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The use of cisplatin, a chemotherapy drug, is often limited due to its renal side effects such as acute kidney injury (AKI). However,
there are no validated medications to prevent or treat cisplatin-induced AKI. Oridonin is the major bioactive component of Isodon
rubescens (Rabdosia rubescens) and exhibits anticancer, antioxidative, and anti-inflammatory effects. Recent studies have shown
that oridonin alleviated a variety of inflammatory diseases, including renal diseases, in rodents. This study was aimed at
investigating the potential renoprotective effect of oridonin on cisplatin-induced AKI. Male C57BL/6 mice were administered
with cisplatin (20mg/kg) with or without oridonin (15mg/kg). Oridonin administration to mice after cisplatin injection
attenuated renal dysfunction and histopathological changes. Upregulation of tubular injury markers was also suppressed by
oridonin. Mechanistically, oridonin suppressed lipid peroxidation and reversed the decreased ratio of reduced to oxidized
glutathione in cisplatin-injected mice. The increase in cisplatin-induced apoptosis was also alleviated by the compound.
Moreover, oridonin inhibited cytokine overproduction and attenuated immune cell infiltration in cisplatin-injected mice.
Altogether, these data demonstrated that oridonin alleviates cisplatin-induced kidney injury via inhibiting oxidative stress,
apoptosis, and inflammation.

1. Introduction

Acute kidney injury (AKI) is characterized by a sudden
decrease in renal function and is one of the major global
health problems [1]. The severity of AKI is positively associ-
ated with in-hospital mortality, length of hospital stay, and
medical care costs [2]. In the long term, AKI is also related
to an increased risk of cardiovascular events, progression
to chronic kidney disease, and long-term mortality [2]. The
primary causes of AKI include renal ischemia-reperfusion,
sepsis, and nephrotoxins. Among them, nephrotoxic drugs
are increasingly considered as substantial contributors to
AKI in hospitalized patients [3]. Cisplatin is a widely used
chemotherapy drug to treat many types of cancer, including
breast, testicular, and ovarian cancers [4]. Although the drug

has potent antitumor effects, its serious side effects often
limit its clinical use [4]. Nephrotoxicity is an important side
effect of cisplatin therapy, and the nephrotoxic effects of cis-
platin are dose-dependent and cumulative [5]. Unfortu-
nately, despite the limited clinical application of cisplatin
due to renal side effects, there are no validated drugs that
prevent or treat its nephrotoxicity.

Oridonin is a diterpenoid compound found in Isodon
rubescens (Rabdosia rubescens) [6]. Accumulating evidence
suggest that oridonin has potent anticancer, antioxidative,
and anti-inflammatory activities [7–9]. Although many
studies have focused on elucidating the antitumor effect of
oridonin [7], emerging evidence suggest that the compound
inhibits renal ischemia-reperfusion injury in mice via sup-
pressing inflammatory pathways [10, 11]. Moreover,
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oridonin attenuated diabetes-associated renal inflammation
and injury in rats [12], suggesting that the compound has
a protective action against both acute and chronic kidney
injury. However, it has not yet been determined whether ori-
donin has a beneficial action on cisplatin nephrotoxicity.
Thus, in the current study, we examined the effect of orido-
nin on cisplatin-induced kidney injury and explored the
mechanism.

2. Materials and Methods

2.1. Animal Experiments. Male C57BL/6 mice were obtained
from HyoSung Science (Daegu, Korea) and maintained at a
temperature of at 20-24°C and humidity of 60-70%. The
mice were grouped into three groups (n = 8 per group): the
control group, the CP group, and the CP+Ori group. The
CP group received a single intraperitoneal injection of cis-
platin (20mg/kg; Sigma-Aldrich, St. Louis, MO, USA). The
CP+Ori group was given an intraperitoneal administration
of oridonin (15mg/kg; dissolved in DMSO; Sigma-Aldrich)
daily for 3 consecutive days, starting from 1 hour after cis-
platin injection. The control group received intraperitoneal
injections of an equal volume of DMSO daily for 3 consecu-
tive days. All mice were sacrificed 72 hours after a single
dose of cisplatin. The doses of oridonin and cisplatin were
selected based on the results of previous studies [10, 13].
All animal procedures were approved by the Institutional
Animal Care and Use Committee of the Daegu Catholic
University Medical Center (DCIAFCR-200626-12-Y).

2.2. Plasma and Tissue Biochemical Assays. Serum creatinine
and blood urea nitrogen (BUN) levels were assessed using an
automatic analyzer (Hitachi, Osaka, Japan). Serum tumor
necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels
were analyzed using ELISA kits (R&D Systems, Minneapolis,
MN, USA). Malondialdehyde (MDA) levels were analyzed
using a MDA assay kit (Sigma-Aldrich). Reduced glutathi-
one (GSH) and oxidized glutathione (GSSG) levels were
measured using a GSH assay kit (Enzo Life Sciences, Farm-
ingdale, NY, USA). All analyses were conducted following
the manufacturers’ protocols.

2.3. Histological and Immunohistochemistry (IHC) Staining.
Formalin-fixed tissues were dehydrated, cleared, and embed-
ded in paraffin. The tissue blocks were sectioned and stained
with hematoxylin and eosin (H&E) or periodic acid-Schiff
(PAS). Tubular injury score was assessed in 5 randomly
selected fields per sample, as previously described [14, 15].
For IHC, primary antibodies against neutrophil gelatinase-
associated lipocalin (NGAL; Santa Cruz Biotechnology,
Santa Cruz, CA, USA), kidney injury molecule-1 (KIM-1;
Santa Cruz Biotechnology), 4-hydroxy-2-nonenal (4-HNE;
Invitrogen, Carlsbad, CA, USA), F4/80 (Santa Cruz Biotech-
nology), and CD4 (Novus Biologicals, Littleton, CO, USA)
antibodies were used. Mouse IgG1 isotype control antibody
(R&D Systems) was used as a primary antibody for negative
control. Positive areas were examined in 5 randomly selected
fields at 400x magnification per sample using a computer-
ized image analyzer (i-Solution DT software; IMT i-Solu-

tion, Coquitlam, BC, Canada), and the results were
presented as percentage of the positively stained area with
respect to the total area analyzed. Positive cells were exam-
ined in 10 randomly selected fields at 1000x magnification
per sample.

2.4. Western Blot Analysis. Western blot analysis was con-
ducted using primary antibodies against cleaved caspase-3
(Cell Signaling Technology, Danvers, MA, USA), caspase-3
(Cell Signaling Technology), TNF-α (Abcam, Cambridge,
MA, USA), and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH; Cell Signaling Technology), as previously
described [15]. Protein bands were visualized using
enhanced chemiluminescence reagents (Thermo Fisher Sci-
entific, Waltham, MA, USA).

2.5. qPCR Analysis. Total RNA isolation was performed
using the TRIzol reagent (Sigma-Aldrich). Total RNA was
reverse-transcribed into cDNA using the PrimeScript RT
Reagent Kit (TaKaRa, Tokyo, Japan). For qPCR analysis,
the Power SYBR Green PCR Master Mix (Thermo Fisher
Scientific) and the Thermal Cycler Dice Real Time System
III (TaKaRa) were used. Primers are shown in Table 1.
GAPDH was used as a reference gene. Data were analyzed
using 2-ΔΔCT method.

2.6. TUNEL Assay. Apoptosis was examined using a TUNEL
assay kit (Roche Diagnostics, Indianapolis, IN, USA) follow-
ing the manufacturer’s protocol. Briefly, the kidney sections
were deparaffinized, rehydrated, and permeabilized for
30min at room temperature with proteinase K in 10mM
Tris-HCl, pH 7.4. After washing, the sections were incubated
in the TUNEL reaction mixture for 1 h at 37°C. DAPI was
used for nuclear staining. Positive cells were examined in
10 randomly selected fields at 600x magnification per
sample.

2.7. Statistical Analysis. Data are presented as mean ± SEM.
Differences among the groups were analyzed with one-way
ANOVA and Bonferroni’s post hoc tests. A p value less than
0.05 was considered statistically significant.

3. Results

3.1. Oridonin Ameliorated Renal Dysfunction and Structural
Damage in Cisplatin-Injected Mice. To assess renal function,
serum creatinine and BUN levels, indicators of renal function
[16], were measured in all experimental groups. Intraperito-
neal injection of cisplatin increased serum levels of the indica-
tors (Figures 1(a) and 1(b)). Cisplatin-injected mice exhibited
significant tubular damage, including tubular dilatation and
cast formation, as shown by histological examination
(Figures 1(c) and 1(d)). However, these changes were signifi-
cantly attenuated by oridonin (Figures 1(a)–1(d)).

Renal tubular injury is a hallmark of cisplatin-induced
kidney injury [17]. To more clearly assess the action of ori-
donin on cisplatin-induced tubular injury, the renal expres-
sion of NGAL and KIM-1, tubular injury markers [18], was
examined using IHC staining. Expression of the markers was
elevated after cisplatin injection (Figures 2(a)–2(c)).
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Table 1: List of primers used in this study.

Target genes Primer sequences Accession no.

NGAL
F: 5′- GACCTAGTAGCTGCTGAAACC -3′
R: 5′- GAGGATGGAAGTGACGTTGTAG -3′ NM_130741

KIM-1
F: 5′- TCCACACATGTACCAACATCAA -3′
R: 5′- GTCACAGTGCCATTCCAGTC -3′ NM_001161356

TNF-α
F: 5′-GACGTGGAACTGGCAGAAGAG-3′

R: 5′-CCGCCTGGAGTTCTGGAA-3′ NM_013693

IL-6
F: 5′-CCAGAGATACAAAGAAATGATGG-3′
R: 5′-ACTCCAGAAGACCAGAGGAAAT-3′ NM_031168

IL-1β
F: 5′- GCAACTGTTCCTGAACTCAACT -3′
R: 5′- ATCTTTTGGGGTCCGTCAACT -3′ NM_008361

GAPDH
F: 5′-ACTCCACTCACGGCAAATTC-3′
R: 5′-TCTCCATGGTGGTGAAGACA-3′ NM_001289726
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Figure 1: Effect of oridonin on renal function and histological abnormalities in cisplatin-injected mice. (a) Serum creatinine levels. (b) BUN
levels. (c) H&E and PAS staining of kidney sections. Scale bar = 40μm. Red arrows indicate tubular dilatation. Black arrows indicate cast
deposition in the lumens of tubules. (d) Tubular injury score. n = 8 per group. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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Moreover, their mRNA levels were also increased
(Figure 2(d)). However, the upregulation of the markers
was significantly inhibited by oridonin (Figures 2(a)–2(d)).

3.2. Oridonin Suppressed Oxidative Stress. Oxidative stress is
a crucial mechanism of cisplatin nephrotoxicity [19]. There-
fore, we examined renal expression of 4-HNE, a lipid peroxi-
dation product [20], in all experimental groups. Cisplatin
injection increased 4-HNE expression in the renal cortex com-
pared to control group (Figures 3(a) and 3(b)). Amounts of
MDA, another lipid peroxidation product [20], were also
increased after cisplatin injection (Figure 3(c)). However, ori-
donin significantly lowered the increased levels of lipid perox-
idation products induced by cisplatin (Figures 3(a)–3(c)). In
addition, after cisplatin injection, GSSG levels (Figure 3(d))
were increased in kidneys, while GSH levels (Figure 3(e))
and GSH/GSSG ratios (Figure 3(f)) were decreased. These
alterations were significantly reversed by oridonin

(Figures 3(d)–3(f)), indicating that the compound suppressed
cisplatin-induced oxidative stress.

3.3. Oridonin Attenuated Apoptotic Cell Death. Because apo-
ptosis of tubular cells is frequently observed in cisplatin-
induced kidney injury [5], TUNEL assay was conducted to
assess the effect of oridonin on apoptosis. Cisplatin injection
increased the number of TUNEL-positive cells in the kidney
(Figures 4(a) and 4(b)). Caspase-3 cleavage was also
increased (Figures 4(c) and 4(d)). However, cisplatin-
induced apoptosis was significantly inhibited by oridonin
(Figures 4(a)–4(d)).

3.4. Oridonin Inhibited Inflammatory Responses. Inflamma-
tion also contributes to the pathophysiology of cisplatin
nephrotoxicity [5]. Cisplatin-injected mice had elevated
serum TNF-α and IL-6 levels compared to controls
(Figure 5(a)). Renal levels of TNF-α, IL-6, and IL-1β mRNA
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Figure 2: Effect of oridonin on NGAL and KIM-1 expression. (a) IHC staining for NGAL. Scale bar = 40μm. (b) IHC staining for KIM-1.
Scale bar = 40μm. (c) Quantification of positive staining for NGAL and KIM-1. (d) Relative mRNA levels of NGAL and KIM-1. n = 8 per
group. ∗∗∗p < 0:001.

4 BioMed Research International



was also increased after cisplatin injection (Figure 5(b)).
Increase protein levels of TNF-α were also detected by West-
ern blot analysis (Figures 5(c) and 5(d)). However, oridonin
significantly lowered serum and tissue levels of the cytokines
(Figures 5(a)–5(d)).

Because immune cells infiltrate into the kidney and
secrete large amounts of cytokines during cisplatin-
induced kidney injury [5], we next performed IHC stain-
ing with antibodies against F4/80 and CD4 to detect mac-
rophages and CD4+ T cells, respectively. The number of
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Figure 3: Effect of oridonin on oxidative stress. (a) IHC staining for 4-HNE. Scale bar = 40 μm. (b) Quantification of positive staining for 4-
HNE. (c) Renal MDA levels. (d) Renal GSSG levels. (e) Renal GSH levels. (f) GSH/GSSG ratios. n = 8 per group. ∗p < 0:05 and ∗∗∗p < 0:001.
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macrophages was increased after cisplatin injection but
was significantly alleviated by oridonin (Figures 6(a) and
6(b)). Administration of oridonin also decreased the num-
ber of CD4+ T cells in cisplatin-injected mice (Figures 7(a)
and 7(b)).

4. Discussion

In the current study, we demonstrated the therapeutic effect
of oridonin on cisplatin-induced kidney injury. Mechanisti-
cally, oridonin inhibited oxidative stress, tubular cell apopto-
sis, and inflammation in cisplatin-injected mice.

Early studies on the function of oridonin have mainly
focused on its anticancer effect [7]. Indeed, oridonin has

been shown to exert anticancer activity on many types of
cancers [21–23]. However, subsequent studies suggest that
in addition to its anticancer effect, oridonin has several other
favorable effects including antioxidative and anti-
inflammatory effects [8, 9]. Therefore, we hypothesized that
oridonin may have a beneficial effect on cisplatin nephrotox-
icity. In the current study, administration of oridonin ame-
liorated renal dysfunction and histopathological alterations,
suggesting that the compound has a therapeutic action on
cisplatin-induced kidney injury. Besides nephrotoxic medi-
cations, ischemia-reperfusion injury is also a major cause
of AKI [24]. Recent studies have demonstrated the protec-
tive effect of oridonin on renal ischemia-reperfusion injury
[10, 11]. These findings suggest that the beneficial action of
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Figure 4: Effect of oridonin on tubular cell apoptosis. (a) TUNEL assay on kidney sections. Scale bar = 10 μm. To detect nuclei, DAPI was
used. (b) Number of TUNEL-stained nuclei per field. (c) Western blotting of cleaved caspase-3. (d) Quantification of Western blot results for
cleaved caspase-3. n = 8 per group. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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oridonin is not limited to cisplatin-induced AKI but may
also be applied to other types of AKI.

Oxidative stress has been known to play a critical role in
various diseases, including cardiovascular diseases, metabolic
diseases, and neurodegenerative diseases [25]. Animal studies
have shown that cisplatin nephrotoxicity is alleviated by
administration of various antioxidants, such as coenzyme
Q10 [26], vitamin C [27], vitamin E [28], resveratrol [29],
and melatonin [30], suggesting that oxidative stress is also an

important mechanism of cisplatin nephrotoxicity. Impor-
tantly, various natural compounds have antioxidative activity
[31, 32]. Antioxidative effect of oridonin has also been
reported in several studies [8, 9]. Oridonin suppressed reactive
oxygen species generation in lipopolysaccharide- (LPS-)
treated human renal tubular epithelial cells [33]. In the present
study, administration of oridonin decreased the amounts of 4-
HNE and MDA in kidneys of cisplatin-injected mice. These
molecules are well-known lipid peroxidation products and
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Figure 5: Effect of oridonin on cytokine production. (a) Serum levels TNF-α and IL-6. (b) Relative mRNA levels of TNF-α, IL-6, and IL-1β.
(c) Western blotting of TNF-α. (d) Quantification of Western blot results for TNF-α. n = 8 per group. ∗p < 0:05 and ∗∗∗p < 0:001.
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Figure 6: Effect of oridonin on macrophage infiltration. (a) IHC staining for F4/80. Scale bar = 20μm. Red arrows indicate positive cells. (b)
Number of F4/80-positive cells per field. n = 8 per group. ∗∗∗p < 0:001.
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have been shown to be increased in cisplatin nephrotoxicity
[34, 35]. Moreover, cisplatin injection lowered the GSH/GSSG
ratio, indicating increased oxidative stress [36, 37]. However,
oridonin significantly reversed the decreased GSH/GSSG
ratio. Therefore, the therapeutic action of oridonin on
cisplatin-induced kidney injury is possibly attributed to its
antioxidative effect.

Tubular cell apoptosis is frequently observed and is mainly
caused by oxidative stress in cisplatin-induced kidney injury
[38]. In the current study, cisplatin injection resulted in
caspase-3 activation and apoptosis, which were inhibited by
oridonin. Cisplatin can activate proapoptotic proteins, which
cause the translocation of cytochrome c into the cytoplasm
[19]. Then, the mediator induces the assembly of a multipro-
tein complex, resulting in activation of executioner caspases.
Therefore, our data suggest that oridonin attenuated
cisplatin-induced apoptosis through suppressing caspase-3
pathway. Consistent with our findings, oridonin inhibited
hypoxia-induced apoptosis in a rat cardiomyoblast cell line
[39]. Oridonin also protected human keratinocytes and der-
mal fibroblasts against hydrogen peroxide-induced apoptosis
[40, 41]. Furthermore, the compound inhibited hepatocyte
apoptosis to ameliorate acute liver injury in mice [42].

Excessive cytokine secretion and immune cell infiltration
are characteristic features of cisplatin-induced AKI [43–45].
Oridonin inhibited cisplatin-induced systemic and renal
inflammation, as evidenced by reductions in both serum and
renal levels of cytokines. Increased infiltration of macrophages
and CD4+ T cells was also alleviated by oridonin. Consistently,
emerging evidence suggest that the beneficial action of orido-
nin on renal ischemia-reperfusion injury is associated with
suppression of macrophage-mediated inflammation [10, 11].
It has been also reported that oridonin can modulate the acti-
vation and proliferation of T cells to alleviate inflammatory
diseases such as inflammatory bowel disease [46, 47] and
asthma [48]. In addition, oridonin inhibited LPS-induced
cytokine production in human gingival fibroblasts [49] and
mouse endometrial epithelial cells [50]. Inflammatory
responses in IL-1β-stimulated human osteoarthritis chondro-
cytes were also suppressed by oridonin [51].

Oridonin has broad potential for drug development due
to its wide range of pharmacological activities [8, 52]. How-
ever, oridonin has low solubility and poor bioavailability,
which limits its clinical application. Therefore, much effort
should be focused on the development of strategies, such
as structural modification and new dosage form, to over-
come these shortcomings [52].

In conclusion, we showed that oridonin ameliorated
cisplatin-induced kidney injury in mice and that its thera-
peutic effect was due to attenuation of oxidative stress, apo-
ptosis, and inflammation. The compound has been shown to
increase the susceptibility of cancer cells to chemotherapy
drugs including cisplatin [53, 55]. Therefore, oridonin may
be a useful therapeutic agent for AKI in cancer patients
undergoing chemotherapy.
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