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Abstract
The role of aldosterone in regulating K1 excretion in the distal nephron is well established in kidney
physiology. In addition to effects on the kidney, aldosterone modulates K1 and Na1 transport in salivary
fluid, sweat, airway epithelia, and colonic fluid. More controversial and less well defined is the role of
aldosterone in determining the internal distribution of K1 across cell membranes in nontransporting
epithelia. In vivo studies have been limited by the difficulty in accurately measuring overall K1 balance and
factoring in both variability and secondary changes in acid-base balance, systemic hemodynamics, and other
K1-regulatory factors such as hormones and adrenergic activity. Despite these limitations, the aggregate data
support a contributory role of aldosterone along with insulin and catecholamines in the normal physiologic
regulation of internal K1 distribution. The authors speculate differences in tissue sensitivity to aldosterone
may also contribute to differential tissue response of cardiac and skeletal muscle to conditions of total body
K1 depletion.
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Introduction
The plasma potassium (K1) concentration is main-
tained within a narrow range after ingestion of a K1

load. This near constancy of plasma K1 is somewhat
surprising because K1 is quickly absorbed by the gas-
trointestinal tract but the kidney excretes only one
half of the load during the first 4–6 hours after inges-
tion. The ability to maintain normokalemia in this
situation is due to several factors that dictate the dis-
tribution between the extracellular and intracellular
compartments. These factors act to shift K1 into the
cell to allow enough time for the kidney to reestablish
total body K1 content. Were it not for these factors,
ingestion of a typical meal could potentially double
the extracellular K1 concentration, producing life-
threatening hyperkalemia because only 2% of total
body K1 (55–65 mEq) is found in the extracellular
compartment. The degree to which plasma K1

increases after a meal is dependent on the makeup of
the diet, the magnitude of decreased kidney function,
and the presence or absence of drugs that block the
renin-angiotensin system (1). This review will focus
on the normal physiologic factors that influence distri-
bution of K1 across the cell. The role of insulin and
catecholamines in regulating the internal distribution
of K1 will be briefly discussed because these two fac-
tors play an important role in day-to-day physiology
of K1 homeostasis. A more extensive review of the lit-
erature will focus on the role played by aldosterone in
maintaining the internal distribution of K1. The role
of pathologic conditions that alter K1 distribution
across the cell such as acid base disorders and changes

in tonicity have been reviewed elsewhere and there-
fore will not be addressed (2,3).

Insulin
Postprandial release of insulin not only regulates the

plasma glucose concentration, but also functions to
shift dietary K1 into cells (primarily skeletal muscle),
providing a defense against hyperkalemia because
adjustments in kidney K1 excretion occur over several
hours. After binding to cell surface receptors, insulin
stimulates glucose uptake in responsive tissues through
insertion of the glucose transporter protein GLUT4 (4).
Activation of the receptor leads to increased cellular
K1 uptake by increasing the activity of the Na1-K1-
ATPase pump. Increased pump activity is the result of
translocation of the protein from intracellular stores to
the cell membrane and increased cell Na1 concentra-
tion resulting from stimulation of Na1/H1 exchanger
(5) (Figure 1). In patients with metabolic syndrome,
insulin resistance, or CKD, insulin-mediated glucose
uptake is impaired, but cellular K1 uptake remains
normal, demonstrative of divergent intracellular path-
ways regulating insulin-mediated glucose and K1

uptake after receptor binding (6).
Insulin levels increase two- to three-fold when infu-

sion of KCl raises the plasma K1 concentration by at
least 1–1.5 mEq/L, leading to increased cellular uptake
and correction of hyperkalemia (7,8). When basal levels
of insulin are first reduced with infusion of somato-
statin, modest K1 loads produce hyperkalemia that can
be prevented when insulin levels are restored to
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normal, suggesting even basal levels are essential to the
maintenance of normal K1 homeostasis (9). Insulin-
stimulated cellular K1 uptake is initially predominant in the
liver and subsequently in skeletal muscle followed by adi-
pose tissue (10) (Figure 2). Insulin is clinically utilized as a
first-line therapy for emergent treatment of hyperkalemia,
given the potency to shift K1 into cells.

Catecholamines
Catecholamines play an important role in the regulation

of internal K1 distribution, with a-adrenergic receptors
impairing and b-adrenergic receptors promoting cellular
entry of K1. These effects importantly regulate the cellular
release of K1 during exercise (11). With vigorous exercise,
K1 is released from the intracellular space and accumulates
in the interstitial compartment, reaching concentrations as
high as 10–12 mM. Interstitial K1 accumulation elicits rapid
vasodilation, allowing blood flow to perfuse exercising
muscle (12). Accumulation of K1 is also a factor limiting
the excitability and contractile force of muscle, accounting
for the development of fatigue (13,14). Although the mech-
anism is likely to be multifactorial, total-body K1 depletion
blunts the accumulation of K1 into the interstitial space,
limiting blood flow to skeletal muscle and accounting for
the association of hypokalemia with rhabdomyolysis.

The activation of autonomic nerves and increases in cir-
culating catecholamines acting through b2 adrenergic
receptors limit the rise in extracellular K1 concentration
during exercise. b2-Receptor stimulation leads to genera-
tion of cyclic AMP and subsequent activation of the Na1-
K1-ATPase pump, resulting in Na1 efflux and K1 influx
(15) (Figure 1). This pathway is independent of insulin and
explains the additive effect of insulin and epinephrine to
shift K1 into cells. After cessation of exercise, a-stimulation
promotes K1 exit from the cell minimizing development of
hypokalemia due to persistent b2-receptor stimulation
from residual circulating catecholamines. These effects
explain observations that propranolol exacerbates and
prolongs the increase in K1 during exercise, whereas
a-blockade with phentolamine lowers the K1 level during
recovery. Increased afferent nerve activity originating in
the diseased kidney of patients with ESKD contributes to
increased sympathetic outflow and can exacerbate exercise
and fasting-related hyperkalemia due to a-adrenergic
receptor stimulation (16).

Aldosterone
Aldosterone is the major mineralocorticoid in humans

and plays an important role in regulating kidney K1 secre-
tion in the distal nephron (17–19). First, aldosterone
increases intracellular K1 concentrations by stimulating the
activity of the Na1-K1 ATPase in the basolateral mem-
brane. Second, aldosterone stimulates Na1 reabsorption
across the luminal membrane, which increases the electro-
negativity of the lumen, thereby increasing the electrical
gradient favoring K1 secretion. Lastly, aldosterone has a
direct effect on the luminal membrane to increase K1 per-
meability (Figure 2).

Aldosterone is a steroid hormone that diffuses into cells
of the distal nephron and binds to the mineralocorticoid
receptor, a member of the nuclear hormone receptor family
nuclear receptor subfamily 3 group C member 2. This
interaction results in signal transduction affecting gene
expression in the nucleus and transcription of proteins that
stimulate reabsorption of Na1 and excretion of K1.
Whereas the receptor has equal affinity for cortisol and
aldosterone, the enzyme 11-b-hydroxysteroid dehydroge-
nase type 2 inactivates cortisol to inert cortisone, keeping
the receptor free to interact only with aldosterone.

Effects of Aldosterone on K1 Handling in Extrarenal
Transporting Epithelia

In addition to its role in regulating salt and water trans-
port in the kidney, aldosterone influences electrolyte
transport in extrarenal tissues. In this regard, the mineralo-
corticoid receptor is found in numerous transporting epi-
thelia, including the salivary gland, sweat gland, airway
epithelia, and distal colon (Table 1). Administration of
aldosterone to normal subjects lowers Na1 and increases
K1 concentration in saliva (20). A similar but delayed effect
also occurs in sweat (21). Disease states in which there is
either a pathologic deficiency or excess of aldosterone alter
Na1 and K1 concentration in saliva consistent with the
changes reported in normal subjects given aldosterone. For
example, the salivary Na1/K1 ratio is increased in patients
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Figure 1. | Cell model illustrating b2-adrenergic and insulin-
mediated regulatory pathways for K1 uptake in skeletal muscle.
b2-Adrenergic stimulation and insulin both lead to K1 uptake by
stimulating the activity of the Na1-K1-ATPase pump primarily in
skeletal muscle, but they do so through different signaling path-
ways. b2-Adrenergic stimulation leads to increased pump activity
through a cAMP- and protein kinase A–dependent pathway. Insulin
binding to its receptor leads to phosphorylation of the insulin
receptor substrate protein (IRS-1), which in turns binds to phospha-
tidylinositide 3-kinase (PI3-K). The IRS/1-PI3-K interaction leads to
activation of 3-phosphoinositide dependent protein kinase-1. The
stimulatory effect of insulin on glucose uptake and K1 uptake
diverge at this point. A serine/threonine protein kinase–dependent
pathway is responsible for membrane insertion of the glucose trans-
porter protein GLUT4, whereas activation of atypical protein kinase
C leads to membrane insertion of the Na1-K1-ATPase pump. Not
shown is that insulin stimulates pump activity by increasing cell
Na1 brought about by a stimulatory effect on the Na1-H1

antiporter.
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with Addison’s disease, whereas the ratio is decreased in
Cushing’s disease (22,23). Low ratios are also found in
patients with primary or secondary hyperaldosteronism.
To be sure, in the absence of excessive sweating, changes in
sweat or salivary gland K1 transport are not of clinical
relevance. Lastly, aldosterone augments Na1 transport in
airway epithelia by increasing the activity of the Na1-K1-
ATPase pump (24).
Similar to the findings in sweat and saliva, aldosterone

reduces Na1 and increases K1 secretion in the human
colon. Under normal circumstances, the majority of dietary
K1 along with gastric, biliary, and pancreatic secretions is
passively absorbed via solvent drag in the small intestine.
The colon is a net secretor of K1 through passive and active
secretory mechanisms along with an active absorptive com-
ponent (25). Passive K1 secretion is paracellular and
increases in magnitude along the length of the colon in par-
allel with the degree of luminal electronegativity, the latter
of which is due to electrogenic Na1 reabsorption.
Mineralocorticoid-induced changes in Na1 flux cause an
increase in the transepithelial potential difference, which

along with increased activity of the Na1-K1-ATPase pump
result in increased K1 secretion (26–29). In patients with
primary and secondary hyperaldosteronism, the fecal
Na1/K1 ratio is decreased. Aldosterone may also affect
active K1 secretion in the colon. This process consists of K1

uptake via the Na1-K1-ATPase and the Na1-K1-Cl–

cotransporter on the basolateral surface of the colonocyte
and secretion through apical K1 channels. Active K1

absorption is mediated by an H1-K1-ATPase located on
the apical membrane of the distal colon and is upregulated
by dietary K1 restriction. The increase in colonic K1 secre-
tion that accompanies loss of kidney function is primarily
due to increased apical expression of large-conductance,
Ca21-activated BK channels (30). This channel is upregu-
lated by aldosterone and other mediators that elevate
cAMP in the enterocyte, likely explaining why some
patients on kidney replacement therapy develop hyperka-
lemia when prescribed renin-angiotensin-aldosterone
blockers. An overview of how aldosterone regulates K1

handling in the colon is provided in Figure 3.

Effects of Aldosterone in Determining Internal K1

Distribution
Although the extrarenal effects of aldosterone to modu-

late K1 and Na1 transport in salivary fluid, sweat, airway
epithelia, and colonic fluid are well established, the role of
aldosterone in determining the internal distribution of K1

is less well defined and controversial. In vitro studies in
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Figure 2. | Overview of normal K1 homeostasis. Absorption of K1 from the gastrointestinal tract is faster than kidney excretion, necessitat-
ing a shift of K1 into the cell to guard against pathologic rises in extracellular K1 concentration. Insulin, catecholamines, and aldosterone
all act to shift K1 into the intracellular space through effects that increase the activity of the Na1-K1-ATPase pump. Kidney K1 excretion
eventually matches dietary intake such that total body K1 content is maintained within a narrow range. A brief summary of kidney K1

handling is depicted. There is evidence that kidney K1 excretion is initiated through a gastric-kidney signaling pathway as early as entry of
dietary K1 into the stomach. Approximately 10% of dietary K1 is excreted in the colon. This component of K1 handling increases as CKD
progresses. PT, proximal tubule; TAL, thick ascending limb.

Table 1. Tissues in which aldosterone exerts an effect on ion
transport

� Distal nephron of the kidney � Salivary gland � Sweat gland
� Colon � Airway epithelia
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which an isolated rat diaphragm is incubated with aldoste-
rone demonstrate there are direct effects of the hormone on
modulation of tissue K1 content (31–33). In vivo studies are
limited by the difficulty in accurately measuring overall K1

balance and factoring in both variability and secondary
changes in acid-base balance, systemic hemodynamics, and
other K1-regulatory factors such as hormones and adrener-
gic activity. Despite these limitations, the bulk of data sug-
gest aldosterone does enhance extrarenal K1 disposal.
Older studies examining K1 balance in dogs found the

increase in plasma K1 after adrenalectomy is not accounted
for by changes in gastrointestinal or kidney excretion
(34,35). Similarly, changes in urine or stool K1 do not
explain the reduction in plasma K1 when aldosterone is
infused into normal rabbits (36,37). In rabbits subjected to
nephrectomy, infusion of aldosterone maintains plasma K1

concentration within normal limits and delays death form
hyperkalemia. In a detailed examination of a patient with
selective aldosterone deficiency and hyperkalemia, the
plasma K1 concentration decreased after administration of
deoxycorticosterone acetate. This compound is an adre-
nally produced steroid hormone with potent mineralocorti-
coid activity but virtually devoid of glucocorticoid activity.
Measurements in urine and stool showed no alteration in
net K1 excretion, suggesting the mineralocorticoid
increased K1 uptake into the intracellular compartment
(38).
Rats fed a high-K1 diet for several days are able to sur-

vive a subsequent acute load of K1 that is otherwise lethal
to animals fed a regular diet (39). In addition to enhanced
urinary excretion, increases in tissue uptake mediated by
aldosterone contribute to this adaptive response. In sup-
port, tolerance to the acute load is observed in the presence

and absence of kidneys. In addition, adrenalectomy abol-
ishes the tolerance to the acute load but is reproduced
when repeated injections of mineralocorticoid are given
over the course of several days before the acute K1 load
(38). Although these results support an important role for
aldosterone in regulating the internal distribution of K1,
others have suggested the described experimental maneu-
vers may have caused the animals to become K1 depleted
before the acute challenge (40). According to this later inter-
pretation, increased urinary K1 excretion in response to
several days of high intake may persist for a period of time
(overshoot) after a sudden decrease in dietary K1 predis-
posing to negative K1 balance. Similarly, chronic adminis-
tration of mineralocorticoid (particularly at high doses)
may render the animals K1 depleted. In the setting of total
body depletion, the lack of increase in plasma K1 after an
acute load would represent replenishment of depleted
intracellular stores as opposed to active shift into cells
under the dictates of aldosterone.

Convincing evidence for the role of aldosterone to influ-
ence the distribution of K1 between the intracellular and
extracellular spaces comes from studies performed in adre-
nalectomized dogs given continuous intravenous replace-
ment doses of aldosterone at varying rates along with
incremental increases in dietary intake of K1 maintained
for 7–10 days (41,42). Total exchangeable K1 and plasma
K1 were measured at the conclusion of each combination
of aldosterone infusion rate and dietary K1 intake period.
As the rate of aldosterone infusion increased, the relation-
ship between exchangeable K1 and plasma K1 was shifted
downward. Stated differently, less K1 resided in the extra-
cellular space for a given total exchangeable K1 as aldoste-
rone levels increased.
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Figure 3. | Influence of aldosterone on K1 transport along the gastrointestinal tract. K1 absorption in the small bowel is primarily passive
pulled by bulk water movement via solvent drag. K1 secretion in the colon occurs by both a passive and active mechanism, both of which
are stimulated by aldosterone. Aldosterone does not affect the small component of active K1 absorption mediated by the apically located
H1-K1-ATPase present in the terminal part of the colon. See text for discussion. Red indicates energy requiring transporter. BK, large-
conductance, Ca21-activated K(Ca)1.1 (BK) channel; NKCC, Na1-K1-2Cl– cotransporter; ClC-2, chloride channel; ENaC, epithelial Na1

channel.
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Correction of hyperkalemia with mineralocorticoids in
anuric patients on maintenance hemodialysis is consistent
with either a shift of K1 into cells or augmented intestinal
secretion (43). In order to delineate better between these
two possibilities, anephric dialysis patients were given an
acute oral K1 load after first being treated with either deox-
ycorticosterone 10-mg intramuscularly daily for 3 days or
100 mg spironolactone orally every 8 hours for the 3-day
period (44). Prior administration of the mineralocorticoid
decreased the rate of rise in plasma K1 concentration after
the acute challenge compared with the spironolactone-
treated subjects. Importantly, stool Na1 and K1 concentra-
tions were unaltered during the study. The effect on extra-
renal homeostasis was most marked in the first 3 hours of
the study but was no longer apparent between 3 and 13
hours. However, on the basis of volume of distribution
measurements, K1 continued to be translocated into the
intracellular space during this later time frame. After the
initial effects of aldosterone, dietary stimulation of insulin
and/or increased catecholamine activity induced by eating
may have mediated the ongoing extrarenal K1 disposal.
Because insulin and catecholamines are important physi-

ologic regulators of K1 distribution within the body as pre-
viously discussed, it is not surprising these factors may
also synergize with aldosterone to regulate cellular K1

uptake. In glucocorticoid-replaced adrenalectomized rats
infused with KCl after acute nephrectomy, the increment in
plasma K1 per amount of K1 retained is significantly

greater compared with controls (45). When the animals are
acutely replaced with aldosterone before the challenge, the
increment in K1 is significantly less than in untreated ani-
mals but remains higher than in controls. Chronic adminis-
tration of aldosterone leads to complete correction of the
defect. In addition, the tolerance to the K1 load is also
totally corrected if the adrenalectomized rats are acutely
replaced with epinephrine, suggesting deficiency of both
aldosterone and epinephrine contribute to impaired K1 tol-
erance in chronic adrenal insufficiency. The idea these two
factors may work in concert comes from the observation
that aldosterone binds to mineralocorticoid receptors in the
brain, triggering an increase in sympathetic outflow (46,47)
(Figure 4). This stimulatory effect is downregulated by
estrogen, suggesting a sexually dimorphic interaction in
the central nervous system (48).
In a separate study, glucocorticoid-replaced adrenalec-

tomized rats developed a significantly greater rise in K1

after an acute intravenous load (49). A similar defect devel-
oped in animals made insulinopenic by infusing somato-
statin. In both instances, the inability to dispose of the K1

load properly occurred, despite the urinary excretion of an
identical percentage of the administered load. In a third
group of animals with combined adrenal and insulin defi-
ciency, the increment in plasma K1 occurred earlier and
remained elevated for a more prolonged period when com-
pared with animals with insulinopenia or adrenalectomy
alone. The greater degree of extrarenal K1 intolerance in
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Figure 4. | Direct and indirect effects of aldosterone in mediating shift of K1 into the intracellular space. Increases in plasma K1 directly
stimulates the release of aldosterone from the zona glomerulosa cells of the adrenal gland. Aldosterone binds to the mineralocorticoid
receptor inside the cell and increases cell Na1 concentration by increasing the activity of the Na1-H1 exchanger and the Na1-K1-2Cl–

cotransporter. Increases in cell Na1 concentration along with a direct effect of aldosterone leads to increase activity of the Na1-K1-ATPase
pump causing K1 uptake. Aldosterone binds to receptors in the central nervous system, causing increased sympathetic outflow, which fur-
ther stimulates pump activity through b2-adrenergic receptors. Not shown is that increased sympathetic activity can stimulate insulin
release from the pancreas, providing an additional mechanism to augment cell K1 uptake. A generic cell is provided to indicate identified
transporters involved in K1 uptake such as skeletal muscle myocytes, hepatocytes, adipocytes, and cardiac myocytes. Circled1sign, stimu-
latory effect.
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the combined group may have particular relevance to
patients with diabetes mellitus, where hypoaldosteronism
occurs with increased frequency. In addition, these patients
are prone to autonomic neuropathy, potentially creating a
situation where combined deficiencies in insulin, aldoste-
rone, and catecholamines give rise to hyperkalemia due to
defects in extrarenal homeostasis (50,51).

Tissue Heterogeneity in Aldosterone-Mediated
K1 Uptake
Most studies assume the primary effect of mineralocorti-

coids on internal K1 distribution is mediated through
effects on mineralocorticoid receptors in skeletal muscle
(52,53). The precise mechanism by which aldosterone inter-
acts with the receptor is not clear because 11-b-hydroxyste-
roid dehydrogenase type 2 has not been found in skeletal
muscle, suggesting the receptor would likely be occupied
by cortisol (54,55). On the other hand, there is a modest
amount of the enzyme expressed in cardiac tissue (55,56).
The presence of mineralocorticoid receptors in cardiac
myocytes suggests aldosterone has a functional role in the
heart (57). Aldosterone stimulates cellular uptake of Na1 in
cardiac myocytes, which in turn signals increased synthesis
of Na1-K1-ATPase subunits (58). Increased pump density
can contribute to sequestration of K1 into the intracellular
compartment of these cells. Aldosterone can also stimulate
the pump through a nongenomic pathway. In addition to
effects on the Na1-H1 exchanger, aldosterone stimulates
Na1 uptake in cardiac myocytes by activating the Na1-K1-
2Cl– cotransporter (59). Increased Na1 influx exerts an
immediate effect to stimulate Na1-K1-ATPase pump
activity.
Differing sensitivities to aldosterone might contribute to

the contrasting response of skeletal muscle and the heart to
conditions of total body K1 depletion. By way of back-
ground, intracellular K1 serves as a reservoir to limit the
fall in extracellular K1 concentrations occurring under
pathologic conditions, leading to K1 loss from the body.
As an example, studies in military recruits undergoing
training in a hot environment developed a 400 mmol
reduction in total body K1 over an 11-day period due to
K1 loss in sweat. Despite this deficit, the plasma K1 con-
centration remained near normal limits (60).
Use of a K1 clamp technique in rodents has provided

insight as to how plasma K1 is defended in states of total
body depletion. Animals are infused with a constant
amount of insulin and then administered parenteral K1 at
a rate to prevent drops in extracellular K1 concentration.
The amount of K1 required to prevent hypokalemia
reflects the amount of K1 transported into the intracellular
space of skeletal muscle (61). Insulin-mediated K1 disap-
pearance is reduced by .90% in animals subjected to 10
days of K1 deprivation when compared with a control
group. This decrease is accompanied by a .50% reduction
in muscle Na1-K1-ATPase activity and expression. These
data suggest skeletal muscle readily relinquishes intracellu-
lar stores of K1 under conditions of K1 loss from the body
through decreased activity and number of ATPase pumps
in an attempt to minimize the change in plasma K1

concentration.

In contrast to the buffering effect of skeletal muscle, car-
diac tissue K1 content remains relatively well preserved in
states of K1 depletion (62,63). In addition, cardiac Na1-K1-
ATPase pool size increases in K1-deficient animals, unlike
the decline in activity and expression in skeletal muscle.
The increased in pool size in rats rendered K1 depleted
accounts for the greater clearance capacity after the admin-
istration of intravenous KCl when compared with K1-
replete controls. The cardiac capacity for K1 uptake is
comparable to that of skeletal muscle under conditions of
K1 depletion and may actually exceed skeletal muscle
under control conditions when expressed on a weight
basis. It is interesting to speculate and deserving of further
study whether differences in sensitivity to aldosterone
might contribute to the contrasting effects in K1 distribu-
tion between skeletal muscle and the heart.

Discussion
Although the role of aldosterone in regulating kidney K1

excretion is well established, there has been controversy as
to the role played by aldosterone in dictating the distribu-
tion of K1 across the cell membrane. When viewed from
the context that mineralocorticoid receptors are widely dis-
tributed to include skeletal muscle and the myocardium,
the bulk of data support at least a contributory role of aldo-
sterone in internal K1 homeostasis. The ability of aldoste-
rone to act centrally to stimulate sympathetic activity,
which in turn stimulates insulin release, suggests these
three factors may work in concert to influence K1 distribu-
tion within the body. Still unexplored are differences in tis-
sue sensitivity to the effects of aldosterone and what role
these differences may play under condition of totally body
K1 depletion.
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