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Abstract 

Background:  Large-scale genome-wide association studies have successfully identified many genetic variants 
significantly associated with Alzheimer’s disease (AD), such as rs429358, rs11038106, rs723804, rs13591776, and more. 
The next key step is to understand the function of these SNPs and the downstream biology through which they exert 
the effect on the development of AD. However, this remains a challenging task due to the tissue-specific nature of 
transcriptomic and proteomic data and the limited availability of brain tissue.In this paper, instead of using coupled 
transcriptomic data, we performed an integrative analysis of existing GWAS findings and expression quantitative trait 
loci (eQTL) results from AD-related brain regions to estimate the transcriptomic alterations in AD brain.

Results:  We used summary-based mendelian randomization method along with heterogeneity in dependent instru-
ments method and were able to identify 32 genes with potential altered levels in temporal cortex region. Among 
these, 10 of them were further validated using real gene expression data collected from temporal cortex region, and 
19 SNPs from NECTIN and TOMM40 genes were found associated with multiple temporal cortex imaging phenotype.

Conclusion:  Significant pathways from enriched gene networks included neutrophil degranulation, Cell surface 
interactions at the vascular wall, and Regulation of TP53 activity which are still relatively under explored in Alzheimer’s 
Disease while also encouraging a necessity to bind further trans-eQTL effects into this integrative analysis.
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Background
Alzheimer’s disease (AD) is the leading cause of brain 
dementia, along with which substantial failure of organs 
and mental issues arise. Accumulation of beta-amyloid 
plaques and tau tangles are two hallmarks of AD. The 

genetic mutations in genes such as ataxin-1 cause the 
misfolding of the proteins thereby starting a chain reac-
tion of multiple neurodegenerative pathologies [1]. In 
the last decade, several large-scale genome-wide associa-
tion studies (GWASs) have helped reveal mutations sig-
nificantly associated with AD and the related traits. Yet, 
the functional mechanism through which these SNPs 
contribute to the development of AD remains largely 
unknown. This knowledge gap could be partly nar-
rowed by investigating the effect of these SNPs on the 
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downstream transcriptomic and proteomic levels. But 
the limited availability of gene and protein expression 
data in the brain tissue makes this a very challenging task.

Expression quantitative loci (eQTL) analysis aims to 
identify genetic variants that are significantly associated 
with the expression of one or more genes [2]. Recent 
findings show that most GWAS findings overlap with 
expression quantitative trait loci (eQTL), indicating the 
potential role of disease-related variants in gene regula-
tion [3]. Although GWAS does not necessarily reveal the 
causal variants associated with the disease, with eQTL 
that links the genomic data to the transcriptomic data, 
one can isolate the location that potentially affect the 
downstream expression profile.

In this paper, leveraging the GWAS findings from 
International Genomics of Alzheimer’s Project (IGAP) 
and eQTL results of 3 brain regions from Brain eQTL 
Almanac (BRAINEAC), we applied a summary-based 
mendelian randomization method (SMR) to predict the 
associations between gene expression and AD in 3 brain 
regions of interest [4], including hippocampus, frontal 
cortex and temporal cortex as described in Fig. 1. While 
no significant gene-AD relationships were found from 
the hippocampus and frontal cortex, temporal cortex 
resulted in 37 SNPs from 32 unique genes that are sig-
nificantly associated with AD in the transcriptomic 
level. Among these, 10 of them were found differentially 
expressed in AD brains when examined using the real 
gene expression data from temporal cortex tissue. For 
37 significant SNPs associated with these 32 genes as in 

SMR, 19 of them were found to be associated with imag-
ing phenotypes in temporal cortex, including FDG inten-
sity, medial temporal lobe thickness, and lateral temporal 
lobe thickness. These results cement the theory that AD 
pathology variants have a higher influence on the tem-
poral region of the brain. This is the first study that uses 
real brain expression data to validate the results obtained 
from the integrative analysis of GWAS and eQTL sum-
mary statistics in AD.

Results
Significant gene‑AD associations
With the GWAS summary data from the IGAP and 
eQTL summary data from BRAINEAC, we performed 
both SMR and HEIDI tests to estimate the gene-AD asso-
ciations in three human brain regions: frontal cortex, 
temporal cortex, and hippocampal regions. For the fron-
tal cortex and hippocampal regions, we obtained 318,168 
and 195,996 probes respectively that passed the genome-
wide significance threshold in the SMR test. However, 
after FDR correction, none of them remained significant. 
While both frontal cortex and hippocampal regions are 
known to be related to AD, our results did not show any 
significant transcriptomic alterations in these regions, 
likely due to the small sample size in eQTL study. Also, 
some signals might be missing since BRAINEAC now 
only provides cis-eQTL data. In the temporal cortex, 
SMR test yielded 97 significant probes with FDR cor-
rected p ≤ 0.05 and HEIDI test returned 2224 significant 
probes after correction. 37 probes corresponding to 32 

Fig. 1  Overall pipeline of the integrative analysis of GWAS and eQTL summary statistics and the downstream validation
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unique genes were found significant in both SMR and 
HEIDI tests as seen in Fig. 2.

Differential gene expression in AD brains
For all 32 significant genes identified in the temporal 
cortex, we further compared their expression patterns 
between cognitively normal controls and AD using RNA-
Seq data collected from the temporal cortex region in 
the Mayo clinic cohort. Out of 32 genes, we identified 
10 of them with significant differential expression pat-
terns in the temporal cortex region after FDR correction. 
Shown in Table 1 is the summary of those differentially 
expressed genes (DEGs).

Pathways and networks enriched in temporal cortex
Using RectomeFA, 15 pathways in REACTOME database 
were found to be enriched by those 10 significant genes. 
Shown in Fig. 3 is a list of those pathways and the ratio 
between the number of significant genes and all member 
genes in the pathway. We further examined the interac-
tions between those 10 genes by mapping them to the 
REACTOME protein interaction network. We used the 
ReactomeFI in Cytoscape to investigate the direct or indi-
rect interactions between these genes. Out of 10 genes, 
7 of them were found to be connected with 6 intermedi-
ate or linker genes (Fig. 4). In the subnetwork, EP300 and 
MAPK8 were observed as two hub genes with the high-
est connectivity, and PTK2B has the highest connectivity 
among those 10 significant genes.

Association with temporal cortex phenotypes
When examined the original GWAS and eQTL sum-
mary statistics, the significant association of those 10 
genes with AD disease status was found to come from 11 
unique SNPs. Using these 11 SNPs as seeds, we expanded 

our SNP set by including other neighboring SNPs located 
within the same LD block. In total, 613 SNPs were found 
and 518 of them were identified with genotype data from 
the ADNI cohort. Then, we tested their association with 
three AD-related brain imaging phenotypes of the tem-
poral cortex region in PLINK. Linear regression models 
were used to examine the association between each pair 
of SNP and brain imaging phenotype. After FDR cor-
rection, our association analysis identified 18 SNPs sig-
nificantly associated with FDG intensity levels, 15 SNPs 
associated with the thickness of the medial temporal 
lobe, and 15 SNPs for the lateral temporal lobe (Table 2). 
In total, there are 19 significant SNPs, all from chromo-
some 19, and 13 of them were found to be associated with 

Fig. 2  List of genes that passed both SMR and HEIDI tests in temporal cortex samples

Table 1  List of genes with significant differential expression 
levels between AD and normal brains in the temporal cortex 
region

a The log of fold-change that describes the difference of expression between 
groups
b The log of counts-per-million that describes the expression level of each gene
c Likelihood ratios of the genes

Gene logFCa Corrected p value logCPMb LRc

CCDC86 − 0.2E−04 7.2E−05 11.701 15.750

CUZD1 − 0.3E−04 0.9E−05 9.634 10.850

FOSB 0.7E−05 4.1E−05 11.738 16.827

PODXL2 0.3E−05 1.7E−05 15.238 18.474

PPP1R13L − 0.6E−04 6.9E−06 11.488 20.211

PRPF19 0.4E−05 3.1E−09 15.880 35.106

PSD2 − 0.7E−04 6.9E−05 16.418 33.557

PTK2B 0.4E−05 3.1E−05 16.594 17.366

RGS2 0.2E−05 0.1E−05 13.428 6.514

SLC15A3 − 0.7E−04 3.9E−09 12.117 34.668
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Fig. 3  Top pathways enriched by 10 significant genes

Fig. 4  Functional interactions among 10 significant genes that passed SMR, HEIDI tests, and further showed differential expression patterns in 
independent cohort
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all three imaging phenotypes (Fig. 5). These SNPs are all 
located with two LD blocks of rs73050293 and rs7669277 
in NECTIN and TOMM40 respectively. 11 of the SNPs 
were intron variants while two other SNPs, rs11556505 
and rs15758 identified as synonymous variants located in 

the coding sequence. Most of the SNPs in NECTIN are 
genic downstream transcript variants and intron vari-
ants, while one SNP rs71352238 belongs to the category 
of upstream transcript variant, which might be a part of 
the gene regulation.The intronic variants can be respon-
sible for regulating the gene expression since there has 
been multiple reports of miRNAs, siRNAs, piwi-inter-
acting RNAs (piRNAs), long noncoding RNAs (lncR-
NAs), and small nucleolar RNAs (snoRNAs), which do 
have regulatory effect in transcription , to be present in 
the intronic region. Variation in this region could lead to 
differential regulation of the gene transcription [5]. For a 
more detailed analysis of the intronic variants, we used 
the SNP Nexus online tool [6–10]. We observed that 
under Ensemble Regulatory Build [11], about 88 percent-
age of the variants feature type belonged to promoter 
region and was active in brain and brain related epig-
enomes. While the other variant feature types belong to 
CTCF binding sites or open chromatin sites, they were 
also labelled to be inactive for the above mentioned epig-
enomes. As for the ENCODE database results [12], it was 
seen that H3K36me3, H3K4me1 and, H3K4me3 histone 
feature and DNase open chromatin feature were the most 
prominent features where these variants were present. 
This could also imply that these variants might play a role 
in Alzheimer’s disease by transcriptomic regulation of 
the epigenetic factors.

The top three significant pathways enriched by 10 sig-
nificant genes are Neutrophil degranulation, Cell surface 
interactions at the vascular wall, and Regulation of TP53 
activity. Further probing of these pathways, neutrophils 
were found to migrate around AB proteins and in absence 
of neutrophils, improved cognitive functions, impeded 
microgliosis and αβ1–42 levels in brain homogenates 
[13]. Neutrophil downregulation has provided a reduc-
ing effect on levels of phosphorylated tau proteins. The 
secretory and the azurophil neutrophil granules have a 
common component, CAP37 protein, which is also seen 
upregulated in AD. This protein has been positively cor-
related with the AB-RAGE signaling pathway and also 
proven to activate monocytes by varying the cell adhe-
sion pathway expression profile. Co-incidentally, we have 
cell surface interactions with vascular walls as one of the 
top significant pathways, where the process of extrava-
sation is carried out by the vascular endothelial cells 
attached with neutrophils. The other important process 
that tangles these two pathways is NETosis (Neutrophils 
extracellular traps), wherein the neutrophils bind with 
the blood vessels and become mobile enough to target 
the parenchyma cells, leading to their cell death [14]. 
Studies have shown that NET depletion has provided 
positive feedback on reduced memory loss and other 
neuropathological features. Few studies have pointed 

Table 2  Significant associations between SNPs and 3 distinct 
imaging phenotypes of temporal cortex region

SNP FDG phenotype Lateral temporal 
lobe thickness

Medial temporal 
lobe thickness

rs34278513 0.004 0.035 0.445

rs412776 0.006 0.036 0.445

r73050293 0.069 0.164 0.028

rs3865427 0.006 0.068 0.445

rs12972156 1.7E−08 0.005 0.007

rs12972970 1.7E−08 0.003 0.007

rs3432646 1.7E−08 0.003 0.007

rs283815 2.2E−08 0.009 0.001

rs6857 3.2E−10 0.002 0.0003

rs71352238 1.7E−08 0.002 0.007

rs184017 1.8E−08 0.009 0.001

rs15781 0.0002 0.078 0.211

rs2075650 1.7E−08 0.002 0.007

rs15781 2.2E−08 0.009 0.001

rs34095326 0.0003 0.117 0.039

rs34404554 1.7E−08 0.002 0.007

rs11556505 1.7E−08 0.002 0.007

rs157582 2.2E−08 0.009 0.001

rs59007384 1.7E−08 0.009 0.001

Fig. 5  Number ofsignificant SNPs associated with three imaging 
phenotypes of temporal lobe
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out neutrophil levels as a potential indicator of cognitive 
decline [15]. Further, the proteins that belong to the Neu-
trophil pathway are significantly associated with Chr19, 
which also coincides with the location of all the signifi-
cant SNPs associated with the imaging phenotype.

Regulation of TP53 is the other significant path-
way along with the above two. Studies have shown that 
approximately 2-fold upregulation of p53 has been 
recorded in the superior temporal gyrus of Alzheimer’s 
patients. It has also been found to phosphorylate tau 
proteins in HEK cells [16]. Furthermore, p53 has been 
seen to aggregate and interact with tau oligomers in AD 
patients [17]. Thus, our exploration adds weight to the 
cause of relating AD and the cancerous pathways involv-
ing p53.

Conclusion
We performed an integrative analysis of AD GWAS and 
brain eQTL summary statistics to estimate the poten-
tial transcriptomic changes inside AD brains. Using real 
RNA-Seq gene expression data inside corresponding 
brain regions, identified genes with potential association 
with AD were further examined for altered expression 
patterns in AD brains. Significant gene-AD associations 
were found only in the temporal cortex region, but not in 
the frontal cortex and hippocampal regions. SNPs associ-
ated with two significant genes TOMM40 and NECTIN, 
as in the original eQTL summary, also showed signifi-
cant association with the FDG intensity level and thick-
ness of the temporal lobe. Further pathway and network 
analysis provided an enriched pathway profile, with neu-
trophil degranulation, Cell surface interactions at the 
vascular wall, and Regulation of TP53 activity as the most 
significant ones. Further efforts are warranted to inves-
tigate the association of neutrophils with AD. With the 
validation from real expression data collected from brain 
regions, the results of this study confirmed the poten-
tial of integrative GWAS and eQTL analysis in exploring 
the transcriptomic changes when lack of tissue-specific 
expression data. Further efforts to explore new merging 
methods for integrative analysis and trans-eQTL effects 
are warranted in the future work.

Data and methods
GWAS summary statistics
GWAS summary statistics were downloaded from the 
International Genomics of Alzheimer’s Project (IGAP). 
IGAP is a large two-stage study based upon genome-
wide association studies (GWAS) on individuals of Euro-
pean ancestry. In stage 1, IGAP used genotyped and 
imputed data on 7,055,881 single nucleotide polymor-
phisms (SNPs) to meta-analyze four previously-pub-
lished GWAS datasets consisting of 17,008 Alzheimer’s 

disease cases and 37,154 controls (The European Alzhei-
mer’s disease Initiative—EADI the Alzheimer Disease 
Genetics Consortium—ADGC The Cohorts for Heart 
and Aging Research in Genomic Epidemiology consor-
tium—CHARGE The Genetic and Environmental Risk in 
AD consortium—GERAD). In stage 2, 11,632 SNPs with 
p ≤ 10

−6 were genotyped and tested for association in an 
independent set of 8572 Alzheimer’s disease cases and 
11,312 controls. Finally, a meta-analysis was performed 
combining results from stages 1 and 2 [18].

EQTL summary data
EQTL summary statistics from the Brain eQTL Alma-
nac (BRAINEAC) were downloaded through the UK 
Brain Expression Consortium (UKBEC). In total, there 
were 134 postmortem brains included in the study. RNA 
from ten brain regions were extracted and analyzed with 
Affymetrix Human Exon 1.0 ST and eQTLs were classi-
fied and grouped by marker type, expression type, and 
cis/trans type. Our study focused on three brain regions 
including the temporal cortex, frontal cortex, and hip-
pocampal regions, in which the gene expression data are 
available in the AD brains through the AMP-AD knowl-
edge portal.

SMR and HEIDI test
SMR (Summary-based Mendelian Randomization) soft-
ware was used to integrate summary-level data from the 
IGAP GWAS with data from BRAINEAC eQTL studies 
to identify genes with potential expression levels altered 
in certain brain regions of AD brains [19]. Individual-
level SNP genotype data from 1000 Genomes European 
population were used to estimate linkage disequilib-
rium (LD) block information. Following the default set-
tings, SMR analysis was performed on cis-regions with 
a window of 2000 Kb, and LD r-squared threshold range 
was set between 0.9  ±  0.05. Note that the association 
observed in the SMR test does not necessarily indicate 
that gene expression and AD are affected by the same 
underlying causal variant. The association could be due 
to the top associated eQTL being in LD with two causal 
variants, one affecting gene expression and the other 
affecting AD. Compared to such linkage effect, pleiotropy 
effect is of more interest where gene expression and a 
trait (e.g., AD) share the same causal variant. Therefore, 
we further applied HEIDI (heterogeneity in dependent 
instruments) test to differentiate pleiotropy from linkage. 
Following the [4], we used a genome-wide significance 
level ( p ≤ 8.4 × 10

−6 ) for SMR test and p value thresh-
old of 0.01 for the HEIDI test. Subsequent analyses are 
focused on gene-AD associations that passed both SMR 
and HEIDI tests.
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Differential expression analysis
For all the genes that passed both SMR and HEIDI tests, 
we further compared their expression levels between 
cognitively normal controls and AD patients using 
RNA-Seq data from the corresponding brain tissues. 
In our case, significant gene-AD associations were only 
detected in the temporal cortex region. So we down-
loaded the RNA-Seq data from the temporal cortex tissue 
in the Mayo Clinic cohort [20]. The differential expres-
sion analysis was performed using the R package, EdgeR 
[21, 22], where baseline age, sex, batch, RIN, and APOE 
e4 status were used as covariates. EdgeR is one of the 
most robust packages for differential expression analysis, 
which uses a generalized linear model (GLM) approach 
based upon negative binomial distribution. Normaliza-
tion of the RNA-Seq data was performed using Trimmed 
mean of M values (TMM method). Before analysis, genes 
were filtered with counts per million as very low counts 
provide little evidence for differential expression. p Val-
ues obtained from differential expression analysis were 
adjusted using the FDR method and a hard threshold was 
set at 0.05.

Pathway and network enrichment analysis
We further performed pathway enrichment analysis 
for all genes that passed the SMR, HEIDI, and differen-
tial expression tests. The ReactomePA package in R was 
used to perform the enrichment analysis based on the 
pathways in the Reactome database [23]. This package 
provides the best pathways for each gene-set from the 
input list of genes as well as the membership of genes to 
each pathway. Besides, we also mapped these 10 genes 
to the protein interaction network using ReactomeFI in 
Cytoscape to examine their direct or indirect functional 
interactions in the pathway. [24]

Genetic association analysis with brain imaging Phenotype
With the significant gene-AD associations identified 
from the temporal cortex, we further examined the asso-
ciation of these genes with the brain imaging pheno-
types in the temporal cortex region. We downloaded the 
FDG intensity levels and mean thickness of the temporal 
cortex regions from the ADNI cohort. The initial phase 
(ADNI-1) was launched in 2003 to test whether serial 
magnetic resonance imaging (MRI), positron emission 
tomography (PET), other biological markers, and clini-
cal and neuropsychological assessment could be com-
bined to measure the progression of MCI and early AD. 
ADNI-1 was extended to subsequent phases (ADNI-GO, 
ADNI-2, and ADNI-3) for follow-up for existing partici-
pants and additional new enrollments. More information 
about the data collection and preprocessing steps can be 

found at www.​adni-​info.​org [25, 26]. In total, we studied 
3 imaging phenotypes, including the overall FDG inten-
sity level of the temporal lobe region and the mean thick-
ness of medial and lateral temporal regions. To remove 
the potential bias introduced by confounding factors, 
baseline age, gender, and education years were included 
as covariates to adjust FDG intensity levels. Intracranial 
volume (ICV) was used as an additional covariate for 
thickness measures. The association between eQTL SNPs 
of those significant genes and 3 imaging phenotypes was 
tested using PLINK. LD information derived from 1000 
Genomes using European population were used for FDR 
correction of the SNP p values in each phenotype.
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