.04, p =1.0). Higher frequencies had
significantly lower FWHM than lower frequencies (F, 75 =
19.59, p < 0.001), and referencing scheme had no effect on
FWHM measures (Fp,75=0.11, p =0.90).

Methodological validation on simulated neural data

To validate our analysis pipeline, we also analyzed si-
mulated neural time series data (Cole et al., 2019) in the
known correlation values between narrowband signals
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(Fig. 6). In comparing the known pairwise correlation (ac-
tual) between simulated signals with correlations (recon-
structed) after running the simulated signals through our
analysis pipeline, we aimed to ensure our analysis pipeline
was not itself introducing any unexpected confounds to
our neural data analyses. We found no differences be-
tween the actual and reconstructed correlations between
narrowband signals in each frequency range of interest
(Fig. BE).
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Discussion

We have systematically quantified the influence of elec-
trode type, reference scheme and frequency band on the
ability to dissociate sources at different scales in human
icEEG recordings. Our work shows significant differences
in the listening zone across electrode type and frequency
band, with SDEs exhibiting the largest listening zone on
average relative to sEEGs or hdsEEGs for low frequen-
cies. When considering only high vy activity, the listening
zone was comparable across SDE and sEEG electrodes.
The location of sEEG electrodes significantly influenced
FWHM measures, with sEEG electrodes located in white
matter exhibiting lower power and greater FWHM values
than those located in gray matter. There is a significant
interaction between spectral band and FWHM for all elec-
trode types, with high-frequency vy signals exhibiting fast-
er fall off of correlation over distance relative to lower
frequency signals. Referencing schema only had a signifi-
cant effect on FWHM measures for SEEG electrodes, with
bipolar referencing generating significantly lower FWHM
measures as compared with common average or white
matter referencing.

Our reason for initially deciding to constrain our analysis
to task-related neural data were based on previous evi-
dence that the spatial spread of correlated activity is
lower during activity as opposed to rest (Muller et al.,
2016). We also used the ISI —750 to —250 ms before audi-
tory stimulus onset and compared correlations in this
interval with the stimulus period of 0-1000 ms after stimu-
lus onset. This analysis by time period (stimulus vs ISI)
on FWHM measures across electrode scale showed
that for neither SDE electrodes, sEEG nor hdsEEG elec-
trodes, were significant effects of these time epochs on
the FWHM measures of BHG correlation found (SDE:
F(1 33) = 1.42, p= 0.24; sEEG: F(1 92) =0.11, P =0.74; hdsEEG:
F1,10=0.11, p=0.74). Thus, there are no significant differen-
ces in FWHM measures for task induced activation versus
the baseline period.

Given that our measures are of an auditory task-related
response, the issue of greater coverage by SDE relative to
sEEG may be raised. The coverage maps in Figure 2A,B
reveal extensive coverage of auditory and temporal cortex
for both SDE and sEEG patient cohorts. Further, previous
work using both SDE and sEEG recordings during an au-
ditory task clearly shows that well positioned temporal
opercular sEEG electrodes reveal much greater activation
than corresponding SDE electrodes, at the group as well
as the individual level (Forseth et al., 2020)

Influence of electrode type on FWHM measures

The location of each electrode, whether atop the corti-
cal surface (SDEs) or intracortically located (sEEGs) led to
substantive differences in the listening zone. Across all
frequencies, SDEs had broader spread of correlation over
distance, with an average FWHM 2.45 mm greater than
sEEGs, indicating a more local listening zone for sEEG
electrodes. Importantly, the mean FWHM for BHG alone
was not significantly different between SDE (6.6 =2.5
mm) and sEEGs (7.14 = 1.7 mm), indicating a preserved
locality of BHG across electrode scale (Fig. 2). hdsEEG
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electrode pairs had mean FWHM of 6.5+ 1.4 mm for
BHG, exhibiting the most local listening zone for correla-
tion over distance, albeit in a smaller patient cohort with
less electrode pairs in each patient than the SDE and
sEEG comparisons (Fig. 5).

While there is no consensus on the effect that vari-
ous recording electrodes have on potential distribu-
tion, an electrode’s surface impedance, distance from
the source, and source strength all affect source local-
ization (Vermaas et al., 2020; Neess et al., 2021; von
Ellenrieder et al., 2021). Electrodes act as capacitors,
and their size and impedance (the degree of resistance
and reactance with surrounding electric potentials) im-
pacts the resolution of the data (Moffit and Mclintyre,
2005; Hnazaee et al., 2020). SDE electrodes have 3
mm of cortical contact while the sEEG and hdsEEG
electrodes are both 0.8 mm diameter probes with cyl-
inder lengths of 2 versus 0.5 mm, respectively. All
three electrode types are made of the same platinum-
iridium alloy, which reduces impedance and improve
signal-to-noise ratio (Cogan, 2008). Primary consider-
ations for recording electrodes include the impedance
because of electrode contact surface (in this case, cy-
lindrical vs top-hat design) and because of electrode
material (identical platinum-iridium in this case). The
SDE, sEEG, and hdSEEG electrodes examined here all
have varying electrode size, orientation, spacing, and
cortical location, which introduces distinct physical
differences in resolution and listening zone, especially
when considering activity in lower frequency ranges.

Interaction between spectral band and FWHM
measures

Across electrode scale, high-frequency vy signals exhib-
ited a faster fall off of correlation values across distance,
consistent with a smaller spatial reach of a local, weaker,
and less synchronous high-frequency vy signal (kebski
et al., 2013; Dubey and Ray, 2020; von Ellenrieder et al.,
2021). This is concordant with synchronous low fre-
quency activity engaging a larger neural substrate than
more focal and transient high-frequency activity (Lachaux
et al., 2012; Rouse et al., 2016; Parvizi and Kastner, 2018;
Torres et al., 2019). Interestingly, this fall off of correlation
values at lower frequencies varied across electrode type.
The mean FWHM for BHG for gray matter sEEG electro-
des (7.14 = 1.7 mm), SDE electrodes (6.6 = 2.5 mm), and
hdsEEG electrodes (6.5 + 1.4 mm) were close in value,
whereas the mean FWHM for 6 for hdsEEG electrodes
(17.3+6.7 mm) was greater than FWHM for SDEs
(13.0 £2.3 mm) and gray matter sEEGs (12.1 = 1.8 mm;
Fig. 2C,D).

sEEG electrode location in white or gray matter
influences FWHM measures

Signal attenuation is dependent on the conductivity
ratio of the medium (Rogers et al., 2020), and white matter
is considered largely anisotropic (Nunez and Srinivasan,
2005), especially at this scale of field potential recording
(Howell and Mclntyre, 2016). As such, white matter has
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been found to reflect activity from distant gray matter sig-
nals as well as volume conduction from nearby gray mat-
ter, thus increasing the likelihood of spurious correlation
with activity in adjacent or distant regions (Mercier et al.,
2017). While average FWHM was significantly greater for
white matter located sEEGs (BHG: 11.3 = 3.2 mm) than
gray matter located sEEGs (BHG: 7.14 = 1.7 mm; Fig. 3E,
F), the average power of activity recorded at white matter
located sEEG electrodes was significantly lower than gray
matter located electrodes (Fig. 3D). This is consistent with
previous findings that electrodes located farther from gray
matter signal generators record lower amplitude signals
(Mercier et al., 2017; Young et al., 2019). As such, the cur-
rent analyses considered only gray matter located sEeEG
electrodes to avoid confounds in measures of correlation
over distance because of signal attenuation.

Impact of referencing schema on FWHM measures

Referencing schemes have an often-understated im-
pact on signal detection, and the process of referencing
neural signals has been found to distort and artificially in-
flate neural activation, functional connectivity and other
measures (Liu et al., 2015; Mercier et al., 2017; Li et al.,
2018). While measures of correlation should be scale-in-
dependent, the process of re-referencing likely influences
correlation measures because of a decrease in distant
noise, aiding in improved signal-to-noise ratio between
nearby electrode pairs (Hnazaee et al., 2020). In our data,
referencing scheme did not significantly influence FWHM
measures for SDE or hdsEEG electrode pairs. However,
for sSEEG electrode pairs, we found a significant effect of
referencing scheme on FWHM measures (Fig. 4D,E). We
found the choice of bipolar referencing scheme generates
significantly lower FWHM measures between proximal
sEEG electrode pairs, as compared with CAR and white
matter referencing. These results corroborate previous
findings (Li et al., 2018) comparing the effect of referenc-
ing method on Pearson’s correlation values averaged
across sEEG electrode pairs regardless of interelectrode
distance.

While common average referencing is commonly im-
plemented in icEEG analyses, there are many considera-
tions when implementing a bipolar referencing scheme
(Mercier et al., 2017; Li et al., 2018). Bipolar referencing
removes all signal common to neighboring electrodes,
but this does not consider anatomic location or dipole
orientation, which can distort source localization (Hu et
al., 2010). Depending on the location and orientation of
sEEG electrodes relative to sulci and sources, bipolar
referencing could have quite a variable effect on signal
detection. Additionally, it is common when analyzing
icEEG datasets to combine activity recorded via SDE
and sEEG electrodes. In this case, the question of how
to implement bipolar referencing in SDE electrodes be-
comes geometrically complex.

Comparison with previous studies
From neuroscientific research to the continuing devel-
opment of brain-computer interfaces, decoding neural
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activity remains a necessary and complex goal. As neu-
ral interfaces continue to develop and our ability to re-
cord electrical activity from the brain at smaller scales
advances, the overlap between what is feasible and
what is informative remains unclear.

There is currently no consensus in how to best allocate
activity recorded by various electrode types to regions of
nearby cortical space. In the absence of a solution to this
problem, current methodologies implemented rely on as-
sumptions and in vivo measurements to model the dielec-
tric, conductive, and anisotropic aspects of neural tissue
(Howell and Mcintyre, 2016, 2017; Miceli et al., 2017).
These include spatial discrimination techniques (Herreras,
2016), surface-based estimates of the recording zone
(Kadipasaoglu et al., 2014, 2015) and weighting functions
based on electrode properties of size, layout, and imped-
ance (Dubey and Ray, 2019). Computational models
incorporating heterogeneity and anisotropy have been
found to more accurately reconstruct neural response
to stimulation in DBS application (Astrom et al., 2012;
Howell and Mclintyre, 2017).

Unlike work in nonhuman primates (Xing et al., 2009;
Dubey and Ray, 2019, 2020), the location and design of
neural probes in humans are largely limited to clinical
application, making confident parameterization difficult.
Despite these limitations, previous research has com-
pared recording scale in humans (Kellis et al., 2016;
Muller et al., 2016; Halgren et al., 2018; Lai et al., 2018;
Trumpis et al., 2021) to disambiguate the uncertain prop-
erties of neural activity captured by different electrodes.

Modern icEEG recordings incorporate data from varying
recording scales, cortical locations, referencing strategies,
and analysis approaches. There is a wealth of existing data
that have been gathered with a variety of tools and meth-
odologies; the question becomes, how can findings be in-
tegrated across this diversity of scales? As with all aspects
of scientific research, it is only through understanding the
limitations of the tools we have to observe neural phenom-
enon that we can optimize the strengths and get closer to
understanding complex aspects of human cognition.
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