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Abstract

The successful use of artificial intelligence (AI) for diagnostic purposes has prompted the 

application of AI-based cancer imaging analysis to address other, more complex, clinical needs. 

In this Perspective, we discuss the next generation of challenges in clinical decision-making 

that AI tools can solve using radiology images, such as prognostication of outcome across 

multiple cancers, prediction of response to various treatment modalities, discrimination of benign 

treatment confounders from true progression, identification of unusual response patterns and 

prediction of the mutational and molecular profile of tumours. We describe the evolution of and 

opportunities for AI in oncology imaging, focusing on hand-crafted radiomic approaches and 

deep learning-derived representations, with examples of their application for decision support. We 

also address the challenges faced on the path to clinical adoption, including data curation and 
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annotation, interpretability, and regulatory and reimbursement issues. We hope to demystify AI in 

radiology for clinicians by helping them to understand its limitations and challenges, as well as the 

opportunities it provides as a decision-support tool in cancer management.

In the past decade, drastic increases in computational power and memory have enabled the 

development and implementation of state-of-the-art artificial intelligence (AI) techniques 

for handling radiology images. We are currently witnessing increasing enthusiasm in this 

field, especially in oncology imaging, although computerized methods have been used in 

radiology since the 1960s1. Early initiatives did not gain much traction because they relied 

on analogue image acquisition and limited computational resources. In the 1980s, the advent 

of digital imaging methods and improvements in computational architecture and storage 

renewed interest in these computer-aided detection (CAD) techniques2–4. The initial success 

with AI in breast cancer detection5 paved the way for AI approaches to be used more 

broadly in diagnostic tasks such as tumour classification and cancer detection. Over the 

past decade, AI-based diagnostic tools have been continuously refined, and in many cases 

their diagnostic performance has been shown to match or even surpass that of human 

experts in multiple different cancer types6,7. This success has led to AI approaches now 

being evaluated to aid more complex decision-making tasks, such as disease prognostication, 

prediction of response to different treatment modalities, recognition of treatment-related 

changes and discovery of imaging representations of phenotypic (for example, sex, age or 

ethnicity) and genotypic features associated with prognosis.

In this Perspective, we exclusively focus on radiology AI-enabled biomarkers to 

predict disease outcome and response to treatment, with the ultimate goal of providing 

individualized management. We aim to equip clinicians interested in state-of-the-art AI 

approaches for decision-making in oncology with knowledge on the current novel tools 

being applied to outcome prediction, how these approaches are developed and, specifically, 

the types of image representation (radiomics or deep learning (DL)) that can be used in 

AI applications. We discuss the clinical implications of AI in radiology with regard to 

stratifying patients by disease severity and prognosis, predicting treatment response and 

benefit, identifying unfavourable treatment outcomes (for example, hyperprogression)8, 

distinguishing confounding responses (such as pseudoprogression)9,10 from true disease 

progression, and non-invasively predicting salient molecular and genotypic traits. First, 

we define AI-enabled imaging biomarkers and their use, contrasting them with existing 

biomarkers in oncology. We then focus on the general framework of AI-enabled imaging 

biomarkers, discussing the technical underpinnings of commonly used methods. We 

describe AI tools used in complex decision-making tasks, providing examples of how 

these AI indications have been used for the management of common cancer types (further 

summarized in Supplementary Table 1). Finally, we conclude by summarizing some of the 

challenges and obstacles along the path towards clinical adoption of these approaches and by 

discussing future implications for oncology practice.

Bera et al. Page 2

Nat Rev Clin Oncol. Author manuscript; available in PMC 2022 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AI-enabled imaging cancer biomarkers

A biomarker is “a defined characteristic that is measured as an indicator of normal biological 

processes, pathogenic processes or biological responses to an exposure or intervention, 

including therapeutic interventions”11. On the basis of the type of clinical decisions 

they can inform on, biomarkers can be grouped into several categories12. In oncology, 

biomarkers have applications ranging from prevention, as is the case for biomarkers of 

cancer susceptibility or risk, to guiding high-level decision-making, among which prognostic 

and predictive biomarkers are the most clinically relevant.

A prognostic biomarker conveys information pertaining to the risk of a disease-related 

end point. In oncology, prognostic biomarkers are used to determine the risk profile of 

a patient with cancer on the basis of tumour characteristics. This knowledge enables the 

clinician to identify patients with poor prognosis who might be candidates for escalation 

of therapy and/or clinical trials11. Conversely, if pre-emptively identified, patients with a 

good prognosis might have favourable outcomes with de-escalated therapy and could thus be 

spared the physiological and financial toxicities of cancer treatment.

Most prognostic biomarkers currently used in oncology are molecular assays that rely on 

complex multigene signatures, such as Oncotype DX and MammaPrint in breast cancer13 

and Decipher in prostate cancer14. These genomic assays are included in the National 

Comprehensive Cancer Network (NCCN) guidelines and are routinely used in clinical 

practice; however, they are prohibitively expensive and require tumour tissue obtained 

through an invasive procedure, thus limiting their availability and applicability in serial 

monitoring throughout treatment.

A predictive biomarker enables clinicians to make an informed management choice by 

identifying patients who would benefit from a particular therapeutic agent. In oncology, a 

biomarker is considered to be predictive if the treatment effect is statistically different in 

patients with biomarker-positive versus negative status. For example, in breast, gastric and 

gastro-oesophageal cancers, among others, HER2 status serves as a biomarker for predicting 

the effectiveness of HER2-targeted therapies, such as trastuzumab and pertuzumab15. In 

non-small-cell lung cancer (NSCLC), the presence of EGFR exon 19 deletions or exon 

21 mutations serves as a biomarker of eligibility for treatment with EGFR tyrosine kinase 

inhibitors, such as osimertinib or erlotinib16. Besides being prognostic, Oncotype DX is also 

a predictive biomarker validated in a prospective clinical trial to determine benefit from 

chemotherapy in women with early-stage breast cancer17.

Rapid AI-driven advancements in computer vision and pattern recognition tasks have led to 

the emergence of AI-enabled imaging biomarkers. These biomarkers rely on the extraction 

of discriminating quantitative representations from radiology that capture properties of the 

tumour phenotype that correlate with clinical outcomes. Two main categories of AI-enabled 

biomarker in radiology exist: hand-crafted radiomic and DL approaches18 (TABLE 1). 

With hand-crafted radiomics, a set of representations are predefined by the AI development 

team (involving computer scientists, radiologists and oncologists) that are composed of 

feature measurements with specific algorithmic derivations. These feature representations 
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are then fed into a machine learning (ML) model, which in turn predicts an outcome. Some 

commonly used radiomic approaches focus on the various attributes of the area inside the 

tumour (such as shape or texture) as well as the tumour microenvironment (TME; such as 

texture or tumour vasculature) (TABLE 2). Publicly available radiomics toolkits12,19 enable 

researchers to apply hand-crafted radiomic features in their work without having to develop 

the feature pipeline themselves. In DL approaches, the development team defines a DL 

neural network that can be trained using a large data set to discover new representations that 

can be synthesized to predict a particular outcome. These approaches have unique strengths 

and weaknesses, and require distinct development workflows (FIG. 1).

AI-enabled predictive or prognostic imaging biomarkers can offer certain advantages over 

molecular assays. Given that they are assessed using routine clinical radiological scans, 

AI-enabled imaging biomarkers are non-invasive, non-tissue-destructive, rapidly analysed, 

easily serialized, fairly inexpensive20 and fully compatible with existing clinical workflows, 

similar to AI-enabled pathology biomarkers21, with the added advantage of being non-

invasive22,23. They additionally offer the ability to characterize a tumour over its full 3D 

volume, avoiding sampling errors that can occur with biopsy samples from heterogeneous 

tumours24, as well as enabling the detection of changes in the TME. Owing to these 

advantages over molecular testing, another category of AI-enabled biomarkers that reflect 

the genotype of a tumour has been developed using imaging representations, an approach 

known as radiogenomics. Radiogenomic approaches predictive of tumour mutational status 

could potentially become surrogate non-invasive biomarkers for established molecular 

biomarkers and could be applied in routine imaging. This approach would be similar 

to circulating tumour DNA-based liquid biopsy approaches, which are being developed 

as minimally invasive tools for cancer surveillance25. Such tests could also be used 

serially to detect changes in the predominant genotype of a tumour following initiation 

of treatment, a known cause of acquired resistance to targeted therapy26 that cannot be 

monitored accurately with invasive molecular testing. At present, however, radiogenomic 

approaches have several limitations, including difficulty in assembling comprehensive data 

sets containing imaging, genomics and clinical information as well as being restricted to 

retrospective studies, and thus currently they are limited to research settings27. Indeed, 

these techniques need further optimization and prospective validation before clinical 

deployment28.

A framework for AI-derived biomarkers

Two main AI approaches are currently used to develop AI-enabled biomarkers in radiology: 

radiomics and DL (TABLE 1). These approaches can be leveraged separately or used in 

combination29–31.

Hand-crafted radiomic models

Several radiomic representations have proved effective in outcome prediction (FIG. 2; 

TABLE 2). These representations can be translated into a predictive or prognostic model; 

typically a ML model is trained using a set of features. A common first step in this process 

is feature selection, which involves algorithmically narrowing down a large pool of explicit 
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features to a smaller subset of features best suited for a particular task. Features can be 

chosen to optimize predictive performance32,33, reduce correlation within a feature set34 or 

maximize robustness and stability35. This reduced feature representation is then fed into a 

statistical ML model (for example, a random forest classifier) to predict clinical outcomes.

Intensity-based measures.

In many cases, image intensity-based values correspond to some underlying physiological 

property of the tissue and can be leveraged in radiomic approaches. For example, attenuation 

values derived from CT scans directly correspond to tissue density, and these values can 

be used to develop a prognostic biomarker of outcome36 or tumour phenotype37. Similar 

physiological measures on 2-deoxy-2-18F-fluoro-D-glucose (FDG)-PET scans, which enable 

quantification of tumour metabolic activity based on positron emissions from a metabolized 

radiotracer, are highly effective in the early prediction of outcome for patients with several 

cancer types and across treatment modalities38–42. The distribution of voxel intensity across 

the tumour or other regions of interest can be further characterized with a broader range of 

statistical measures (such as standard deviation, skewness or kurtosis), commonly referred to 

as first-order statistics.

Subvisual heterogeneity and texture.

Tumour heterogeneity can be quantified through radiological imaging using textural 

heterogeneity features, which involves determination of spatial relationships between image 

voxel intensities within a region of interest. Statistical measures, such as standard deviation, 

can provide insights into the variability of an imaging signal, but do so across an entire 

region of interest (in this case, the whole tumour). By contrast, texture features quantify 

the relationship between voxels and their surroundings as a function of both distance and 

intensity. Accordingly, texture features might be better suited to detect tissue architecture 

heterogeneity on imaging43.

Signal measurements on radiology typically correspond to some physical or biological 

property of a tissue, and thus a spatial pattern of greater intensity variation on imaging is 

usually reflective of the underlying anatomical or physiological heterogeneity of the tissue 

itself. For example, intensity interaction features are commonly used to explore correlative 

patterns between intensities of adjacent voxels, such as grey-level co-occurrence matrix 

features44. Other varieties of texture features involve the application of targeted image filters 

to isolate spatial patterns potentially relevant to patient outcomes. For example, laws’ energy 

measures use filters that target specific texture patterns, such as speckling and waves45.

Shape and volumetric features.

Measuring tumour size over the course of treatment is standard practice in oncology, and is 

commonly performed using the Response Evaluation Criteria in Solid Tumors (RECIST)46, 

an algorithm for monitoring patient response on longitudinal imaging. A limited number 

of strictly 2D tumour measurements are collected and compared between examinations 

to assess whether a tumour is stable, progressing or responding. However, RECIST 

measurements can vary considerably between radiologists47 and the criteria are not well 

suited for certain therapeutic scenarios, such as identifying pseudoprogression following 
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immunotherapy48 or monitoring response to systemic therapy in patients with metastatic 

cancers47. Shape radiomics, which refers to any feature characterizing the shape of a tissue 

of interest, enables more sophisticated analysis of the 3D shape and growth of a tumour, 

with higher reproducibility than clinical assessment of radiology images. Prospective trials 

have demonstrated that tumour volume or changes in tumour volume during the course of 

treatment outperform planar RECIST assessment for longitudinal monitoring in multiple 

cancer types49,50. More sophisticated morphological measurements, such as surface-to-

volume ratio51 and fractal dimensionality52, offer detailed characterization of aberrations of 

tumour shape and growth patterns. Often, increased tumour shape complexity is associated 

with poor outcome53–57.

Peritumoural and TME radiomics.

A growing body of work has explored the application of radiomic features beyond the 

tumour to characterize the surrounding TME. TME radiomic approaches often involve 

other radiomic feature families to characterize signal properties, such as heterogeneity 

within non-tumour stroma. Peritumoural radiomics, which involves extraction of texture and 

statistical features within a radius of tissue surrounding the tumour, has been shown to 

have predictive and prognostic value across a number of treatment contexts in breast58–60, 

lung61–66, brain67,68, oesophageal69, gastric70,71 and prostate cancers72, and head and 

neck squamous cell carcinoma (HNSCC)73. The inclusion of analyses of the peritumoural 

region increases the predictive power of radiomic signatures over intratumoural radiomics 

alone29,58,59,68,74–77. Specialized TME radiomics approaches to focus on tumour-associated 

vasculature have also shown increasing promise and are discussed below.

Radiomics of tumour vascularity.

Shape-based radiomic analysis can also be applied to quantify structural abnormalities in 

the tumour-associated vasculature and effects of tumour angiogenesis. Vessel tortuosity, a 

category of features measuring the abnormal shape of the tumour-associated vasculature, 

has shown promise in the prediction of response to chemotherapy in patients with breast 

cancer78,79 or malignant gliomas50 and response to targeted agents in patients with breast 

cancer brain metastases80. Measurements of vessel tortuosity have also shown promise 

for identifying those patients with NSCLC who are likely to have hyperprogression 

when receiving immune-checkpoint inhibitors (ICIs)65. This atypical response pattern is 

characterized by a paradoxical acceleration of tumour growth following ICIs and requires 

immediate therapy cessation.

DL AI models

DL strategies leverage deep neural networks for pattern recognition, which typically 

comprise a series of trainable nonlinear operations, known as layers, each of which 

transforms input data into a representation that facilitates pattern recognition. As more layers 

apply transformations to the input data, such data become increasingly abstracted into a 

deep-feature representation. The resulting deep features can eventually be translated by the 

final layer of a network into a desired output, such as the likelihood of a therapeutic outcome 

or the molecular subtype of a tumour. DL is a vast, technical and dynamically evolving field. 
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We provide a brief introduction to the most frequently encountered topics in the context of 

prediction-based radiology AI, with a more detailed supplementary discussion of the types 

of deep neural network (Supplementary Box 1), popular architectures (Supplementary Box 

2; Supplementary Table 2) and strategies for addressing data limitations (Supplementary 

Box 3). All these aspects have been reviewed elsewhere81,82.

Convolutional neural networks used for outcome prediction.

The majority of DL-enabled biomarker applications in radiology use convolutional neural 

networks (CNNs)83 (FiG. 3a) to derive predictions from imaging data. CNNs are a 

specialized type of neural network designed to learn spatial patterns in images and they 

have received substantial attention owing to their performance in diagnostic tasks. In several 

high-profile studies, CNN-based models have even surpassed the performance of expert 

human readers in interpreting chest radiography84 and CT85, and digital mammography6,86. 

Just as CNNs have been shown to be capable of learning image features indicative of 

malignancy, a growing body of research has shown that they can stratify patients according 

to subtle differences in tumour properties related to outcome, risk and molecular profiles 

(FiG. 3a). When trained with patient outcome data, the convolutional layers of a CNN can 

learn to recognize novel imaging phenotypes reflective of prognosis. CNNs can be applied to 

2D or 3D inputs, and can be modified with multiple inputs for learning from a combination 

of image types, such as multiparametric or dynamic MRI scans87,88. A substantial number 

of CNN architectures can be chosen from for AI-based biomarker studies (Supplementary 

Table 2), and their histories and strengths are discussed in further detail in Supplementary 

Box 2.

Other neural networks in radiology.

Fully convolutional neural networks (FCNs)89 (FiG. 3b) are a type of CNN that produces 

image-like outputs. FCNs can be used to map the boundaries of a tumour within an image 

for downstream radiomic analyses (a process known as segmentation) or unsupervised 

feature learning when data are limited (such as by training a convolutional autoencoder). 

Likewise, fully connected networks (FiG. 3c) are neural networks without convolutional 

layers that can make predictions from various lists of measurements, such as radiomic 

features. Other varieties of neural network can be combined with CNNs to process multiple 

sets of radiological data collected over time, enabling longitudinal analysis of imaging data 

(for example, for response assessment). These and other variations are discussed in greater 

depth in Supplementary Box 1.

Training DL models.

To train a DL model, neural networks are updated iteratively with subsets of the training 

data set known as batches. For each batch, a neural network first generates predictions of 

patient outcomes based on imaging data. These predictions are then compared with the 

corresponding real treatment outcomes via a loss function — an equation that measures the 

correctness of the network outputs. The value obtained from the loss function is then used to 

update the operations performed by the network layers (FiG. 1), making changes informed 

most by samples for which the network performed poorly. A second set of patient data, 

known as the tuning data set, is used to monitor performance while training and optimizing 

Bera et al. Page 7

Nat Rev Clin Oncol. Author manuscript; available in PMC 2022 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the configuration and learning processes of the model before it is applied to an independent 

data set, referred to as the test or external validation data set.

Training a neural network typically requires a substantially larger amount of data than 

that required for development of a radiomic model. All ML models are defined by a 

set of parameters, which are variables that specify all the possible configurations of the 

algorithm. Increasing the number of parameters in a model expands the range of possible 

solutions it can discover, but the quantity of data it requires to learn effectively will also be 

greater relative to simpler models. State-of-the-art CNN architectures comprise millions of 

parameters in order to discover novel prognostic representations directly from the original 

data. By contrast, radiomics restricts prediction problems to a limited pool of prespecified 

features combined within a statistical model with fewer parameters (typically dozens to 

hundreds).

The need for a vast quantity of data can be especially constraining when models are trained 

for outcome prediction, a setting in which viable patient data might be more limited than in 

diagnostic studies. Fortunately, several strategies exist for leveraging the benefits of neural 

networks despite sparse training data. For example, transfer learning80, in which a model 

trained for one pattern recognition task is repurposed to perform a new task, is frequently 

used to achieve strong CNN performance with substantially less training data. Further 

strategies are available to handle limited or flawed training data80,90 (Supplementary Box 2; 

Supplementary Fig. 1).

Risk assessment and response prediction

Prognostic approaches

Lung cancer.—Most radiomic approaches for lung cancer management have focused on 

NSCLC. Huang et al.91 were among the first groups to use texture-based hand-crafted 

radiomics to develop a prognostic nomogram to predict disease-free survival (DFS) in 

patients with stage I–II NSCLC. Interestingly, they showed that first-order statistical 

measures inside the tumour (for example, kurtosis) were indicative of tumour heterogeneity 

and 3-year DFS, and their combination with routine clinicopathological data (such as sex 

and histological grade) outperformed the tumour, node, metastasis (TNM) staging criteria 

alone (C-index 0.72 (95% CI 0.71–0.73) versus 0.63 (95% CI 0.62–0.64)). Kamran et al.92 

developed a radiomic model using CT scans from patients with limited-stage small-cell 

lung cancer to predict 2-year overall survival (OS), locoregional recurrence and distant 

metastases. They observed that radiomic tumour elongation on radiomics was strongly 

associated with locoregional recurrence (HR 1.10; P = 0.003) and 2-year OS (HR 1.10; P 
= 0.03). Pavic et al.93 developed a radiomic model using FDG-PET images from patients 

with mesothelioma to stratify them on the basis of progression-free survival (PFS) and 

OS. The feature with the best discriminative power was long-run high-grey-level emphasis, 

which reflects the intratumoural heterogeneity of standardized uptake values (SUVs) on 

PET scans. The C-index for PFS was 0.66 (95% CI 0.57–0.78). However, a radiomic 

model developed using CT scans from the same patients had no discriminative power for 

outcome prediction93. This study is worth highlighting because the investigators applied 
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novel radiomic approaches on state-of-the-art FDG-PET and CT scans to prognosticate 

outcome in mesothelioma, a rare cancer type.

In the DL domain, Hosny et al.94 trained a 3D CNN to predict 2-year OS following 

radiotherapy using CT data and then adapted the model to predict OS following surgery 

with an area under the curve (AUC) of 0.71 (95% CI 0.60–0.82) via transfer learning. 

The study was unique for several reasons: first, the researchers used seven independent 

data sets involving ~1,200 patients from five different institutions; second, genomic 

association studies revealed correlations of the DL feature representations with cell cycle 

and transcriptional processes, providing a biological interpretation; and third, DL features 

from the area immediately surrounding the tumour had the highest prognostic signal.

Breast cancer.—Park et al.95 trained an elastic net survival model to combine radiomic 

intensity, texture and morphology features derived from preoperative MRI scans of patients 

with invasive breast cancer into a radiomics-derived prognostic score; higher scores were 

significantly associated with worse DFS in the testing data set (P = 0.036). The investigators 

not only created a radiomic method for breast cancer prognostication but also developed 

a nomogram combining radiomics and clinicopathological features for integrated DFS 

estimation that performed better than scores based on each class of feature alone. Wu 

et al.96 identified subregions of the intratumoural environment corresponding to different 

levels of perfusion on contrast-enhanced MRI and quantified interactions between these 

subregions through network analysis. A radiomic signature indicative of the abundance 

and distribution of poorly perfused areas was predictive of recurrence-free survival (RFS) 

on multivariable analysis, adjusting for clinical variables such as age, volume, receptor 

status and pathological response. Interestingly, tumours with unfavourable prognosis had a 

higher proportion of poorly perfused regions on breast MRI scans than indolent tumours. 

Another group97 developed radiomic signatures using dynamic contrast-enhanced (DCE) 

MRI scans from patients with early-stage breast cancer enrolled on a completed clinical 

trial. The developed signatures independently predicted axillary lymph node metastasis and 

3-year DFS. These investigators extracted radiomic features from not only intratumoural 

and peritumoural regions but also sentinel and non-sentinel axillary lymph nodes. The 

study revealed that radiomic features of axillary lymph nodes were equivalent in prognostic 

performance to those from tumour radiomic features alone or combined with those from 

lymph nodes. Chitalia et al.98 used imaging and outcome data from patients involved in 

a completed clinical trial to develop an imaging phenotype through clustering of radiomic 

features on pretreatment DCE-MRI scans. They found three phenotypes with significant 

variation in image heterogeneity (P < 0.01) that enabled stratification in subgroups with 

significant differences in 10-year RFS (P < 0.05). The signature was also successfully 

validated on a publicly available data set. These researchers showed that AI can uncover 

potential intrinsic imaging phenotypes, corresponding to different degrees of tumour 

heterogeneity, which in turn might be associated with histologically poorly differentiated 

tumours and higher mitotic grades. Drukker et al.99 used a long short-term memory DL 

model developed from radiomic features related to the kinetics of contrast enhancement 

from dynamic breast MRI scans performed throughout neoadjuvant chemotherapy, which 

predicted 2-year RFS with a C-index of 0.80. The study was unique in using a recurrent 
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neural network (RNN), a specialized category of DL network, which integrates and learns 

using features derived from images across different time points.

Brain cancer.—Most of the radiology AI research in brain cancer focuses on 

glioblastoma, one of the brain tumour types associated with substantially worse outcomes. 

Kickingereder et al.100 used a hand-crafted radiomic model incorporating volume, shape 

and texture features from multiparametric MRI scans and used a supervised principal 

component analysis to predict PFS (HR 2.43; P = 0.002) and OS (HR 4.33; P < 0.001) 

in patients with glioblastoma. An interesting finding of this analysis was that all radiomic 

features selected for the model were exclusively from the fluid-attenuated inversion recovery 

(FLAIR) sequence, a common MRI modality, and included grey-level features indicative 

of intratumoural heterogeneity. Beyond intratumoural features, another group67 developed 

a radiomic risk score using 25 texture and entropy features from both within and outside 

the tumour, and integrated these features with molecular information that included IDH 
and MGMT status to predict PFS in the validation data set (C-index 0.84; P = 0.03). 

Additionally, the radiomic risk score was associated with biological pathways of cell 

differentiation, adhesion and angiogenesis. This study was one of the first to leverage 

peritumoural radiomic features for estimating survival in patients with glioblastoma and 

to comprehensively develop an imaging biomarker by leveraging hand-crafted radiomics, 

clinical attributes and mutational information.

Lao et al.31 extracted ~98,000 features from multiparametric MRI (T1-weighted (T1w), 

T1 contrast (T1c), T2w and FLAIR modalities) with a transfer learning approach using 

a pretrained CNN to predict OS (C-index 0.71, 95% CI 0.588–0.932) in glioblastoma. 

Following feature selection, a LASSO Cox regression model including six of the top DL 

features enabled accurate stratification of patients in the validation data set (HR 5.13, 

95% CI 2.03–12.96; P < 0.001) on the basis of OS. Kickingereder et al.101 developed 

and validated an automatic neural network (ANN) for the identification and volumetric 

segmentation of contrast-enhancing tumours and non-enhancing T2w signal abnormalities 

on MRI scans. The ANN-based model was trained on a data set of patients from one 

institution and validated using two data sets: one internal and another from a completed 

clinical trial (EORTC-26101), in which it had almost a 25% higher performance in survival 

prediction relative to the Response Assessment in Neuro-Oncology (RANO) criteria (with 

hazard ratios of 2.59 (95% CI 1.86–3.60) versus 2.07 (95% CI 1.46–2.92) for ANN and 

RANO, respectively). This study was unique in using a clinical trial data set for validation of 

the performance, although this validation was retrospective. Zhou et al.87 presented a novel 

neural network approach incorporating brain multiparametric MRI data (T1w, T1c, T2w 

and FLAIR) projected along three spatial dimensions to form RGB images for a four-input 

CNN, which fused data from these images with lesion measurements and patient age. The 

model was able to stratify patients into subgroups with an expected median OS of 0–10 

months, 10–15 months and >15 months with an average accuracy of 0.664 ± 0.061 in tenfold 

cross-validation.

Prostate cancer.—Both DL and hand-crafted radiomics have been applied to 

multiparametric MRI scans obtained after definitive therapy to predict the risk of 
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prostate cancer recurrence. Shiradkar et al.102 used texture-based radiomics of pretreatment 

multiparametric MRI scans to predict biochemical recurrence after radical prostatectomy. 

These investigators showed that textural heterogeneity and gradient orientation radiomic 

features derived not only from T2w images, but also from apparent diffusion coefficient 

maps, were strongly associated with cancer recurrence. Zhang et al.103 developed an AI 

model using MRI features as well as clinical parameters to predict 3-year biochemical 

recurrence after radical prostatectomy through cross-validation. A support vector machine-

based ML classifier, which integrated several imaging features, PI-RADS score (a structured 

reporting system for evaluating clinically significant cancer on multiparametric MRI) and 

clinicopathological features, predicted 3-year biochemical recurrence with an AUC of 0.95 

(95% CI 0.92–0.98). This study was unique in integrating parameters from multiple scales 

and sources to build an accurate prognostic biomarker. Zhong et al.104 used a deep transfer 

learning-based model to distinguish indolent from clinically significant prostate cancer 

using multiparametric MRI. In the validation data set, the model outperformed the standard 

PI-RADS v2 score in identifying clinically significant prostate cancer (AUC of 0.726 versus 

0.711).

Other cancer types.—Wang et al.105 trained a prognostic model using a set of 16 

deep features obtained via unsupervised feature learning with a convolutional autoencoder 

(Supplementary Box 1) trained on contrast-enhanced CT images from patients with high-

grade serous ovarian cancer. This model accurately predicted 3-year RFS in two different 

validation data sets (with AUCs of 0.77 and 0.83; P < 0.05). Parmar et al.106 developed 

a radiomic model using pretreatment CT scans from patients with NSCLC or HNSCC. 

Consensus clustering was performed to select the top radiomic features for each tumour 

type, predicting OS with C-indexes of 0.61 and 0.63 in NSCLC and HNSCC, respectively. 

Interestingly, the NSCLC model had AUCs of 0.56 and 0.61 for predicting tumour histology 

and stage, respectively. The HNSCC model was even more predictive of histology (AUC 

0.80) and moderately predictive of human papillomavirus status (AUC 0.58). Zheng et 

al.107 showed that a radiomic score that included the top six texture features relating to 

architectural heterogeneity extracted from the arterial phase of pretreatment abdominal CT 

scans from patients with solitary hepatocellular carcinoma was associated with RFS (P 

= 0.004) and OS (P = 0.039). In a radiomic signature108 using first-order statistics of 

molecular profiling and pretreatment contrast-enhanced CT scans from patients with stage 

IV colorectal cancer, skewness was associated with 5-year OS (P = 0.025). In addition, the 

mean value of positive pixels was significantly lower in BRAF-mutated tumours than in 

BRAF-wild-type tumours (P = 0.007). Creasy et al.109 demonstrated that radiomic analysis 

of the liver parenchyma on presurgical CT scans could predict the future development 

of hepatic metastases in patients following resection for colon cancer, with 17% of 254 

radiomic features distinguishing between hepatic recurrence, extrahepatic recurrence and 

non-recurrence (P < 0.05). This finding suggests that heterogeneity measures of healthy 

organ tissue beyond the site of primary disease might be reflective of biology that might 

provide a more viable premetastatic niche for invasive tumours110.

In the domain of DL, Peng et al.111 developed an AI model using DL features extracted from 

four CNNs and hand-crafted radiomic features from PET and CT images of patients with 

Bera et al. Page 11

Nat Rev Clin Oncol. Author manuscript; available in PMC 2022 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nasopharyngeal carcinoma. This AI model was combined with relevant clinicopathological 

parameters to develop an integrated nomogram that accurately predicted DFS in an 

independent validation data set. Zhang et al.112 used an AI model combining features 

learnt from a CNN pretrained using CT scans from patients with NSCLC and hand-crafted 

radiomic features on CT scans from patients with pancreatic ductal adenocarcinoma to 

predict 2-year OS in the latter group, outperforming traditional DL or radiomic methods.

Predicting response to therapy

Chemotherapy and chemoradiotherapy.: In patients with NSCLC, tumour stage usually 

determines treatment stratification. Patients with stage IA disease generally receive surgery 

alone, whereas those with stage IB–IIB NSCLC tend to undergo surgical resection followed 

by adjuvant chemotherapy. Combination chemotherapy with a pemetrexed and platinum 

doublet is the standard of care for patients with stage III NSCLC without metastases, 

although some receive radiotherapy or neoadjuvant chemoradiotherapy followed by surgery. 

In a study involving two different validation data sets of patients with early-stage NSCLC64, 

a radiomic nomogram incorporating features within and outside the lung nodule on CT 

scans predicted benefit from adjuvant chemotherapy and was prognostic of 3-year DFS 

(C-index 0.74, 95% CI 0.72–0.76). The score was used to stratify patients into three groups 

according to risk (high, intermediate or low). Patients in the high-risk group had a significant 

DFS benefit with adjuvant chemotherapy (P = 0.003 in the validation data sets), whereas 

those in the low-risk group had no such benefit. Analysis of radiomic, pathology and 

genomic data revealed that radiomic score was associated with the spatial arrangement of 

tumour-infiltrating lymphocytes (TILs) on histology images (P = 0.036) and with biological 

pathways related to cellular differentiation and angiogenesis64. Our group61 showed that a 

radiomic model comprising intratumoural and peritumoural texture features could predict 

response to pemetrexed–platinum chemotherapy (AUC 0.77; P < 0.05) and was strongly 

associated with OS in patients with locally advanced NSCLC (HR 2.35, 95% CI 1.41–3.94). 

The above authors also developed a radiomic model62 using non-contrast CT scans from 

patients with locally advanced NSCLC receiving neoadjuvant chemoradiotherapy followed 

by surgery to enable stratification by OS (HR 11.18, 95% CI 3.17–44.1) and predict major 

pathological response. Coroller et al.113 used radiomic features from both primary tumours 

and lymph nodes from patients with locally advanced NSCLC to predict pathological 

complete response (pCR) to neoadjuvant chemoradiotherapy before surgery. Three radiomic 

features that describe tumour sphericity and lymph node homogeneity predicted pCR with 

an AUC of 0.67 (P < 0.05), while features quantifying lymph node homogeneity could also 

accurately predict residual disease (AUC 0.72–0.75; P < 0.05). Wei et al.114 developed and 

validated a radiomic model to predict response to platinum-based chemotherapy using data 

from patients included in a completed clinical trial, which achieved an AUC of 0.79 (P < 

0.05) on cross-validation. Regarding DL approaches, Xu et al.115 combined a pretrained 

CNN with a RNN to analyse longitudinal CT scans of patients with stage III NSCLC 

before and after treatment. The AI method had high performance in predicting pathological 

response (P = 0.016) in a validation data set, and this performance improved as the number 

of scans analysed was increased.

Bera et al. Page 12

Nat Rev Clin Oncol. Author manuscript; available in PMC 2022 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



With regard to breast cancer, radiomics and DL approaches have largely been focused on 

predicting response to neoadjuvant chemotherapy116. In a large-scale multicentre validation 

study117, a multiparametric radiomic model incorporating features from contrast-enhanced 

T1w, T2w MRI and diffusion-weighted imaging accurately predicted pCR (AUC 0.79; 

P < 0.05) in validation data sets from three institutions. Mazurowski et al.118 found 20 

prognostic radiomic features on DCE-MRI in patients with invasive breast cancer that were 

significantly associated with distant RFS. Descriptors of size (with the highest C-index, 

0.77, 95% CI 0.67–0.86), heterogeneity (C-index 0.64, 95% CI 0.52–0.76) and perfusion 

(C-index 0.70, 95% CI 0.60–0.80) were found to have the most predictive value. Cain et 

al.119 evaluated a predictive radiomic signature on MRI scans from patients who received 

neoadjuvant chemotherapy and found it to be highly predictive of pCR (AUC 0.71, 95% 

CI 0.58–0.83) in patients with breast cancer subtypes associated with poor outcomes (triple-

negative breast cancer (TNBC) and HER2+ disease). Interestingly, we were among the 

first groups to show that adding textural radiomics of the peritumoural region immediately 

surrounding the tumour to intratumoural features from pretreatment MRI scans improves 

predictions of response to neoadjuvant chemotherapy (AUC 0.74; P < 0.05). To date, 

most studies have aimed to predict response to neoadjuvant chemotherapy primarily using 

dynamic MRI scans, although Tadayyon et al.120 predicted such responses by demonstrating 

significant survival differences between responders and non-responders at weeks 1 (P 

= 0.035) and 4 (P = 0.027) using texture features from breast ultrasonography images 

with a cross-validation strategy. Regarding DL, Ha et al.121 trained a CNN to predict 

response to neoadjuvant chemotherapy based on pretreatment MRI scans and reported an 

accuracy of 88% in a testing data set. The pCR rate in the study was higher in patients 

with TNBC (36%) or HER2+ (50%) breast cancer compared with those with luminal A 

(18%) subtypes, which is concordant with population studies122. These investigators hence 

provided a potential way to use non-invasive imaging even before treatment initiation to 

select those patients most likely to respond to neoadjuvant treatment, in contrast to current 

standard-of-care imaging methods, which use post-treatment serial MRIs to assess response 

to therapy.

Nie et al.123 developed a radiomic signature using T2w MRI scans from patients 

with confirmed locally advanced rectal cancer comprising 30 features from within the 

tumour, which significantly predicted pCR (AUC 0.84; P < 0.05) following neoadjuvant 

chemoradiotherapy. Antunes et al.124 built a radiomic model to predict pCR in a similar 

patient population, showing that it was robust and reproducible across a validation set 

comprising patients from two different institutions (AUC 0.71; P < 0.05) and was consistent 

across two different expert tumour annotations (Dice Similarity coefficient 73.7 ± 14.1 for 

gross tumour volume).

Cha et al.125 compared multiple AI methods, including hand-crafted radiomics and CNN-

based DL radiomics, to predict pCR in patients with bladder cancer using CT scans 

performed before and after neoadjuvant chemotherapy. The hand-crafted model and the 

DL model achieved AUCs of 0.77 and 0.73, respectively.

Fang et al.126 developed a MRI radiomic signature derived from the TME using sagittal 

T2w, contrast-enhanced T1w and apparent diffusion coefficient MRI images from patients 
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with locally advanced cervical cancer. This model accurately predicted RECIST response in 

patients undergoing concurrent chemoradiotherapy (AUC 0.80, 95% CI 0.68–0.92).

Jiang et al.127 developed a novel DL AI biomarker using portal venous phase contrast-

enhanced CT scans to predict DFS and OS in a training data set of patients with gastric 

cancer. The model was then used to build an integrated nomogram with clinicopathological 

features that not only predicted DFS (C-index 0.85, 95% CI 0.83–0.88) and OS (C-index 

0.86, 95% CI 0.84–0.89) but also benefit from adjuvant chemotherapy, in an extensive 

independent validation data set.

Targeted therapy.—Our group59 showed that a combination of peritumoural and 

intratumoural radiomic features from DCE-MRI scans of patients with invasive HER2+ 

breast cancer could help to identify intrinsic molecular cancer subtypes, providing insights 

into the immune response within the peritumoural environment as well as predicting 

response to HER2-targeted therapy. In an exploratory study, Mehta et al.128 demonstrated 

that pharmacokinetic modelling on baseline breast dynamic MRI could help to identify 

patients with downregulation of angiogenesis pathways following bevacizumab treatment, 

which might be indicative of response to therapy. In a preliminary study involving patients 

with hormone receptor-positive metastatic breast cancer treated with CDK4/6 inhibitors, our 

group129 showed that a radiomic feature-derived risk score of liver metastases on CT scans 

indicating intratumoural heterogeneity was prognostic of OS (HR 2.02, 95% CI 1.13–3.61; P 
= 0.0027) and response to therapy (AUC 0.68; P < 0.05).

Aerts et al.130 analysed data from a completed clinical trial of patients with early-stage 

NSCLC treated with the EGFR inhibitor gefitinib. They developed a radiomic model using 

pretreatment CT scans, and found that the Laws’ energy feature was strongly associated with 

EGFR mutation status (AUC 0.67; P = 0.03) and thus associated with a gefitinib response 

phenotype.

Immunotherapy.—Sun et al.131 used a radiomic approach based on CT scans to estimate 

the presence of CD8+ TILs and also to predict response to ICIs across four solid 

tumour types (HNSCC, NSCLC, hepatocellular carcinoma and urothelial carcinoma). They 

modelled the radiomic analysis on the completed MOSCATO trial of ICIs, which collected 

RNA sequencing data and tumour biopsy samples. The radiomic signature was validated 

using a data set from The Cancer Genome Atlas (TCGA) for correlation with CD8 gene 

expression, and on two other independent data sets with baseline imaging data available 

for tumour immune phenotype association and ICI response prediction, respectively. In the 

response prediction validation set, the radiomic signature was associated with OS (HR 0.52, 

95% CI 0.35–0.79) and could also accurately predict response to ICIs (P = 0.025). Our 

group63 developed a radiomic model using both pretreatment and immediate post-treatment 

(6–8 weeks) CT scans of patients with NSCLC receiving ICIs. The intratumoural and 

peritumoural radiomic models predicted RECIST response (with AUCs of 0.85 and 0.81, 

respectively; P < 0.05) and OS (HR 1.64, 95% CI 1.22–2.21) in two independent data 

sets. In an exploration of pathological associations of radiomic features, we found that 

peritumoural texture features were associated with TIL density on tissue biopsy samples (P 
< 0.05). Trebeschi et al.132 developed a radiomic biomarker using contrast-enhanced CT 
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scans of primary and metastatic lesions in patients with melanoma or NSCLC receiving 

ICIs; the model predicted response to ICIs with high performance across both tumour 

types (P < 0.001). Independent gene set enrichment analysis of patients with NSCLC 

revealed radiogenomic associations with pathways involved in mitosis and proliferation132. 

A unique study by Yang et al.133 introduced a transformer network able to integrate clinical 

measurements, previous interventions and radiomic features from imaging scans over a 

timeline to predict response before treatment with anti-PD-1 antibodies, with an AUC 

of 0.80 in a cross-validation data set. This approach is innovative owing to its potential 

for analysing longitudinal, real-world clinical data from multiple modalities that are not 

available in fixed orders or time intervals. Our group65 developed a radiomic predictor that 

could classify patients with NSCLC receiving ICIs not only as responders or non-responders 

but also as hyperprogressors. Tunali et al.134 retrospectively developed clinical radiomic 

models based on four clinical features together with radiomic textural features of patients 

receiving single-agent or doublet ICIs in clinical trials. These models successfully identified 

hyperprogressors on cross-validation (with AUCs 0.81–0.84) using only CT scans performed 

before ICI treatment initiation.

Radiogenomic approaches.—Wu et al.135 described three imaging subtypes in breast 

cancer based on the enhancement profile of the tumour and surrounding parenchyma on 

dynamic MRI and explored the association of these subtypes with prognosis and genotype. 

The subtype characterized by prominent enhancement in the TME was associated with 

the poorest 5-year RFS and with increasing dysregulation of certain signalling pathways, 

including those involved in angiogenesis and protein export. In another study136, these 

authors developed a radiomic signature to estimate percentage of stromal TILs in pathology 

samples (ρ= 0.40, 95% CI 0.24–0.54) and evaluated the association of the signature with 

RFS (P = 0.0008) in an external validation data set. This signature enabled stratification 

of patients into two subgroups, which were significantly associated with RFS in patients 

with TNBC (P = 0.04), for whom the presence of TILs is highly prognostic137. Rao et 

al.138 used an unsupervised hierarchical clustering approach to identify novel phenotypes 

defined by multiparametric MRI features in samples from a TCGA glioblastoma collection 

with available microRNA and mRNA expression data. They identified such a phenotype 

using three features that stratified patients into two subgroups with a statistically significant 

difference in OS (P = 0.0002) and differential expression of transcripts involved in several 

immune-related and metabolic pathways. DL models developed using CT139 and PET–CT 

scans140 efficiently predicted EGFR mutational status in patients with NSCLC with AUCs 

of 0.81, for both CT and PET–CT. A radiogenomic approach141 predicted KRAF, NRAS 
and BRAF mutational status in patients with colorectal cancer. Pernicka et al.142 analysed 

radiomic features in pretreatment CT scans from patients with resected stage II–III colon 

cancer to predict microsatellite instability (MSI)-positive status, which is associated with 

a favourable prognosis. They observed increased textural homogeneity in MSI-positive 

tumours relative to MSI-negative tumours (AUC 0.79; specificity 96.9%; sensitivity 92.5%; 

P < 0.05). Finally, Liu et al.143 developed a CT-based radiomic signature to predict the 

expression status of the genes encoding E-cadherin, Ki-67, VEGFR2 and EGFR, in patients 

with gastric cancer.

Bera et al. Page 15

Nat Rev Clin Oncol. Author manuscript; available in PMC 2022 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Challenges and opportunities

Data curation and annotation

Obtaining sufficient data to develop an AI-based model is always a challenge, which is 

especially pronounced when developing predictive and prognostic radiology AI tools. Data 

from retrospectively acquired data sets are often most convenient to aggregate, but raise 

challenges related to data purity for both model training and validation because predefined 

inclusion and exclusion criteria might result in unconscious biases in AI algorithms144. 

For example, a requirement for completion of a treatment regimen might inadvertently 

exclude patients who discontinued that regimen owing to an exceptionally poor response. 

Hence, randomized controlled trials (RCTs) are the gold standard for modelling and 

validating biomarkers. AI-based imaging techniques depend on the signal-to-noise ratio 

of both imaging and outcome data. RCTs provide unbiased and homogeneous data with 

well-curated arms for comparative experimental analysis. Nevertheless, unlike retrospective 

data, accessing these RCT data sets is time consuming and challenging, often requiring 

extensive and lengthy approvals from pharmaceutical companies or cancer collaborative 

organizations.

The difficulty in acquiring unbiased and homogeneous data sets has revealed the importance 

of multi-institutional collaborations in building large data sets for training and validation of 

these techniques. One of these, The Cancer Imaging Archive145, convened by the National 

Cancer Institute (NCI), is a publicly available repository of aggregated and prescreened 

multi-institutional data sets. This initiative has also brought to the forefront the importance 

of cooperative organizations in oncology, which in the USA involves the NCI National 

Clinical Trial Network groups (such as SWOG, ECOG and NRG), and worldwide it involves 

the European Oganization for Research and Treatment of Cancer, the Canadian Cancer 

Trial Group and the Japan Clinical Oncology group, which are responsible for funding and 

running RCTs. These organizations already have a crucial role in biomarker development 

given that data sets from completed cooperative group-led clinical trials can provide enough 

power to validate some radiomic algorithms, enabling prospective evaluation in RCTs. 

Additionally, federated learning techniques146, which are DL AI techniques for training 

models from multi-institutional data sets without actually exchanging data but instead by 

sharing training parameters and weights, might have a role in large-scale validation of 

prognostic AI methods.

Once data are acquired, a key preliminary step in many radiology AI studies is annotation, 

the process of defining the spatial boundaries within which imaging analysis should be 

performed. The level of detail necessary and intensiveness of the annotation effort depend on 

the nature of the study (FiG. 4). Radiomics generally requires precise delineation of tumour 

boundaries or other regions of interest, enabling the computation of measurements specific 

to the tumour, such as shape and heterogeneity. Annotations can be provided manually 

by a radiologist or as the outputs of another ML model, such as a FCN. Either way, this 

step should be handled thoughtfully owing to the high susceptibility of some features to 

variations in spatial delineation147. Alternatively, DL models can be trained effectively 

from coarser labels, such as the approximate location of a tumour in a volume, drastically 
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reducing the effort and expertise required for annotation. With sufficient data, the need for 

spatial localization can even be entirely obviated80.

Standardization and reproducibility

Reproducibility across heterogeneous acquisition protocols, multiple institutions and patient 

populations is one of the primary challenges that AI imaging techniques must overcome 

for clinical deployment. Most radiomic methods have a sharp drop in performance metrics 

from training to independent validation. Lambin et al.148 proposed a quality score indicative 

of the robustness of radiomics studies based on 16 components of the radiomics workflow. 

Park et al.149 performed a meta-analysis of 77 studies, finding a mean radiomic quality 

score of only 26.1% of the maximum and identifying some key areas for improvement. In 

addition to metrics to quantify robustness, several approaches incorporate stability measures 

to build more reproducible radiomic models. For example, our group150 developed a 

radiomic method accounting for both stability and discriminability, and applied it to predict 

disease recurrence in patients with early-stage NSCLC. In three multi-institutional data 

sets, the radiomic model incorporating stability was substantially stronger in predicting 

recurrence than the conventional radiomic model, despite both models having similar 

performance in the training data set. Researchers have also used statistical approaches 

(such as ComBat harmonization)151 to correct for batch effects in reconstruction methods 

(for example, radiomic feature differences caused by the use of multiple different image 

protocols). Orlhac et al.152 used ComBat on ‘phantom images’ on CT scans and found 

that it enabled realignment of radiomic feature distributions from multi-institutional data 

sets using different CT protocols. Only models that are robust and reproducible as well 

as discriminative will find use in clinical practice. For this purpose, multicentre initiatives, 

such as the Quantitative Imaging Network153 and the Image Biomarker Standardization 

Initiative154, have developed standardized and optimized sets of radiomic features for use in 

research.

Interpretability

Interpretability is one of the challenges that AI-enabled biomarkers must overcome to be 

broadly adopted. Hand-crafted radiomic tools can offer some intuitiveness into how an AI 

algorithm makes its decision; for example, vessel tortuosity metrics are attributable to the 

physical and biological properties of the vasculature resulting from tumour angiogenesis. 

Additionally, several of the studies previously discussed herein have focused on explaining 

the biological rationale behind radiomic features through correlation with computational 

pathology features63, radiology–pathology coregistration58 and analysis of biological 

pathways or genomic correlations64,94,131. Nevertheless, major gaps in knowledge regarding 

the biological cause of disease outcomes and treatment responses are areas that clearly need 

additional research.

This problem is further compounded in the context of CNNs or DL networks, which even 

lack the limited interpretability offered by hand-crafted methods and instead, focus solely 

on maximizing performance155. Many of these so-called ‘black-box’ approaches might be 

perfectly viable in the diagnostic setting (for example, AI tools deployed primarily for 
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triaging time-sensitive scans); however, when it comes to AI-enabled imaging biomarkers 

for optimizing treatment, the question of interpretability becomes more paramount because a 

biomarker-driven treatment decision needs an explanation rooted in pathophysiology.

Although researchers are currently trying to develop models to explain black-box 

approaches, an essential caveat is why the original model is needed at all if better models are 

available. For example, these approaches can involve saliency or attention maps integrated 

into the model itself94, indicating the specific area of the image the signal emanates from. 

Such models are trained to localize the prognostic and predictive signal within an image; 

however, the specific information contributing to a prediction within that region cannot 

be readily ascertained and might require additional post hoc biological correlation. Hence, 

some researchers have called for the development of interpretable models from the outset155, 

whereas other investigators contend that performance compared with present gold standard 

should be the most important metric to determine the usability of the imaging biomarker156, 

while others feel that there is a need to go even beyond explainable AI157.

Regulatory framework and reimbursement

The pathway for regulatory approval is a key roadblock in the clinical adoption of imaging-

based AI-enabled prognostic and predictive tools. One of the principles for regulatory 

permission includes the necessary explanation of how the software works. In the USA, the 

FDA is working on simplifying the AI approval mechanisms; in the meantime, AI tools are 

classified as medical devices. The FDA has a three-class system in place to determine the 

risk posed by the device, in which class I devices are those that require the least regulatory 

hurdles before they can be marketed.

AI-based devices tend to be categorized as class II or III. To date, the FDA has not 

approved any imaging AI-based prognostic or predictive tool. Several genomic assays 

(such as MammaPrint, a prognostic multigene assay for breast cancer)158 have received 

FDA approval through the 510(k) pathway for class II devices. These approvals might set 

a precedent for prognostic and predictive AI-enabled imaging biomarkers in oncology to 

be pursued via the less rigorous 510(k) approval process instead of the more restrictive 

premarket approval (PMA) process for class III devices. Akin to the FDA’s tiered device 

classification, European Union regulations involve a four-tiered risk classification system 

(A–D) for medical devices, which includes AI decision-support tools. Only A, the lowest 

tier, does not need oversight from the regulatory body. Similar policies have been adopted 

worldwide to regulate AI-based medical decision-support tools. In an Action Plan published 

in January 2021 (REF.159), the FDA proposed a ‘predetermined change control plan’ 

in premarket submissions for AI tools. This plan will include the types of anticipated 

modification in such submissions and also how they expect algorithms to change in a 

controlled manner that manages risk to patients. The FDA thus expects AI device providers 

to commit to real-world performance monitoring of these tools and to be able to evaluate 

such tools from premarket development to postmarket performance.

In terms of reimbursement, AI tools do not currently have dedicated common procedural 

technology (CPT) codes for billing. In the USA, CPT codes are maintained by the American 
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Medical Association to standardize billing practices across the country. For AI tools to be 

translated into practice, new CPT codes must be created, but the tool needs to be approved 

by the FDA for clinical use beforehand. Opting out of FDA approval and going through 

the Clinical Laboratory Improvement Amendments (CLIA) route, a regulatory pathway 

for lab-based diagnostic tests (including prognostic and predictive genomic assays such as 

Oncotype DX) might be an interesting option160; however, the FDA has put out a statement 

indicating that it might also regulate CLIA tests in the future161.

Conclusions

In this Perspective, we provide an overview of the present and future of AI in radiology 

as a tool to identify new predictive and prognostic biomarkers for use in clinical decision-

making. We believe that this article will provide clinicians with a firm foundation on the 

emerging field of AI-enabled response and outcome prediction. In particular, we hope to 

facilitate an understanding of the tools and practices common in radiology AI, and in 

particular of which clinical scenarios they can be used for. We also expect to contribute 

to a greater interest in the development and adoption of AI-enabled imaging biomarkers. 

Just as the digitization of radiology in the past 50 years completely revolutionized the field 

with increased resolution and wider availability, the next decade is poised for an AI-fuelled 

revolution in radiology — not to replace radiologists, oncologists or clinicians in general, 

but to provide them with a new arsenal of tools to better guide treatment and, ultimately, 

improve patient care.
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A method of analysing model validity without an independent validation set on a limited 

data sample by dividing the training data into subsets for training and assessing the 

performance on the complementary subset of data. Several methods of cross-validation 

include holdout, k-fold or leave-one-out

Elastic net survival model
Type of Cox proportional hazard model that is used to calculate hazard ratios, which are 

a way of evaluating the strength of the association of a variable (for example, survival 

outcomes) with a time point. an elastic net has the added advantage over a standard Cox 

model of adjusting for high dimensional data and covariates that might be correlated with 

each other, while making survival estimations

Grey-level co-occurrence matrix features
Class of commonly used radiomic features, also known as Haralick features, which rely 

on higher-order statistics to describe the spatial arrangement and apparent position of the 

different grey levels present throughout the analysed image

Kurtosis
Statistical measure to indicate the shape of a probability distribution in terms of its 

‘tailedness’. High kurtosis means high deviation from the mean

Laws’ energy measures
Eponymously named after K. I. Laws, this radiomic feature focuses on measuring variations 

of energy within a fixed window size, to calculate a combined texture energy of the pixels 

analysed

Long short-term memory
Type of recurrent neural network that has been supplemented by the addition of recurrent or 

‘forget’ gates, which enables the network to learn by looking back at propagated errors

Skewness
Statistical measure to indicate the apparent distance between the mean and mode of a 

distribution. Skewness = (mean–mode)/standard deviation

Support vector machine
Supervised machine learning model used to classify data by constructing hyperplanes and 

choosing the hyperplane that has the largest separation between the two classes of interest

Tumour-infiltrating lymphocytes
(TILs). Lymphocytes that have invaded the tumour tissue from the bloodstream. in the past 

few years, studies have found TILs to be prognostic of survival and predictive of treatment 

benefit in several solid tumour types, including breast and lung tumours
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Fig. 1 |. Workflow for AI-enabled biomarkers in radiology.
Typical protocol for developing artificial intelligence (AI) radiology biomarkers using 

radiomic and deep learning approaches, and their clinical applications. Both approaches 

can be applied in the context of cancer outcome prediction and biomarker discovery for 

assessment of response to treatment, prognostication and radiogenomics. DICOM, Digital 

Imaging and Communications in Medicine; ML, machine learning; OS, overall survival; 

PFS, progression-free survival; RFS, recurrence-free survival.
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Fig. 2 |. Examples of the types of radiomic feature used in oncology.
a | Grey-level co-occurrence matrix entropy in a metastatic liver lesion detected by CT. b 
| Shape of a glioblastoma detected on gadolinium-enhanced T1-weighted MRI. c | Kinetic 

measure of contrast enhancement over time in breast tissue using contrast-enhanced MRI. 

d | Peritumoural radiomics measuring textural heterogeneity in the lung stroma surrounding 

a non-small-cell carcinoma. e | Shape of breast vasculature and tumour-associated vessel 

network detected using contrast-enhanced MRI. f | Enhanced standardized uptake values on 

2-deoxy-2-18F-fiuoro-D-giucose PET-CT scans showing increased metabolic activity in a 

head and neck carcinoma.
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Fig. 3 |. Building blocks and types of neural network commonly applied to medical imaging data.
a | Example of a convolutional neural network (CNN) model configured for prediction. 

Input images or volumes are passed through the CNN layers, which perform operations 

and translate them into a target output vector. Convolutional layers are sets of operations 

that transform imaging data into deep-feature representations. Each filter is passed over 

the image and paired with a nonlinear activation function to emphasize visual patterns of 

interest for a certain task. As more convolutional layers are stacked, a CNN can learn 

more complex visual patterns within an image. Throughout a CNN classifier, deep features 

are periodically aggregated through pooling operations. After processing by convolutional 

and pooling layers, deep-feature representations are eventually flattened into a vector. 

Next, fully connected layers translate these CNN-derived image features into a vector 

that corresponds to a target output. These models can be applied to the prediction of 

treatment response, prognostication, classification of tumour subtypes and biomarkers, and 

prediction of physiological values. b | Fully convolutional neural networks are a type of 

CNN comprising only convolutional layers that yield image-like outputs, such as a map of a 

tumour’s location. c | Fully connected networks can be trained to make predictions based on 

non-image data, such as radiomic features and clinical variables.
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Fig. 4 |. Different levels of annotation detail in radiomics and deep learning studies.
Defining the region of interest and level of annotation detail in radiomics and deep learning 

studies. TME, tumour microenvironment.
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