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Key Points
� The relative efficacy of each specific sodium-glucose co-transporter 2 inhibitor compared with the other in

affecting electrolytes has rarely assessed in head-to-head trials.
� The study aimed to maximize statistical power to summarize direct and indirect evidence using both pairwise

and network meta-analyses.
� Sodium-glucose co-transporter 2 inhibitors significantly increased serum magnesium and phosphate levels, sup-

porting a class effect of sodium-glucose co-transporter 2 inhibition.

Abstract
Background Previous studies have reported that sodium-glucose co-transporter 2 (SGLT2) inhibitors (SGLT2is)
affect levels of serum electrolytes, especially magnesium. This study aimed to integrate direct and indirect trial
evidence to maximize statistical power to clarify their overall and comparative effects in patients with type 2
diabetes (T2D).

Methods We systematically searched PubMed, EMBASE, CENTRAL, and ClinicalTrials.gov up to January 2021
to identify eligible randomized controlled trials (RCTs) of SGLT2is that reported mean changes in serum
electrolytes, including magnesium, sodium, potassium, phosphate, and calcium. We performed both random-
effects pairwise and network meta-analyses to calculate the weighted mean difference (WMD) and 95%
confidence intervals (CI).

Results In total, we included 25 RCTs involving 28,269 patients with T2D and 6 SGLT2is. Compared with
placebo, SGLT2is were significantly associated with elevations in serummagnesium by 0.07 mmol/L (95% CI,
0.06 to 0.08 mmol/L) and serum phosphate by 0.03 mmol/L (95% CI, 0.02 to 0.04 mmol/L). Our network meta-
analysis showed no evidence of significantly superior efficacy of any specific SGLT2 inhibitor over the others,
although dapagliflozin was associated with a larger increment in serum magnesium (WMD50.16 mmol/L)
compared with other SGLT2is. Similarly, no statistically detectable differences among the effects of SGLT2is on
serum levels of other electrolytes were detected.

Conclusions SGLT2is significantly increased serum magnesium and phosphate levels, consistent with a class
effect of SGLT2 inhibition. However, further investigations of long-term efficacy and safety in patients with T2D
with different clinical phenotypes are needed.
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Introduction
Sodium-glucose cotransporter (SGLT) 2 inhibitors
(SGLT2is) are a novel class of glucose-lowering agents
that are indicated for the treatment of type 2 diabetes
(T2D). SGLT2is selectively inhibit renal glucose reab-
sorption and increase urinary glucose excretion (1).
Besides hypoglycemic effects in patients with T2D,

SGLT2is have been considered an effective treatment
option for renal and cardiovascular protection in dia-
betic patients with CKD (2–4). More recently, dapagli-
flozin was shown to extend its renal-protective effect
to patients without diabetes (5).
SGLT2 is mainly expressed in renal tissue (6) but

not in the human heart (7), where only SGLT1 is
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expressed at low levels. Therefore, the potential benefit of
SGLT2is is likely through the kidney. SGLT2is blocks reab-
sorption of sodium and other electrolytes coupled with
sodium, and although the effects of SGLT2is on electrolyte
balance may play a critical role in improving cardiovascu-
lar and kidney outcomes, those contentions will need to be
confirmed by more evidence.
The mechanisms underlying renal and cardiovascular

protection by SGLT2is remain unresolved. The data on
renal electrolyte handling in individuals with T2D using
SGLT2is are limited. Several previous studies have exam-
ined the head-to-head effects of different SGLT2is in con-
ventional pairwise meta-analyses. Yet, many of these direct
comparison results lacked statistical power to test a
SGLT2is class effect or a specific drug effect on electrolytes
(8). Given the fact that few of comparisons between any
two of SGLT2i have been studied in head-to-head trials,
the relative efficacy of a given SGLT2 inhibitor compared
with others in influencing electrolytes has never been sys-
tematically or quantitatively assessed. The current study
was designed to maximize statistical power to examine
whether and to what extent SGLT2is affect serum electro-
lyte levels in patients with T2D. With accumulating trial
data, we conducted both pairwise and network meta-
analyses to summarize both direct and indirect evidence
on the basis of available data from randomized controlled
trials (RCTs).

Materials and Methods
Search Strategy and Selection of Articles
We searched PubMed, Embase, Cochrane Central Register

of Controlled Trials (CENTRAL), and Clinical Trials.gov up
to January 2021 to identify eligible RCTs using relevant
search terms without restriction of language or year of publi-
cation. We included parallel RCTs of at least 24 weeks’ dura-
tion that compared SGLT2is with placebo in adult patients
with T2D and reported mean postintervention changes in
electrolyte levels from baseline in each group or the data
that allowed us to estimate the mean changes and their var-
iances. Our outcomes included serum levels of magnesium,
phosphate, calcium, sodium, and potassium. Six commonly
prescribed SGLT2is were chosen for study: canagliflozin,
dapagliflozin, empagliflozin, ertugliflozin, ipragliflozin, and
bexagliflozin.

Data Extraction and Quality Assessment
We collected the following information from each eligi-

ble RCT: first author, publication year, study characteristics
(country of origin, design, and funding), patients’ charac-
teristics (inclusion criteria, background treatments, mean
age, race, baseline glycated hemoglobin [HbA1c], mean
eGFR, and body mean index), interventions (type and dose
of SGLT2is), and the mean values (electrolyte level), vari-
ance measure, and the number of participants in the treat-
ment and control arms for all reported periods.
The Cochrane risk-of-bias tool was used to assess the qual-

ity of RCTs on the basis of five domains: random sequence
generation (selection bias), allocation concealment (selection
bias), blinding (performance bias and detection bias), incom-
plete outcome data (attrition bias), and selective reporting

(reporting bias). Three reviewers independently extracted
the data; they were all blinded to the authors and institutions
of the studies undergoing review. Any disagreements were
resolved by consensus or referral to a third reviewer.

Statistical Analyses
For pairwise meta-analyses, we applied the classic DerSi-

monian and Laird’s method using inverse variance weights
to combine the weighted mean difference (WMD) estimates
as reported or derived from the original reports. Heteroge-
neity between studies was assessed by the Cochrane Q
(P value) and I2 statistics. The Q statistic is a chi-squared
test for heterogeneity, and the I2 is the percentage of
observed variance in effect sizes across studies. A value of
0% indicates no observed heterogeneity. Heterogeneity
can be quantified as low, moderate, high, or considerably
high, with ranges of 0%–25%, 25%–50%, 50%–75%, and
75%–100% for I2, respectively.

In the absence of direct comparisons between two treat-
ments, a network meta-analysis can be used to integrate a
network of available evidence to allow for both direct and
indirect comparisons between treatments for a specific out-
come (9,10). For comparative effects of different SGLT2is
on each electrolyte, a network meta-analysis in a frequent-
ist framework using multivariate meta-analysis and meta-
regression was constructed so that the effects of different
SGLT2is on the same electrolyte were compared indirectly.
The network meta-analysis was performed with STATA
v16.1 (StataCorp, College Station, TX) using the “mvmeta”
command and programmed STATA routines (9,10). To
rank the SGLT2is for a specified outcome, we estimated the
relative ranking probabilities of each treatment using sur-
face under the cumulative ranking curve (SUCRA) proba-
bilities and mean ranks. Higher SUCRA probability and
lower mean rank indicate a larger intervention (11). The
heterogeneity variance (t) estimated by a restricted maxi-
mum likelihood method was used to quantify between-
study heterogeneity for each outcome (12). In addition, a
comparison-adjusted funnel plot was used to assess small-
study effects within a network of interventions, with sym-
metry around the summary effect line indicating the
absence of small-study effects (13). The result revealed no
small-study effects, which indicated the absence of any
over- or underestimate of the effect of SGLT2is.

All analyses were conducted using STATA/SE v16.1 for
Windows (StataCorp). P values are based on two-sided
hypothesis tests. A P value of ,0.05 was considered statis-
tically significant.

Results
Of the 5429 articles identified from electronic databases

up to January 2021, after titles and abstracts were screened
and duplicate studies were removed, 330 full-text articles
were reviewed for further assessment. Twenty-five trials
comparing SGLT2is with placebo met inclusion criteria and
were included in the meta-analysis (Figure 1), encompass-
ing a total of 28,269 participants with T2D (Table 1).

Baseline characteristics of the included trials are shown
in Table 1. All trials enrolled participants with T2DM and
compared SGLT2is with their respective placebo groups.

478 KIDNEY360



Overall, six different SGLT2is were studied; there were five
trials of 11,936 (42%) participants for canagliflozin, four tri-
als of 1530 (5%) participants for dapagliflozin, 10 trials of
12,518 (44%) participants for empagliflozin, three trials of
1588 (6%) participants for ertugliflozin, two trials of 313
(1%) participants for ipragliflozin, and one trial of 384 par-
ticipants for bexagliflozin. The mean age of participants
was 58 years, and the median trial duration was 58.7
weeks.

Risk-of-Bias Assessment
The overall risk of bias is presented in Supplemental

Figure 1. The generation of random numbers was well per-
formed in most trials. One open-label trial was assessed as
having a high risk of performance bias for blinding of par-
ticipants and personnel. Because electrolyte levels were
measured in the lab (which is seldom influenced by out-
come evaluators), the domain of blinding of outcome
assessment was assessed as low risk. The risk of selective
reporting (reporting bias) for all trials was considered low
due to electrolyte outcomes reported in these trials.

Direct Head-to-Head Evidence from Pairwise
Meta-Analysis
Despite significant between-trial heterogeneity (I2594%),

most trials (except two) showed significantly elevated mag-
nesium levels among patients using SGLT2is (Figure 2A).

Overall, SGLT2is were significantly associated with increases
in magnesium of 0.07 mmol/L (95% confidence interval [CI],
0.06 to 0.08 mmol/L).
For serum phosphate levels, nearly half the trials (n511)

showed a significant increase in phosphate among partici-
pants using SGLT2is, while the others (n515) showed no
effect or nonsignificant increments (Figure 2B). Overall,
there is a statistical trend toward phosphate levels being
elevated by SGLT2is (WMD50.03 mmol/L; 95% CI, 0.02 to
0.04 mmol/L), although heterogeneity was significant
(I2587%).
Of 19 trials with calcium data, only three showed a sig-

nificant association with increased calcium, all of which
used empagliflozin (Supplemental Figure 2A). Obviously,
the final meta-analysis result was heavily weighted by the
two trials that contributed to 67% of the weight. Overall,
the SGLT2is were significantly associated with elevated lev-
els of calcium by 0.01 mmol/L (95% CI, 0 to 0.01 mmol/L),
but the result was not significant after removing these
two trials.
In contrast, the pairwise meta-analysis results did not

show significant effects of SGLT2is on serum levels of
potassium (WMD50; 95% CI, –0.02 to 0.02) or sodium
(WMD50.16; 95% CI, –0.02 to 0.35; Supplemental Figure 2,
B and C). Compared with serum magnesium, phosphate,
and calcium, the trials of serum sodium and potassium
showed more heterogenous results in terms of the associa-
tion direction and magnitude and statistical significance.

Comparative Evidence from Network Meta-Analysis
Figure 3A shows the network diagrams of direct compar-

ison of specific classes of SGLT2is for magnesium levels
reflected by the solid lines, the number of studies by
the size of the nodes, and the number of patients by the
thickness of the lines. In total, there were 25 direct compari-
sons between five different SGLT2is and their respective
placebo/control groups. Empagliflozin compared with pla-
cebo/control had the highest number of trials (n512), with
the largest contribution in the estimation to the entire net-
work for response in magnesium levels.
We found a significant increase in serum magnesium

among those taking canagliflozin (WMD50.08; 95% CI,
0.02 to 0.13), dapagliflozin (WMD50.16; 95% CI, 0.09 to
0.23), and empagliflozin (WMD50.06; 95% CI, 0.03 to 0.1)
compared with those taking placebo (Figure 3B). There
were similar increasing trends among those taking either
ertugliflozin or ipragliflozin, although statistical signifi-
cance was not reached due to low power. Overall, there
was no significant difference between these SGLT2is,
although the use of dapagliflozin appeared to have a larger
effect than canagliflozin.
Similarly, there is available information on 25 pairwise

comparisons of five SGLT2is for serum phosphate levels
(Figure 4A). The comparison with the highest number of
included studies was empagliflozin (n513). Some SGLT2is
were significantly associated with elevations in serum
phosphate (Figure 4B). Compared with placebo, dapagliflo-
zin (WMD50.04; 95% CI, 0.01 to 0.07) and empagliflozin
(WMD50.02; 95% CI, 0 to 0.03) were significantly associ-
ated with a trend toward increases in serum phosphate lev-
els. There were similar small increases in phosphate among

• Citations excluded for duplication
 (n=786)
• Citations excluded after title and
 abstract evaluation (n=4,313) 

Randomized controlled trials 
published up to January 2021 
(n=5,429): PubMed (n=948);
CENTRAL (n=1,942); and
EMbsase (n=2,539)   

Full text articles of potentially eligible trials
were retrieved for further evaluation (n=330)

Trials included in the meta-analysis (n=25)

Full-text studies excluded, with
reasons (n=304) 

• Conference abstracts (n=125)
• Patients with type 1 diabetes (n=16)
• No reporting the changes of 
 electrolytes levels (n=75)
• Inappropriate control group (n=1)
• Duplications with the same samples 
 (n=51)
• Follow-up periods of less than 24 
 weeks (n=37)

Identification
S

creening
E

ligibility
Included

Figure 1. | Flow chart of the identification of eligible trials.
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Table 1. Characteristics of included studies

First Author
(Year) NCT SGLT2i Control

Sample
Size (n)

Background
Therapy

Mean
Age

(Years)
Race

(Primary)

Mean
HbA1c
(%)

Mean BMI
(kg/m2)

Mean eGFR
(ml/min

per 1.73 m2)
Follow-up
(Weeks)

Yale (2014) (45) NCT01064414 CANA PLA 269 SU or INS 68.5 White 8 33 39.4 52
Wilding (2013) (46) NCT01106625 CANA PLA 469 MET1SU 56.8 White 8.1 33.1 NR 52
Bode (2015) (47) NCT01106651 CANA PLA 714 OAD 63.6 White 7.7 31.6 77.5 104
Forst (2014) (48) NCT01106690 CANA PLA 342 MET1PIOG 57.4 White 7.9 32.5 86.4 26
Zhou (2019) (49) NCT01032629,

NCT01989754
CANA PLA 10142 Standard care 63.3 White 8.3 32 76.5 130

Ferrannini (2010) (50) NCT00528372 DAPA PLA 274 Na€ıve treatment 52.2 White 7.9 32.6 NR 24
Wilding (2012) (51) NCT00673231 DAPA PLA 800 INS6OAD 59.3 White 8.5 33.1 NR 48
Bolinder (2014) (52) NCT00855166 DAPA PLA 182 MET 60.7 White 7.2 31.9 84.3 102
Bailey (2015) (53) NCT00528372 DAPA PLA 274 MET 56.5 White 8 NR 85.9 102
Roden (2013) (54) NCT01177813 EMPA PLA AND SIT 899 Na€ıve treatment 55 Asian 7.9 28.4 87.4 76
Barnett (2014) (55) NCT01164501 EMPA PLA 741 OAD 63.9 White 8 30.7 53.2 52
H€aring (2014) (56) NCT01159600 EMPA PLA 638 MET 55.7 White 7.9 29.2 89 24
Haering (2015) (57) NCT01159600 EMPA PLA 666 MET1SU 57.1 Asian 8.1 28.2 87.2 76
Kovacs (2014) (58) NCT01210001 EMPA PLA 498 PIOG6MET 54.5 Asian 8.1 29.2 85.7 24
Rosenstock (2014) (59) NCT01306214 EMPA PLA 563 INS 56.7 White 8.3 34.8 84 52
Lewin (2015) (60) NCT01422876 EMPA6LINA LINA 667 MET 54.6 White 8 31.6 88.9 52
Rosenstock (2015) (61) NCT01011868 EMPA PLA 494 INS6OAD 58.8 White 8.2 32.2 84 78
Søfteland (2017) (62) NCT01734785 EMPA PLA 332 MET1LINA 55.2 White 7.97 30.2 92.3 24
Aronson (2018) (63) NCT01958671 ERTU PLA 461 Na€ıve treatment 56.4 NR 8.2 33 87.7 52
Rosenstock (2018) (64) NCT02033889 ERTU PLA 621 MET 56.6 White 8.1 30.9 90.5 26
Ji (2019) (65) NCT02630706 ERTU PLA 506 MET 56.5 Asian 8.1 26 99.3 26
Lu (2016) (66) NCT01505426 IPRA PLA 170 MET 53 Asian 7.7 26.8 149.3 24
Han (2018) (67) NCT02452632 IPRA PLA 143 MET_SITA 57.5 Asian 7.9 25.8 90 24
Halvorsen (2019) (68) NCT03115112 BEXA sitagliptin 384 MET 59.4 White 8 31.7 NR 24
Zinman (2015) (69) NCT01131676 EMPA PLA 7020 Standard care 63.2 White 8.1 30.6 74 160

NR, not reported; BMI, body mass index; EMPA, empagliflozin; ERTU, ertugliflozin; DAPA, dapagliflozin; CANA, canagliflozin; BEXA, bexagliflozin; PLA, placebo; MET, metformin;
SIT, sitagliptin; SAXA, saxagliptin; LINA, linagliptin; SU, sulfonylureas; OAD, oral antidiabetic drugs; INS, insulin. PIOG, pioglitazone; IPRA, ipragliflozin.
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Overall, DL (I2 = 93.5%, p = 0.000)
Zhou 2019 
Ji 2019
Halvorsen 2019
Rosenstock 2018
Han 2018
Aronson 2018
Søfteland 2017
Lu 2016
Zinman 2015
Lewin 2015
Haering 2015
Bode 2015
Bailey 2015
Yale 2014
Rosenstock 2014
Kovacs 2014
Haring 2014
Forst T 2014
Bolinder 2014
Barnett (2014) ckd4
Barnett (2014) ckd3
Barnett (2014) ckd2
Wilding 2013
Roden 2013
Wilding 2012
Feraninni 2010

Study

0.07 (0.06, 0.08)
0.05 (0.05, 0.05)
0.05 (0.04, 0.06)
0.06 (0.05, 0.07)
0.06 (0.05, 0.07)
0.05 (0.03, 0.07)
0.08 (0.06, 0.10)
0.10 (0.08, 0.12)
0.05 (0.03, 0.07)
0.05 (0.04, 0.06)
0.10 (0.08, 0.12)
0.00 (–0.02, 0.02)
0.08 (0.07, 0.09)
0.04 (–0.02, 0.10)
0.09 (0.06, 0.12)
0.10 (0.08, 0.12)
0.05 (0.03, 0.07)
0.05 (0.03, 0.07)
0.08 (0.06, 0.10)
0.06 (0.04, 0.08)
0.10 (0.05, 0.15)
0.10 (0.08, 0.12)
0.05 (0.02, 0.08)
0.08 (0.06, 0.10)
0.02 (0.00, 0.04)
0.14 (0.11, 0.17)
0.41 (0.36, 0.46)

WMD (95% CI)

100.00
4.68
4.53
4.38
4.37
3.78
4.25
3.82
3.94
4.65
3.87
4.23
4.34
2.01
3.67
3.79
4.03
4.18
3.98
4.18
2.04
3.91
3.66
4.21
4.18
3.19
2.14

Weight
%

–.
05

–.
02

5 0 .05 .2 .5

A

B

Overall, DL (I2 = 87.1%, p = 0.000)
Zhou 2019 
Ji 2019 
Halvorsen 2019 
Rosenstock 2018 
Han 2018 
Aronson 2018
Søfteland 2017 
Lu 2016
Zinman 2015
Rosenstock 2015
Lewin 2015 
Haering 2015
Bailey 2015 
Yale 2014 
Rosenstock 2014
Kovacs 2014 
Haring 2014 
Forst T 2014  
Bolinder 2014 
Barnett (2014) ckd4 
Barnett (2014) ckd3
Barnett (2014) ckd2
Wilding 2013
Roden 2013
Wilding 2012 
Feraninni 2010 

Study 

0.03 (0.02, 0.04)
0.00 (–0.01, 0.01)
0.02 (–0.01, 0.05)
0.08 (0.05, 0.11)
0.07 (0.04, 0.10)
0.05 (–0.01, 0.11)
0.04 (0.00, 0.08)
0.00 (–0.02, 0.02)
0.04 (–0.01, 0.09)
0.03 (0.02, 0.04)
0.00 (–0.02, 0.02)
0.00 (–0.02, 0.02)
0.00 (–0.02, 0.02)
0.02 (–0.04, 0.08)
0.05 (–0.01, 0.11)
0.10 (0.04, 0.16)
0.00 (–0.02, 0.02)
0.00 (–0.02, 0.02)
0.07 (0.03, 0.11)
0.08 (0.03, 0.13)
0.10 (0.05, 0.15)
0.00 (–0.02, 0.02)
0.00 (–0.03, 0.03)
–0.02 (–0.06, 0.02)
0.02 (0.00, 0.04)
0.03 (0.00, 0.06)
0.04 (0.03, 0.05)

WMD (95% CI)

100.00
5.87
3.93
3.85
4.04
1.96
3.15
4.52
2.47
5.92
4.62
4.60
5.19
1.76
1.99
1.98
4.85
5.10
2.91
2.55
2.09
4.67
4.27
2.75
5.11
3.92
5.91

Weight
%

–.1 –.05 0 .05 .2

Figure 2. | Pairwise meta-analyses of the effects of sodium-glucose cotransporter (SGLT) 2 inhibitors (SGLT2is) on magnesium and phos-
phate. (A) Blood magnesium levels (mmol/L) and (B) blood phosphate levels (mmol/L). Each square indicates the WMD in each trial. The horizontal
line represents the 95% CI. The pooled WMD and 95% CI is indicated by the dashed line and diamond. The black vertical line represents the
null hypothesis. Heterogeneity between studies was assessed by the I2 statistics and Cochrane Q (P value). WMD, weighted mean difference; CI,
confidence interval.
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those taking canagliflozin (WMD50.02; 95% CI, –0.01 to
0.05), ertugliflozin (WMD50.03; 95% CI, –0.01 to 0.07), and
ipragliflozin (WMD50.04; 95% CI, –0.01 to 0.09) but with-
out statistical significance. There was no significant differ-
ence between any SGLT2is.
Levels of serum sodium were significantly higher among

patients taking empagliflozin compared with those taking

placebo (WMD50.28; 95% CI, 0.06 to 0.49; Supplemental
Figure 3). There was a modest increase in sodium among
patients with ertugliflozin, and decreases with both canagli-
flozin and dapaliflozin, but without statistical significance.
The overall effect of SGLT2is on serum sodium levels was
not statistically significant. Again, there was no significant
difference between any SGLT2is.

A

Placebo/Controls

CanagliflozinDapagliflozin

Empagliflozin

Ertugliflozin Ipragliflozin

n=4 n=5

n=12

n=2
n=2

B Treatment Comparison WMD (95%CI) 

Canagliflozin          vs Placebo
Dapagliflozin
Empagliflozin
Ertugliflozin
Ipragliflozin

Dapagliflozin          vs Canagliflozin
Empagliflozin
Ertugliflozin
Ipragliflozin

Empagliflozin          vs Dapagliflozin
Ertugliflozin
Ipragliflozin

Ertugliflozin          vs Empagliflozin
Ipragliflozin

Ipragliflozin          vs Ertugliflozin

0.08 (0.02,0.13)
0.16 (0.09,0.23)
0.06 (0.03,0.10)
0.06 (–0.02,0.15)
0.05 (–0.04,0.14)

0.08 (0.00,0.17)
–0.01 (–0.08,0.06)
–0.01 (–0.12,0.09)
–0.03 (–0.13,0.08)

–0.09 (–0.17,–0.02)
–0.09 (–0.21,0.02)
–0.11 (–0.22,0.00)

0.00 (–0.10,0.10)
–0.01 (–0.11,0.08)

–0.01 (–0.14,0.11)

–.2 –.1 0 .1 .2

Figure 3. | Network meta-analysis results of the effect of SGLT2is on blood magnesium levels. (A) Network of eligible comparisons for the
multiple-SGLT2is meta-analysis for effects on blood magnesium levels. Each node represents one treatment. The directly compared treatments
are linked with a solid line; the width of the lines is proportional to the number of randomized participants (sample size), and the size of
every node is proportional to the number of trials comparing every pair of treatments. (B) Network meta-analysis combining direct and indi-
rect evidence within a network of eligible trials for the effects of SGLT2is on blood magnesium levels (mmol/L). The black solid lines repre-
sent the confidence intervals for WMD of blood magnesium levels for each comparison, and the blue line is the line of no effect (WMD50).

Dapagliflozin Canagliflozin

Empagliflozin

Ertugliflozin Ipragliflozin

Placebo/Controlsn=13

n=2

n=4
n=4

n=2

WMD (95%CI)Treatment ComparisonA B

Canagliflozin          vs Placebo
Dapagliflozin
Empagliflozin
Ertugliflozin
Ipragliflozin

Dapagliflozin          vs Canagliflozin
Empagliflozin
Ertugliflozin
Ipragliflozin

Empagliflozin          vs Dapagliflozin
Ertugliflozin
Ipragliflozin

Ertugliflozin          vs Empagliflozin
Ipragliflozin
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Figure 4. | Network meta-analysis results of the effect of SGLT2is on blood phosphate levels. (A) Network of eligible comparisons for the
multiple-SGLT2is meta-analysis for effects on blood phosphate levels. Each node represents one treatment. The directly compared treat-
ments are linked with a solid line; the width of the lines is proportional to the number of randomized participants (sample size), and the
size of every node is proportional to the number of trials comparing every pair of treatments. (B) Network meta-analysis combining direct
and indirect evidence within a network of eligible trials for the effects of SGLT2is on blood phosphate levels (mmol/L). The black solid
lines represent the CIs for WMD of blood magnesium levels for each comparison, and the blue line is the line of no effect (WMD50).
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There were no significant differences in serum potassium
levels; small increases in serum calcium levels were not
clinically meaningful (Supplemental Figures 4 and 5).

Discussion
In this large meta-analysis of 25 RCTs involving 28,269

patients with T2D and six different SGLT2is, we found that
SGLT2is significantly increased serum magnesium and
phosphate levels, consistent with a class effect of SGLT2
inhibition. In contrast, there was no statistical evidence of
differences in serum levels of other electrolytes produced
by SGLT2is or specific SGLT2 inhibitor drugs.
Our results from both network and pairwise meta-

analysis showed consistent evidence that SGLT2is signifi-
cantly increase serum magnesium, further supporting our
previous meta-analysis of available results from earlier trials
(8). Collectively, previous trials documented the effect of
SGLT2is on increasing serum magnesium. One post hoc anal-
ysis of 10 clinical trials showed that dapagliflozin corrected
low magnesium in patients with T2D (14). Another report
showed that three different SGLT2is relieved refractory
hypomagnesemia in three patients, likely by blocking uri-
nary magnesium wasting (15). SLGT2is also appeared to cor-
rect hypomagnesemia in patients with kidney transplant on
tacrolimus (16). This treatment might also provide a benefit
to kidney transplant recipients who experience chronic
hypomagnesemia and improve renal- and cardiovascular-
related outcomes. In addition, correcting hypomagnesemia
may help glycemic control in diabetes but not vice versa (17).
The mechanism underlying the renal benefit of SGLT2is

is likely to be independent of glucose levels and may possi-
bly stem from a reduction in intraglomerular pressure (18)
and other possible mechanisms presently being studied
(19). SGLT2is can normalize proximal reabsorption via
tubular glomerular feedback, which should have particular
effects on glomerular hemodynamics, eliminate diabetic
hyperfiltration, and improve hard renal end points (20,21).
Regulation of magnesium transport in the kidney occurs

primarily in the thick ascending limb and distal convoluted
tubules (22). In the thick ascending limb, both magnesium
and calcium can activate the calcium-sensing receptor on
the basolateral membrane and modulate paracellular mag-
nesium transport (23). Other factors control magnesium
transport through changes in the voltage and/or permeabil-
ity of the paracellular pathway. SGLT inhibitors increased
delivery of Na to the loop of Henle, which may increase
magnesium absorption (24).
Serum magnesium levels are usually relatively stable,

within a narrow range of 0.7–1 mmol/L in healthy adults. It
is possible that even very small changes in serum magne-
sium levels are associated with an increased risk of renal
and cardiovascular outcomes. In a meta-analysis of 48 ran-
domized trials using oral magnesium supplements, an ele-
vation in circulating magnesium of 0.05 mmol/L was
observed in response to a wide range of doses of oral mag-
nesium supplementation (25). Our study showed that
SGLT2is produced 0.07 mmol/L increases in magnesium
levels, which seems a minimal increment but is actually clin-
ically meaningful. In 2016, an analysis of the prospective,
population-based Rotterdam Study showed an inverse

association between serum magnesium levels and mortality;
a 0.1 mmol/L (0.24 mg/dl) increment of this ion was associ-
ated with 18% reduction in risk of coronary heart disease
after 8.7 years follow-up (hazard ratio50.82; 95% CI, 0.7
to 0.96) (26). The clinical significance of minimal change
was also evident in a prospective study of 3525 British
participants, which showed an inverse association between
serum magnesium level and risk of incident heart failure.
Lower magnesium levels were associated with impaired
glycemic control, hypertension, and vascular calcification
(27). Vice versa, higher magnesium levels can be beneficial
for cardiovascular health, such as improvement of cellular
respiration and cardiac output, and reduction in myocardial
fibrosis (28).
We showed in a previous meta-analysis that blood

phosphate was elevated in patients taking dapafliglozin
(8). The current report, which includes more trial data and
incorporates both direct and indirect evidence, shows sim-
ilar results of SGLT2is on phosphate. The mechanism of
phosphate elevation by SGLT2is is likely via the stimula-
tion of renal proximal tubular reabsorption of phosphate
through type 2 sodium-phosphate cotransporters (29,30).
A small pharmacodynamic study showed that canagliflo-
zin induced a prompt increase in serum phosphate, which
triggered downstream changes in FGF23, 1,25-dihydroxy-
vitamin D, and parathyroid hormone in healthy volun-
teers (30). Decreases in 1,25-dihydroxyvitamin D levels
with or without elevated parathyroid hormone were used
to explain the possible risk of bone fracture associated
with SGLT2is, but longer-term observation and additional
data showed no evidence of increased risk of fracture
(31,32). For individuals at high risk of fracture, phospho-
rus, calcium, and 25-dihydroxvitamin D levels should be
monitored regularly, and a DEXA bone-density scan
should also be performed regularly. Increased FGF23 lev-
els may be an independent risk factor for cardiovascular
outcomes (33), but most SGLT2is trials with potentially
elevated FGF23 have shown improvements in cardiovas-
cular outcomes. The discrepancy is likely due to the brev-
ity of the pharmacodynamic study; FGF23 levels did not
seem elevated after 24 weeks, even though phosphate was
slightly higher. There is evidence of elevated cardiovascu-
lar mortality risk in patients with hyperphosphatemia
(34–36). However, the balance between magnesium and
phosphate may be more important for cardiovascular
health and deserves further investigation (37).
SGLT2is rarely cause hypercalcemia. Our finding of

increased calcium levels is mainly driven by two studies.
A case report of a patient having hypercalcemia and diag-
nosed with primary hyperparathyroidism after dapagliflo-
zin treatment is alarming (38). However, since primary
hyperparathyroidism is a common condition, it remains
unclear whether it could be caused by SGLT2is.
Our study showed no significant effect of SGLT2is on

blood sodium or potassium levels, and the effects were
similar across SGLT2is. These findings are consistent with
previous reports on SGLT2is on blood sodium and potas-
sium (39–42). Normally, kidneys reabsorb .99% of filtered
sodium, with 4%–5% of filtered sodium acting as cotrans-
porter of glucose through SGLT2. SGLT2 expression is
increased in diabetes, contributing to a higher rate of
glucose and sodium reabsorption. Inhibition of SGLT2
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decreases reabsorption of sodium and glucose and leads to
natriuresis and glycosuria. A randomized trial showed that
empagliflozin led to a larger increase in blood sodium com-
pared with placebo in treatment of hyponatremia due to
the syndrome of inappropriate antidiuresis (43,44). How-
ever, the effect of empagliflozin on blood sodium levels
was largely dependent on the severity of baseline hypona-
tremia, and the main difference between empagliflozin and
placebo was severe hyponatremia, with blood sodium level
,125 mmol/L. There were no clinically meaningful effects
of SGLT2is on blood potassium level observed in prior tri-
als of canagliflozin (42), dapagliflozin (40), or empagliflozin
(44). Patients with diabetes were more likely to have hyper-
kalemia, especially when they also had reduced kidney
function. Dapagliflozin was approved for patients with
CKD without diabetes to slow down the progression of
kidney disease on the basis of the lack of evidence of signif-
icant hyperkalemia in the SGLT2is arm of that trial (5).
Although our meta-analysis included a large number of

available SGLT2is trials with electrolyte data, some limita-
tions deserve consideration. First, many patients with T2D
may also have hypertension. It is possible that they were
more likely to be taking ACEI/ARB and diuretics, which
could affect serum electrolytes. Due to randomized trial
design, the percentage of such patients would likely be
similar between treatment and control groups. Thus, inclu-
sion of hypertensive patients would not invalidate the com-
parison but might have attenuated the precision of genuine
effect estimates. Our analysis does not stratify the data on
those medications. Second, although the effect of SGLT2is
on magnesium may vary depending on different baseline
magnesium status, most of the clinical trials included in the
study do not have clear information on magnesium insuffi-
ciency/deficiency. Finally, because most of the trials did
not recruit patients with impaired kidney function, the
results are not to be generalized to patients with CKD.
In conclusion, our meta-analysis of randomized trial data

showed that SGLT2is significantly increased serum magne-
sium and phosphate levels, representing a class effect of
SGLT2 inhibition. These results call for long-term examina-
tion of efficacy and safety in patients with T2D with differ-
ent clinical phenotypes in RCTs and real-world settings.
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