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Abstract

Hearing impairment (HI) is highly heterogeneous with over 123 associated genes reported to date, mostly from studies
among Europeans and Asians. Here, we performed a systematic review of literature on the genetic profile of HI in Africa.
The study protocol was registered on PROSPERO, International Prospective Register of Systematic Reviews with the regis-
tration number “CRD42021240852”. Literature search was conducted on PubMed, Scopus, Africa-Wide Information, and
Web of Science databases. A total of 89 full-text records was selected and retrieved for data extraction and analyses. We
found reports from only 17/54 (31.5%) African countries. The majority (61/89; 68.5%) of articles were from North Africa,
with few reports found from sub-Saharan Africa. The most common method used in these publications was targeted gene
sequencing (n=66/111; 59.5%), and only 13.5% (n=15/111) used whole-exome sequencing. More than half of the studies
were performed in families segregating HI (n =51/89). GJB2 was the most investigated gene, with GJ/B2: p.(R143W) founder
variant only reported in Ghana, while GJB2: ¢.35delG was common in North African countries. Variants in MYO15A were
the second frequently reported in both North and Central Africa, followed by ATP6VIB1 only reported from North Africa.
Usher syndrome was the main syndromic HI molecularly investigated, with variants in five genes reported: USH2A, USHIG,
USHIC, MYO7A, and PCDH15. MYO7A: p.(P1780S) founder variant was reported as the common Usher syndrome variant
among Black South Africans. This review provides the most comprehensive data on HI gene variants in the largely under-
investigated African populations. Future exomes studies particularly in multiplex families will likely provide opportunities
for the discovery of the next sets of novel HI genes, and well as unreported variants in known genes to further our under-
standing of HI pathobiology, globally.

Introduction by 2050. HI is higher in sub-Saharan Africa, as it occurs in

6 per 1000 live births as compared to a lower incidence of

Hearing impairment (HI) is the most prevalent sensory dis-
ability with a growing concern globally (Mulwafu et al.
2016; Olusanya et al. 2014). The World Health Organisa-
tion’s (WHO) estimates of the number of people living with
disabling HI globally increased from 278 million in 2005,
to 360 million in 2012, and 466 million in 2018 (6.1% of the
world population) (Mulwafu et al. 2016). Based on the WHO
projections, 2.5 billion people would have some form of HI
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1 per 1000 live births in high-income countries (Olusanya
et al. 2014). Depending on its pathophysiology, HI can be
conductive (resulting from abnormalities of the external ear
and/or the ossicles of the middle ear), sensorineural (results
from a malfunction of inner ear structures), or mixed (a
combination of conductive and sensorineural HI) (Shearer
et al. 2017). The etiologies of HI vary from genetic to envi-
ronmental factors, while some HI cases have an unknown
cause (Wonkam Tingang et al. 2020a; Wonkam et al. 2019).
Genetic factors contribute to 30-50% of HI cases of child-
hood HI in sub-Saharan Africa (Lebeko et al. 2015). HI of
genetic origin may be syndromic, where there are other clini-
cal features associated with the loss of hearing. Conversely,
HI may be non-syndromic whereby HI is the only observed
clinical feature (Lebeko et al. 2015).

Syndromic HI accounts for up to 30% of hereditary HI
and over 400 syndromes associated with HI have been
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described to date, including Waardenburg syndrome, Bran-
chiootorenal syndrome, Usher syndrome, Pendred syn-
drome, Keratitis—ichthyosis—deafness syndrome, and Alport
syndrome (Bayazit and Yilmaz 2006; Lebeko et al. 2015;
Shearer et al. 2017). Non-syndromic HI (NSHI) accounts for
approximately 70% of all hereditary Hl cases (Bayazit and
Yilmaz 2006; Shearer et al. 2017). The inheritance pattern
among neonates with NSHI is approximately 80% inherited
as autosomal recessive, about 20% autosomal dominant,
and < 1% X-linked or mitochondrial (Shearer et al. 2017,
Smith et al. 2005). NSHI is highly genetically heterogene-
ous, with approximately 170 loci and 123 genes identified
to date (Van Camp and Smith 2006). The most common
variants associated with autosomal recessive non-syndromic
HI (ARNSHI) have been found within the connexin genes,
and they have been prevalent among European, and Asian
populations (Lebeko et al. 2015). Connexins were shown
to be expressed in the inner ear, and some studies support
their role in the metabolism of potassium and nutrient in
the cochlea (Adadey et al. 2020b; Xu and Nicholson 2013).

GJB2 (on chromosome 13q12) is the most common con-
nexin gene associated with ARNSHL in European and Asian
populations accounting for almost 50% of cases (Adadey
et al. 2020b; Bayazit and Yilmaz 2006). The most com-
mon GJB2 variant is ¢.35delG which is seen in up to 70%
of cases. GJB2 c.35delG is prevalent throughout Europe,
North Africa, and the Middle East, as well as areas popu-
lated largely by immigrants from these regions (Bayazit
and Yilmaz 2006; Lebeko et al. 2015). Other GJB2 variants
are prevalent in specific populations, including c.235delC
among Asians, p.W24X in Indians, 167delT among Ashke-
nazi Jews, and p.R143W in Africans from Ghana (Adadey
et al. 2020b; Brobby et al. 1998; Chan and Chang 2014).
Apart from connexin genes, other common genes impli-
cated in HI among European and Asian populations include
SLC26A4 (implicated in Cochlear Homeostasis), MYO15A
(involved in Cellular Organization), OTOF (involved in
Neural transmission), TMC1, CDH23 (implicated in Cellu-
lar Organization), and TMPRSS3 (Duman and Tekin 2012).

The patterns of variations in African populations, the
much diverse in the world, are shaped by ancestry reasons
with Africans being the oldest human population, intra-Afri-
can and out and back to Africa migration dynamics asso-
ciated with population admixture, and ecological reasons
with the north—south axis of the African continent that is
associated with drastic differences in climate, diet, and expo-
sure to infectious disease, all of which are motor of natural
genomic selections (Wonkam 2021). Genetic variations of
African populations have suggested three major divisions
of the continent: (1) Mediterranean North Africa, (2) sub-
Saharan Middle, West, and East Africa, and (3) southern
regions of Africa (Campbell and Tishkoff 2008; Reed and
Tishkoft 2006). Moreover, population genetic analysis using
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geographically, and ethnically diverse Africans indicated
that there are over 13 genetically distinct populations and
high levels of population admixture in Africa (Campbell
and Tishkoff 2008), which will favour the much-needed dis-
covery of new HI genes in order to improve diagnosis and
care in Africa and globally (Chakchouk et al. 2019; Lebeko
et al. 2016, 2017).

Although there are HI genetic studies from Africa, with
the majority from the Mediterranean north African popula-
tions, the genetic etiology of HI in most African populations
remains elusive. Indeed, apart from the report in Ghana,
pathogenic or likely pathogenic (PLP) variants in G/B2 do
not seem to contribute much to NSHI in most sub-Sahara
African populations (Wonkam Tingang et al. 2020). Besides,
targeted sequencing panels (with over 100 HI genes) have
detected a consistently lower rate of pathogenic and likely
pathogenic (PLP) variants in sporadic HI cases of African
ancestry e.g. African Americans (26%), and Nigerians and
Black South Africans (4%), compared to > 70% for Europe-
ans and Asians (Sloan-Heggen et al. 2016; Yan et al. 2016).
Therefore, there is an urgent need to investigate the genetic
etiologies of HI across Africa, to improve our knowledge of
variants and genes that contribute to HI in these populations.
The present review provides the current state of knowledge
on the genetics of hereditary HI in Africa.

Methods
Search strategy and data extraction

The keywords: hearing impairment, genetics/genomics,
diagnosis, and Africa were used to develop the search term
“Hearing Impairment” OR “Hearing loss” OR “Deafness”)
AND (“Genetics” OR “Genomics”) AND (“Testing” OR
“Screening” OR “Diagnosis”) AND “Africa”. The search
was conducted by two independent reviewers on PubMed,
Scopus, Africa-Wide Information, and Web of Science data-
bases (Fig. 1). The search was conducted between 1st to 14th
March 2021. We registered the protocol on PROSPERO,
International Prospective Register of Systematic Reviews
with the registration number “CRD42021240852”.

To remove any form of bias, the data extraction was con-
ducted by two independent reviewers (SMA and ETW) using
structured data extraction Microsoft Excel spreadsheets
(Office 365 education license under the University of Cape
Town, South Africa). Based on the inclusion/exclusion cri-
teria outlined below, data was extracted from 89 full-length
publications out of 182 screened. The data extraction form
consisted of the following data points (1) name of first and
corresponding authors, (2) date of publication, (3) popula-
tion investigated (4) total number of affected people investi-
gated, (5) gene under investigation, (6) number of reported
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mutant alleles per variant. An expert in the field of genet-
ics and HI (AW) was consulted whenever there was a disa-
greement between the judgment of the two reviewers. The
extracted data were imported into SPSS version 25 (IBM,
Armonk, New York, United States) and analyzed.

Inclusion criteria

e Publications from Africa on hearing impairment
e Publications on genetics/genomics of hearing impairment
e Full-length articles.

Exclusion criteria

Review or meta-analysis publications

Policy papers

Publications that did not report HI gene variants
Publications on environmental hearing impairment
Publications focusing on in silico analysis.

Quality assessment

The quality of the documents reviewed was assessed by
independent reviewers (SMA and EWT) prior to data extrac-
tion. The quality was assessment was conducted using the
quality of genetic studies (Q-Genie) tool developed by
Sohani et al. (2016). The tool designed by Hoy et al. (2012)
was used to assess the risk of bias for the prevalence stud-
ies. By discussion and consensus, and sometimes with the
consultation of an expert in the field (AW), discrepancies
and differences in the judgment of the reviewers (SMA and
EWT) were resolved.

Clinical significance assessment of variants

The clinical significance was assessed for the identified vari-
ants on 3 variant databases; InterVar (Li and Wang 2017),
VarSome (Kopanos et al. 2019), and ClinVar (Landrum et al.
2020). VarSome and InterVar were tools used for assessing
the clinical significance of variants based on the American
College of Medical Genetics and Genomics (ACMG)/Asso-
ciation for Molecular Pathology (AMP) 2015 guidelines (Li
and Wang 2017). In addition, ClinVar Strong was used to
provide further evidence of the clinical significance of the
variants.

Results

A total of 189 records were retrieved from the various
databases searched, 25 retrieved from Africa Wide Infor-
mation, 101 from PubMed, 22 from Scopus, and 41 from
Web of Science. The retrieved records were combined, and
duplicates were removed. The titles of the retrieved docu-
ments were used for the first level screening followed by the
abstracts and 89 records were included in the study (Fig. 1).
The 89 publications considered for the review dated from
1998 to 2021 with, a slowly increasing trend in publica-
tion numbers (Figure S1A). The geographical representa-
tion of published records (Figure S1B) showed that most HI
studies were conducted in Northern Africa (61/89; 68.5%),
with Tunisia accounting for a third of publications (28/89;
31.5%).

Considering families with two or more affected mem-
bers as familial cases, we observed that a slightly higher
number was recorded for publications that focused on
familial cases (41; 46.1% publications), compared to
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«Fig. 2 Geographical distribution of HI genes in Africa. A A geo-
graphical plot of the genes reported from different African coun-
tries. The geographical distribution of four common GJB2 vari-
ants reported in Africa: B GJB2: ¢.35delG: p.(G12Vfs*2), C GJB2:
c.427C>T: p.(R143W), D GJB2: c.139G>T: p.(E47*), E GJB2:
c.109G>A: p.(V37I). The total number of mutant alleles (allele fre-
quency in percentages) per country was displayed on the map

non-familial cases (36 publications, 40.5%) (Figure S2A).
Ten (11.2%) publications report on both familial and non-
familial cases while two (2.2%) publications investigated
HI genes in hearing controls. The majority of familial
studies reported on one to five familial cases (20 publica-
tions), while 13 publications reported on 51-99 familial
cases (Figure S2B). Only 5 publications reported on more
than 99 familial cases. Northern African countries were
found to report the highest percentage of consanguineous
families with Tunisia having the highest number of pub-
lications (22/89 studies) that reported on consanguineous
families (Figure S1B).

Hearing impairment genes in Africa

The analysis of the retrieved data showed a heterogeneous
nature of HI genes in Africa with 46 HI genes reported
from 17 African countries (Fig. 2A), with most studies on
GJB2 which was reported in 76.5% (13/17) of the coun-
tries. From the studies conducted in Tunisia, the country
with the highest number of publications, 18 HI genes were
found. Cameroon, with 17 genes and emerging as the sec-
ond country with a description of variants in numerous
genes.

Molecular methods reported

This review identified more than 15 molecular methods used
to investigate HI gene variants. Targeted genes sequencing
was the most used method in Africa (n=66/111; 59.5%)
followed by exome sequencing (n=15/111; 13.5%). Only
five studies combined exome sequencing techniques with
targeted sequencing. Two studies used specifically designed
North African Deafness Chip (Table S1). Nineteen out of
the 89 studies (21.3%) were found to use combinations of
more than one method to screen for HI genes, which mostly
consisted of restriction fragment length polymorphism
(RFLP)-PCR combined with Sanger sequencing or targeted
sequencing combined with exome sequencing. None of the
studies reviewed used whole-genome sequencing (Table S1).
It is worth noting that the studies found in some countries
(Kenya, Mauritania, SAo Tomé and Principe, Somalia,
Sudan, and Uganda) used only targeted sequencing which
is effective but not comprehensive (Table S1).

Connexin genes
Connexin 26 (GJB2) variants

We identified 28 PLP variants in GJB2 gene (Table S2), of
which ¢.35delG was the most associated variant (Table S3).
The top four GJB2 variants (variants with more than 20
reported alleles) were found to be c.35delG (728/3544
alleles, 20.5%), p.(R143W) (211/1230 alleles, 17.2%),
p.(E47%) (39/1552 alleles, 2.5%), and p.(V371) (23/1260
alleles, 1.8%). The rest 22 GJB2 variants had less than 20
reported alleles (Table S3). GJ/B2: ¢.35delG: p.(G12V{s*2)
was reported only in the Northern African countries with
most cases from Morocco. Similarly, G/B2: ¢c.139G>T:
p-(E47%) and c.109G>A: p.(V37I) variants were common
in North African countries but not sub-Saharan African
countries. Ghana was the only African country with a report
of high-frequency GJB2: c.427C>T: p.(R143W) founder
variant (Fig. 2). There were studies from some sub-Saha-
ran African countries such as Cameroon and South Africa
that extensively investigated HI genes but did not record
any significant contribution of GJB2 variants to HI. One of
such studies from Cameroon reported a variant of uncertain
significance [GJB2: ¢.499G>A (p.V167M)] in the heterozy-
gous state in an affected family (Wonkam et al. 2019).

GJA1 and GJB4 variants

GJAI (connexin 43) may not contribute to HI in Africa.
However, benign and VUS variants were reported from
South Africa and Cameroon (Table S4). In Ghana, seven
variants in GJB4 (connexin 30.3) were reported however,
all except one were either benign or uncertain significance.
A likely pathogenic GJB4 variant [p.(N119T): ¢.356A>C]
was reported in a non-familial case from Ghana (Table S4).

Non-connexin NSHI gene variants

Except for connexin genes, 34 NSHI gene variants
were identified from 7 countries: Algeria (Behlouli
et al. 2016; Talbi et al. 2018), Cameroon (Lebeko et al.
2016; Wonkam-Tingang et al. 2020b, 2021; Wonkam et al.
2021a, b), Ghana (Adadey et al. 2021), Morocco (Amalou
et al. 2021; Bakhchane et al. 2015a; Ebermann et al. 2007),
Nigeria (Yan et al. 2016), South Africa (Yan et al. 2016),
Tunisia (Souissi et al. 2021; Belguith et al. 2009; Ben-
said et al. 2011; Chakchouk et al. 2015; Chiereghin et al.
2021; Tlili et al. 2005, 2008; Masmoudi et al. 2001). Tuni-
sia recorded the highest number of NSHI genes with PLP
variants (11/34). PLP variants in MYO15A were the most
reported and accounted for 102 out of 420 (24.3%) mutant
alleles (Table S5).
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Mitochondrial DNA variants

The analysis of the retrieved records has shown that mito-
chondria HI was mainly reported in three African sub-pop-
ulations. Except for a few studies from Cameroon (Trotta et
al. 2011), Nigeria (Lasisi et al. 2014), and South Africa
(Bardien et al. 2009); the remaining two reports were from
North Africa (Table S6). The m.1555A>G variant was the
most frequently associated mitochondrial variant found in
two out of the three countries, Tunisia (Mkaouar-Rebai et al.
2010; Souissi et al. 2021) and Morocco (Nahili et al. 2010).
However, the reported frequencies of m.1555A>G variant
were less than 2%, indicating the low contribution of the
variant to HI in the studies reviewed. Four (4) PLP mito-
chondrial RNA1 variants (MTRNR1: [1048C>T; 1462G>T,
1018G>A, 1503G>A]) were found within the Cameroonian
population.

Syndromic hearing impairment

Fourteen (14) publications from five African countries were
identified to report on syndromic HI. Ten (10) syndromes
were found, and Usher syndrome was the most frequently
reported syndrome associated with HI, characterized at the
molecular level.

Usher syndrome

Variants from three known Usher syndrome genes
USH2A, USHIG, and USH1C were found from the records
retrieved. However, USH2A was the most common gene
with the highest number of alleles with PLP variants
(Table S7). Usher syndrome type 2 was the common type
of Usher syndrome found in this review. The patients with
Usher syndrome had early onset of severe to profound HI
and a post-pubertal onset of retinitis pigmentosa. Some
Usher syndrome patients were found to carry mutations
in MYO7A, and PCDH15 genes. Among indigenous Black
South Africans, MYO7A was identified as the major gene
associated with HI, with p.(P1780S) founder variant as
the most commonly associated variant (Kabahuma et al.
2021). The medical examination of MYO7A and PCDH15
patients showed that they had Usher syndrome type 1.
These patients reported profound congenital bilateral HI
and childhood-onset retinitis pigmentosa resulting in a
progressively constricted visual field and night blindness.
Fundus examination revealed retinal degeneration in all
the patients (Ben-Rebeh et al. 2016). Using WES, a novel
RRM?2B ¢.786G>T variant was identified, as a plausible
disease-causing, in two affected sibling of Afrikaner
ancestry, in South Africa, presenting a recessive senso-
rineural hearing impairment, associated with rod-cone
dystrophy and kidney disease; the variant was replicated
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in two unrelated South African patients with similar clini-
cal phenotype suggesting a founder effect (Roberts et al.
2020).

Distal renal tubular acidosis

Distal renal tubular acidosis with HI was found to be
associated with variants in ATP6VIBI gene with a total
of 85 reported mutant alleles (n=_85/269; 31.6%). A high
genetic and allelic heterogeneity was observed from the
analysis of the reported variants, in that most variants were
reported in only one study (Table S7). Three (3) out of the
50 variants, ATP6VIBI: c.1155dupC: p.(I386Hfs*56),
ATP6VIBI: c.175-1G>C, and TMCI: c.100C>T: p.(R34X)
were reported in 4, 3, and 2 different studies, respectively,
the remaining variants were reported in one study only
(Table S7). The analysis of retrieved genes associated with
NSHI suggested that ATP6VIBI variants may be local-
ized to only North Africa countries, suggesting a founder
effect (Nagara et al. 2014). Variations in the ATP6VIBI
gene were reported only from Algeria, Tunisia, and
Morocco.

Alstrom syndrome

The Alstrom Syndrome patients belonged to a Tunisian
family and ALMS1: c.10388-2A>G variant was identi-
fied as the likely cause of the condition (Chakroun et al.
2016). Two affected family members were examined in
this family and found to have progressive vision and hear-
ing loss, pendular nystagmus, and photophobia. Fundus
examination of the affected individuals revealed sallow
optic discs, attenuated vessels of the posterior poles, and
pigment retinal degeneration. The patients had deep-set
eyes and flat feet. Systemic/clinical examination did not
identify other features such as hepatic dysfunction, abnor-
mal digits, mental retardation, scoliosis, hypertension,
renal dysfunction, alopecia, hypothyroidism, type 2 dia-
betes mellitus, hyperlipidemia, and acanthosis nigricans
(Chakroun et al. 2016).

Cockayne syndrome

A novel splice site variant found in the Cockayne syndrome
group A gene (ERCCS8: ¢.551-1G>A) was associated with
HI in two Somali siblings. The patients showed the features
of Cockayne syndrome which included skin photosensitiv-
ity, progressive ataxia, spasticity, hearing loss, central and
peripheral demyelination, and intracranial calcifications
(Kleppa et al. 2007).
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H syndrome

Five Tunisian unrelated patients were suspected to have the
rare H syndrome with a characteristic phenotype of pig-
mentation and hypertrichosis patches. The other clinical
features of H syndrome consisted of hepatosplenomegaly,
hearing loss, heart abnormalities, and hypogonadism. Three
SLC29A3 variants [c.42delC: p.(S15Pfs*86), c.1088G>A:
p-(R363Q), c.971C>T: p.(P324L)] were found to be associ-
ated with the condition (Jaouadi et al. 2018).

Jervell and Lange-Nielsen syndrome

Jervell and Lange-Nielsen syndrome was found in a Moroc-
can family that presented with congenital severe bilateral
sensorineural HI. The affected patient had several episodes
of syncope and was diagnosed with an associated KCNQ1
(c.1343dupC, p.Glud449Argfs*14) variant (Adadi et al.
2017).

Pendred syndrome

A p.(L445W) variant in the Pendred syndrome (PDS) gene
was associated with HI in Tunisian patients suspected to
have Pendred syndrome. The affected patients reported sen-
sorineural or mixed HI and an associated goiter in some
cases. All the patients were found to have enlarged bilateral
vestibular aqueducts, however, they had normal thyroid hor-
mone levels (Charfeddine et al. 2010).

Keratitis—ichthyosis—deafness syndrome

An ectodermal defect that consists of an atypical ichthy-
osiform erythroderma linked to sensorineural deafness is
referred to as Keratitis—ichthyosis—deafness (KID) syndrome
(OMIM 148210). KID syndrome patients mostly have con-
genital HI. Two unrelated patients from Cameroon with
KID syndrome were reported to have heterozygous GJB2-
p-D50ON mutation (Wonkam et al. 2013).

Discussion

This review of literature focused on the landscape of genetic
causes of HI in Africa, and it is the most comprehensive
report, to date. The study suggested that a large majority of
African countries are still to be investigated. The few avail-
able data using next-generation sequencing reveals expected
genetic and allelic heterogeneity, and a high proportion of
variants not previously reported (Bakhchane et al. 2015b;
Ben-Rebeh et al. 2016; Oluwole et al. 2021; Wonkam et al.
2021b), that will definitively contribute to improving the

disease-gene pair curation, globally. Moreover, there is evi-
dence that novel HI genes will be discovered in Africa, based
on the much lower pick-up rate when exploring patients with
target genes panels (Lebeko et al. 2015; Yan et al. 2016).

Globally, connexins are the most associated genes to HI
(Adadey et al. 2020b; Chan and Chang 2014); however,
their contribution to HI in sub-Saharan Africa is negligi-
ble (Adadey et al. 2020b; Kabahuma et al. 2011; Wonkam
2015), except for Ghana (Adadey et al. 2019; Hamelmann
et al. 2001) and North African (Abidi et al. 2008; Lucotte
2007) countries. Indeed, studies investigating the association
of connexin gene variants with HI from other sub-Saharan
African countries such as Cameroon (Bosch et al. 2014b;
Tingang Wonkam et al. 2019), Nigeria (Lasisi et al. 2014),
South Africa (Bosch et al. 2014b), Kenya, and Sudan (Gas-
melseed et al. 2004) found a very low number of PLP vari-
ants in GJB2. The GJB2: 35delG is the most predominant
variant in Europe (Adadey et al. 2020b; Gasparini et al.
2000), and the Mediterranean countries including Tunisia,
Morocco, Egypt, and Algeria (Lucotte 2007). The GJB2:
35delG age was estimated at about 10,000-14,000 years
ago, and emerged in the Mediterranean (Rothrock et al.
2003; Van Laer et al. 2001), and spread in Europe and Asia
through the two Neolithic population movements (Dzhemi-
leva et al. 2010). The other GJB2 PLP variants identified
in North Africa were GJB2: c.139G>T: p.(E47*) and
c.109G>A: p.(V37I). The GJB2: c.109G>A: p.(V37]) is
the most common in Asia, particularly in China (Adadey
et al. 2020b). The GJB2: c¢.427C>T: p.(R143W) variant
is the most prevalent variant associated with HI among
Ghanaians (Adadey et al. 2019, 2020a; Brobby et al. 1998;
Hamelmann et al. 2001), and was described as a founder
variant in Adamorobe (Brobby et al. 1998), a village in
the Eastern Region of Ghana. The carrier frequency of the
variant among the hearing Ghanaian population was esti-
mated at 1.4% (Adadey et al. 2019). The GJB2: ¢.427C>T:
p-(R143W) variant is not exclusive to Ghana and has been
found among Americans, likely through the slave trade, and
in some Asian populations (Adadey et al. 2020b). Haplotype
analysis of hearing-impaired individuals from the Japanese
population suggested that the GJB2: ¢.427C>T: p.(R143W)
founder variant occurred as multiple events (Shinagawa et al.
2020). Additional studies in Ghana to estimate the age of
this variant is needed.

The current review suggested that non-GJB2 connexins
genes do not contribute significantly to HI in Africa. Though
studies from South Africa (Bosch et al. 2014a) and Ghana
(Adadey et al. 2020a) reported variants in GJAI and GJB4,
almost all the variants were predicted as benign or uncertain
significance. A likely pathogenic GJB4 variant was found
in a hearing-impaired participant from Ghana (Adadey
et al. 2020a). GJB4 protein oligomerizes with other con-
nexins in the cells of the inner ear to form gap junctions for
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the transport of ions across the cell. The expression of the
gene in mouse (Bult et al. 2019) and rat (Wang et al. 2010)
cochlea provides evidence of its importance in the auditory
system. There is a need to sample many other African popu-
lations to understand the contribution of the G/B4 to HI.

MYOI15A and ATP6VIBI genes were the most common
non-GJB2 genes with PLP in Africa. MYO15A is an autoso-
mal recessive deafness gene located on the human chromo-
some 17p11.2. An animal study has shown that the gene is
expressed in the inner ear of mice (Kanzaki et al. 2006). It
was found in mice that there is an interaction of the C-ter-
minal PDZ domains of MYO15A and WHRN for recruiting
endogenous WHRN to the tip stereocilia of hair cells (Bely-
antseva et al. 2005). ATP6VIBI is located on chromosome
2p13.3 of the human genome. According to the Online Men-
delian Inheritance in Man (OMIM) database, ATP6VIBI
associates with distal renal tubular acidosis 2 with progres-
sive sensorineural hearing loss (MIM 267300) as syndro-
mic phenotype. Studies from Africa reported ATP6VIBI
association with distal renal tubular acidosis patients with
sensorineural HI (Boualla et al. 2016; Dahmani et al. 2020;
Elhayek et al. 2013). Unlike MYO15A PLP variants that were
found in Central and North African countries, ATP6VIBI
variants were reported only in North African countries
from Algeria (Dahmani et al. 2020), Tunisia (Elhayek et al.
2013), and Morocco (Boualla et al. 2016). The localization
of ATP6VIBI variants in North African countries may be
due to a founder effect. In addition, the high prevalence of
consanguinity within North African populations (El Bou-
chikhi et al. 2020; Mete et al. 2020) may be the driving force
for the spread of ATP6VIB] variants in these populations.
However, the association of ATP6V1B]1 variants with HI is
not exclusive to North Africa, there were reports from other
parts of the world including the USA (Subasioglu Uzak et al.
2013), and Japan (Yashima et al. 2010).

Mitochondrial gene variants have been associated with
different multisystem syndromes including the nervous
system, neuromuscular, and endocrine organs (Finsterer
2020; Mkaouar-Rebai et al. 2013a). We found seven studies
from Cameroon (Trotta et al. 2011), Morocco (Nahili et al.
2010), and Tunisia (Mkaouar-Rebai et al. 2006, 2013a, b;
Tabebi et al. 2015) that reported mitochondria variants in
HI. The mitochondria are known to generate free radicals
and reactive oxygen species (ROS) which may result in
acoustic trauma when they accumulate in the cochlea (Le
Prell et al. 2007; Yan and Liu 2010). Most mitochondria
NSHI are caused by mutations in the 12S ribosomal RNA
and tRNASer (UCN) genes which are maternally inherited
(Guan 2004). Our review identified 12S rRNA m.1555A>G
mutation as the most prevalent mitochondria variant asso-
ciated with NSHI. Variable phenotypes such as the age of
onset and severity have been reported in patients with the
12S rRNA m.1555A>G variant (Friedman et al. 1999). The
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phenotypic variability of mitochondria-associated HI is also
sometimes influenced by GJB2 mutations (Yan and Liu
2010). It is therefore important to investigate mitochondria
variants in Ghanaian and North African populations towards
the understanding and identification of HI gene modifiers
in Africa. Owing to the diversity of the African population,
it is important to study mitochondria variants in different
African populations to understand their contribution to the
development of HI.

The outcome of our review showed that Usher syndrome
was the most common syndromic HI studied at the molec-
ular level in Africa. Usher syndrome is characterized by
HI and retinitis pigmentosa. Damage to the inner ear that
impedes the inner ear functioning is the possible cause of HI
and balance problems in Usher syndrome patients (Moller
et al. 1989). According to phenotypic expressions (severity
of hearing impairment, age of retinitis pigmentosa onset,
and the presence or absence of vestibular response), there
are three main types of Usher syndrome, and type 1 is the
most severe form (Jaijo et al. 2007). Usher syndrome type 2
was found to be the most common type of Usher syndrome
in Africa. Similar to the African observation, type 2 was
reported as the main type of the syndrome in Canada (Eber-
mann et al. 2009). Five genes (USH2A, USHIG, USHIC,
MYO7A, and PCDH15) were associated with Usher syn-
drome from Africa. A recent study among Black South Afri-
cans identified MYO7A as the most prevalent gene associated
with syndromic HI in the South African population and the
founder variant p.(P1780S) was the most implicated variant
(Kabahuma et al. 2021).

Expert’s comment and perspectives

Despite the great value provided by this review, there are
indications that the results do not represent the full extent
of HI genes in Africa. First, the genetics of HI is yet to be
studied in most sub-Saharan African countries. Second,
some studies excluded reported on known syndromic con-
ditions with HI and did not investigate them at the molecu-
lar level. Indeed there are clinical reports suggesting that
Waardenburg syndrome is the most common syndromic HI
in numerous sub-Saharan African populations (Adadey et al.
2019; Tingang Wonkam et al. 2019); however, no report
on the genetics of this condition was found in the litera-
ture. Third, less than 20% of studies used next-generation
sequencing (with none using Whole-Genome Sequencing),
which means that a fair number of genes and variants have
not been investigated, owing to the high genetic and allelic
heterogeneity of HI. Finally, almost all the studies reviewed
focused on childhood HI (except for two), meaning that
genes associated with adult HI still need to be uncovered in
Africa. Therefore, the data provided by the present review
have some limitations in its usability to design and develop
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a single diagnostic approach for screening HI in all parts of
the continent. To address this challenge: there is a need to
systematically investigate more African populations, using
multiplex families, and next-generation sequencing (WES
and WGS) to identify novel genes and their associated vari-
ants towards the development of population-specific diag-
nostic approaches. This would be facilitated by a high fertil-
ity rate in most of Africa, and a high consanguinity rate in
some parts of Africa.

Conclusion

This review provides the most comprehensive data on HI
gene variants and emphasizes that most African populations
are largely under-investigated, with reports only found in
nearly a third of African countries. GJB2 appeared to be the
most investigated HI gene on the continent, yet its contri-
bution to the burden of the disease was negligible in most
sub-Saharan African populations, but for those from North
Africa where GJB2- 35delG, p.(E47%*) and p.(V37I) were
predominantly found, and Ghana where high frequency
of the GJB2-p.(R143W) founder variant was reported.
MYO15A was the second frequently reported gene associated
with NSHI in both North and Central Africa. ATP6VIBI
variants were associated with distal renal tubular acidosis
patients with sensorineural HI and only reported from North
Africa. Usher syndrome was the most common syndromic
HI genetically investigated.

The poor investigation of the genetics of HI in most
African populations, and the limited use of WES for the
available data suggested that the current report is likely an
underestimation of the real spectrum of genes and variants
associated with HI among Africans, considering the high
heterogeneity of HI and the genetic diversity in Africa. The
present review provides evidence that African populations
are important in the discovery of the next sets of novel HI
genes, this is further favored by the high fertility and consan-
guinity rates in some Africa regions and will contribute to
improving our understanding of HI pathobiology, globally.
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