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SUMMARY

To elucidate mechanisms by which T-cells eliminate leukemia, we study donor lymphocyte 

infusion (DLI), an established immunotherapy for relapsed leukemia. We model T-cell dynamics 

by integrating longitudinal, multimodal data from 94,517 bone-marrow-derived single T-cell 

transcriptomes in addition to chromatin accessibility and single T-cell receptor sequencing from 

patients undergoing DLI. We find that responsive tumors are defined by enrichment of late-

differentiated T-cells before DLI, and rapid, durable expansion of early-differentiated T-cells after 

treatment, highly similar to ‘terminal’ and ‘precursor’ exhausted subsets, respectively. Resistance, 

by contrast, is defined by heterogeneous T-cell dysfunction. Surprisingly, early-differentiated 

T-cells in responders mainly originate from pre-existing and novel clonotypes recruited to the 

leukemic microenvironment, rather than the infusion. Our work provides a paradigm for analyzing 

longitudinal single-cell profiling of scenarios beyond adoptive cell therapy, and introduces 

Symphony, a Bayesian approach to infer regulatory circuitry underlying T-cell subsets, with broad 

relevance to exhaustion antagonists across cancers.
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INTRODUCTION

Despite the potency of cancer immunotherapy for a subset of patients with cancer, the 

variability in responses and efficacy suggests that the fundamental mechanisms, cell types 

and pathways driving clinical outcomes remain elusive (Yofe et al., 2020). Single-cell 

transcriptomic profiling is a powerful technology that can characterize the full range 

of immune cell states and gene programs in the tumor microenvironment (TME) in a 

comprehensive and unbiased manner. Studying the evolution of the TME at single-cell 

resolution before and after therapy can thus reveal how heterogeneous cell states evolve in 

relation to distinct clinical outcomes and illuminate the molecular and cellular determinants 

of immunotherapeutic response or resistance (Lesterhuis et al., 2017; Yofe et al., 2020). 

However, working with highly variable patient material presents unique confounding factors 

and logistical challenges that can hinder high-resolution studies of such temporal dynamics.
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Here, we develop strategies to overcome these limitations and apply them to a single-

cell study of the human TME undergoing immunotherapy, using serial biopsies from 

the same patients before and after treatment. As an instructive demonstration, we focus 

on donor lymphocyte infusion (DLI), a widely used adoptive cellular immunotherapy 

for relapsed leukemia after allogeneic stem cell transplant. The clear, binary outcomes 

of response or resistance; the clinical samples collected over a multi-year time-span; 

and the lack of confounding chemotherapy or immunomodulators have made DLI an 

attractive immunotherapeutic setting to study the essential ‘search and destroy’ functions 

of donor-derived T cell responses that underlie the therapeutic graft-versus-leukemia (GvL) 

effect of allo-SCT (Bachireddy and Wu, 2014; Jenq and van den Brink, 2010). Over the 

last 30 years, DLI has directly demonstrated the potency of GvL by inducing durable 

molecular remissions in ~75% of patients with relapsed chronic myelogenous leukemia 

(CML) following allo-SCT (Collins et al., 1997; Kolb et al., 1995). These experiences 

have provided the foundation for the current development of newer generations of effective 

adoptive cellular therapies (Schmid et al., 2021).

Response to DLI modified by CD8-depletion has been associated with decreased toxicity 

(Alyea et al., 1998; Champlin et al., 1991; Giralt et al., 1995; Soiffer et al., 2002), increased 

T cell receptor (TCR) repertoire diversity (Claret et al., 1997), expansion of endogenous, 

tumor-specific, marrow resident CD8+ T cells (Zhang et al., 2010), and reversal of T cell 

exhaustion (Bachireddy et al., 2014). Similar observations in acute myelogenous leukemia 

(Liu et al., 2018) suggest that the study of DLI in CML can reveal insights that are broadly 

relevant across hematologic malignancies. Yet despite the long-established use of DLI for 

the treatment of relapsed disease following allo-SCT (Collins et al., 1997; Porter et al., 

1994; Schmid et al., 2021), the mechanistic basis for its effectiveness remains incompletely 

understood. While allo-SCT is no longer a first-line therapy for CML, we hypothesized that 

studying the biological basis for its increased DLI sensitivity would elucidate the pathways 

driving GvL clinical outcomes and inform therapeutic strategies to prevent or treat relapse 

following allo-SCT for which DLI remains a standard of care therapy.

To identify the T cell subsets mediating DLI resistance, response and exhaustion after 

DLI therapy, we analyze single-cell T cell transcriptomes, bulk chromatin accessibility 

profiles, and single T cell clonality data from bone marrow biopsies of a longitudinal 

cohort of patients with relapsed CML after allo-SCT treated with DLI (Alyea et al., 

1998). We introduce computational models to integrate data across multiple timepoints and 

modalities and use this framework to detect and characterize the intratumoral T cells whose 

divergent dynamics and regulatory circuitries define immunotherapeutic response. Our 

findings link the hierarchy of ‘terminal’ and ‘precursor’ exhausted T cell subsets directly to 

immunotherapeutic responses in human leukemia, extend their relevance beyond checkpoint 

blockade to adoptive cellular therapies, and nominate this cellular program as a potent 

effector of the graft-versus-leukemia effect. Finally, we present a general computational 

framework for modeling the temporal dynamics of therapy response, applicable also to other 

cancer types and therapeutic scenarios beyond oncology.

Bachireddy et al. Page 3

Cell Rep. Author manuscript; available in PMC 2022 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

A high-resolution map of T cell states in the leukemic microenvironment

To delineate the evolving landscape of cellular phenotypic states for marrow-infiltrating 

T cells in relation to DLI therapy, we assembled a cohort of 12 patients treated with 

CD8-depleted DLI for relapsed CML (Alyea et al., 1998). Six patients were long-term DLI 

responders (“Rs”), defined as having achieved molecular remission (i.e. RT-PCR negative 

for the BCR-ABL transcript) after DLI, and 6 were nonresponders (“NRs”), who did 

not achieve measurable tumor reduction following DLI. None of the patients developed 

acute graft-versus-host disease (GvHD) after DLI (Table S1). Serial bone marrow (BM) 

biopsies were collected before and after DLI treatment at a median of 3 timepoints per 

patient (STAR Methods). The cohorts had comparable timing between allo-SCT and DLI 

therapy (median 702 (R) and 1064 (NR) days), and between pre- and post-DLI sampling 

(Figure S1A; Table S1). As reference, we also analyzed post-transplant BM biopsies from 

two patients with CML who never relapsed after allo-SCT; as an extension cohort, we 

assembled an independent set of 3 long-term DLI responders. From each of the 46 total 

BM samples, we obtained scRNA-seq on viable mononuclear cells and, for 41 samples, 

chromatin accessibility profiles (using ATAC-seq) on isolated CD45RA+ and CD45RA−, 

CD4+ and CD8+ T cells (Figure 1A, STAR Methods).

In total, from the discovery cohort, we identified 381,462 cells that passed our quality 

metrics, with a median of 8735 cells/sample (Table S2). We used Phenograph (Levine et 

al., 2015) to cluster the data into 62 distinct cell states, including subtypes of T, B, NK, 

monocytes, progenitor cells and CD34+ stem cells (STAR Methods). Given the established 

critical role of T cells in the anti-leukemic potency of DLI (Bachireddy and Wu, 2014), 

we normalized and clustered the 87,939 T cells in our data, using Biscuit (Azizi et al., 

2018; Prabhakaran et al., 2016) which robustly accounts for artifacts such as batch effects 

and library size variation (STAR Methods). This analysis yielded 43 distinct T cell states 

spanning combinations of subtypes and functional or differentiation states with variably 

expressed gene programs related to environmental stimuli (Figure 1B,C; Figure S1B-D). For 

example, clusters 6, 19, 37 and 31 exhibited similar differentiation states and subtypes, for 

which we observed differential enrichment of pathways involving adenosine suppression, 

glucose deprivation, and anergy. Thus our global T cell map reveals substantial diversity 

corresponding to established T cell subtypes and states, marked by known and previously 

unexplored markers, that are shared across groups of patients.

DLI resistance comprises multiple states of T cell dysfunction

While most T cell clusters were shared across patients, they were variably distributed across 

clinical features such as timing relative to DLI and clinical outcome (R vs NR) (Figure 

S1E, Figure 1B), motivating us to identify the gene expression programs that might underlie 

these clinical variables. We tested standard techniques used to decompose single-cell data to 

identify trends underlying its variance (Figure S2A), but no principal or diffusion component 

was associated with R or NR status. Instead, the unsupervised approach of common factor 

analysis (Zientek, 2008), selected for its potential to uncover latent factors that explain 

shared variance across T cells while ignoring the portion of variance unique to cells 
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and hence de-emphasizing patient-specific variation, was informative (Figure S2B, STAR 

Methods). We identified 3 factors that explained 67% of the variation in our data which 

segregated R and NR T cells (Figure 1D). Co-variation in R T cells was defined by Factor 

1, which correlated with profiles associated with T cell activation (i.e. cytolytic effectors, 

interferon response, glycogen metabolism, CD8+ T cell activation, T cell exhaustion; Figure 

1E). We further confirmed enrichment of T cell exhaustion pre-DLI in R compared to 

NR, as previously observed (Bachireddy et al., 2014) (P<10−6; Figure S2C). In contrast, 

Factors 2 and 3, which defined the NR T cells, correlated with non-overlapping signatures 

related to multiple, distinct T cell dysfunctional states (i.e. hypoxia, anergy, peripheral 

and deletional tolerance, tumor-infiltrating lymphocyte dysfunction; Figure 1E, Figure S2D, 

STAR Methods), suggesting that DLI resistance may be driven by not one, but multiple 

types of T cell dysfunction.

DLI response is heralded by pre-treatment enrichment of activated and cytotoxic T cells

Given the substantial diversity of T cell subsets and gene programs in the leukemic 

microenvironment, we aimed to quantify this heterogeneity and study its change with 

outcome. T cell states are known to reside on continuous trajectories, which explain the 

majority of their variation (Azizi et al., 2018; Li et al., 2019a; Singer et al., 2017). We thus 

quantified their diversity across all clusters using phenotypic volume (Azizi et al., 2018), 

defined as the pseudo-determinant of covariance between genes. Phenotypic volume serves 

as a measure of the diversity of co-expressed transcriptional programs, which increases with 

the number and degree of independence of gene programs (STAR Methods). We found 

substantially higher phenotypic diversity in pre-DLI Rs compared to pre-DLI NRs (Figure 

2A, log fold change=104.6, P<10−6), suggesting that diverse T cell phenotypes pre-DLI 

could be essential for response.

In addition to finding increased overall phenotypic diversity in pre-DLI Rs, we sought 

to identify distinct transcriptional states associated with clinical outcome. We tested each 

cluster for enrichment in baseline pre-DLI samples from Rs compared to NRs (Table 

S2). No cluster was consistently enriched in NRs, attesting to the notion of multiple 

pathways to DLI resistance rather than a common resistance mechanism shared across 

NRs. In contrast, within Rs, we identified four individual clusters (4, 14, 21, 27) that 

were consistently enriched pre-DLI (Figure 2B, FDR<0.1), comprised predominantly CD8+ 

T cells, and shared expression of genes involved in T cell activation (CD160, HAVCR2, 

CD38) and cytotoxicity (CRTAM, GNLY, GZMK, GZMB) (Figure S3A). Nevertheless, 

their distinct differentiation states (4, 14, 21: TEM/TTE; 27: TCM), subtypes (21: Tγδ), 

and varied expression of chemokine receptors (14: XCL2, CXCR4; 21: CXCR1, CXCR2), 

tissue residency (14: ITGA1, RGS1; high score for “CD8+ TRM”) and cell cycle (27: 

CDKN2A, TAF5, RRM2) programs indicated the baseline diversity of these T cell states 

(Figure 1C, Figure S3A). The majority of these T cell states (i.e. 4, 14, 21) implicate a ‘late 

differentiated’ program that is enriched in Rs pre-DLI.

We observed a marked increase in the number of T cell clusters in post-DLI samples 

compared to matched pre-DLI samples (mean 41 [range: 35-46] versus mean 38 [range: 

34-41], P<0.001; STAR Methods), and correspondingly, increases in phenotypic volume 
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following DLI for both R and NR cases (P<10−6) (Figure 2A). Rs displayed higher 

phenotypic volume than NRs at both pre- and post-DLI timepoints (P<10−5), whereas NRs 

displayed a far greater increase in phenotypic volume after DLI than Rs (P<10−6). Thus, 

despite an absent clinical response, NRs undergo marked T cell phenotypic remodeling. 

Of note, the phenotypic volumes of the non-relapsed reference samples were lower than 

samples from the study cohort, (P<10−6; Figure S3B). These results implicate more 

transcriptionally diverse local microenvironments within the leukemic bed that may persist 

even after leukemia remission following DLI.

Distinct temporal dynamics of T cell expression clusters define DLI response

To identify T cell clusters that expand after DLI, we compared the cluster proportions in 

baseline pre-DLI samples to those from the remission timepoint following DLI. To increase 

our statistical power for detecting changes induced by DLI, we grouped transcriptionally 

similar clusters into meta-clusters (Figure S3C, STAR Methods). In this fashion, we 

identified two meta-clusters which consistently expanded (MC1:{19,28}, MC2:{5,11,23}) 

and one that consistently contracted (MC3:{4,7,3,22}) after DLI therapy, only in Rs (Figure 

2C). The T cell states that expanded in response to DLI comprised both CD4+ and CD8+ 

T cells; enriched for TN (19, 28, and 5), TCM (11), or both (23) states; and expressed 

corresponding gene programs for proliferation (CDK20, CDK14, CDKL3), lymph node 

homing (SELL, CCR7), and survival/self-renewal (TCF7, IL7R, SATB1) (Figure S3A). 

Overall, these programs identify a set of ‘early-differentiated’ T cell states that expand 

in response to DLI. Analogous to the clusters enriched in pre-DLI R samples, the T cell 

states contracting in response to DLI comprised mostly CD8+ T cells, enriched similarly for 

TEM and TTE states, and expressed similar gene programs of cytotoxicity and activation. In 

contrast, no clusters or meta-clusters consistently changed in NRs.

Having identified response-associated T cell meta-clusters with diverging patterns after DLI 

(expanding MC1 and MC2, and contracting MC3), we then characterized their evolution 

over time by merging samples across all timepoints for each clinical outcome and thereafter 

modelling their temporal dynamics over the 4.5 year time period. To account for variability 

in timing, total cell number, and meta-cluster size on a per-sample basis, we constructed 

a hierarchical Gaussian Process (GP) regression model to capture dependencies between 

all pairs of time points per clinical group (R,NR) (Figure S3D,E; S6E,F; STAR Methods). 

We quantified these dynamics through correlation between model fit to cluster proportion 

and tumor burden. Indeed, the MC3 meta-cluster tracked with leukemic growth in Rs and 

sharply contracted during DLI response (p=0.013, Figure 2D-left) whereas both MC1 and 

MC2 meta-clusters robustly expanded as early as 3 weeks and endured even 3 years after 

DLI (Figure 2D-middle, right). No association was detected between these meta-clusters and 

leukemic burden in NRs (Figure 2E).

Transcriptional and immunophenotypic properties implicate exhausted T cell subsets in 
DLI response

Recent studies in murine models of chronic viral infection and cancer have delineated 

two major subsets of exhausted T cells distinguishable on the basis of gene expression 

signatures: terminal exhausted (TEX) cells that possess relatively greater cytotoxicity 
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but shorter lifespan compared to precursor exhausted (TPEX) cells which have greater 

polyfunctionality, expand following PD-1 blockade, and exert tumor control (Kallies et 

al., 2020; Miller et al., 2019). We hypothesized that the human CD8+ ‘late differentiated’ 

T cell clusters enriched pre-DLI and the rapidly expanding ‘early differentiated’ T cell 

clusters enriched post-DLI might be phenotypically similar to these murine subsets. Indeed, 

by scoring all clusters for TEX- or TPEX-defining signatures derived from a viral murine 

model of exhaustion (Im et al., 2016) (Table S3), we found that clusters enriched in pre-DLI 

Rs (4, 14, 21, 27) scored highest for TEX expression profiles whereas clusters consistently 

expanded post-DLI in Rs (MC1, MC2) scored highest for TPEX expression profiles (Figure 

3A). Cluster 26 was the highest TPEX scoring cluster and expanded only in R patient 5309 

but did not meet the threshold for significance due to its small size and patient-dominant 

variation. Because patient 5309 was the only R without expansion in either of the two 

meta-clusters, MC1 or MC2 (Figure S3F), the expansion of cluster 26 suggests that all 

six Rs, in fact, demonstrated post-DLI expansion of TPEX-enriched clusters. TEX- or TPEX-

defining signatures from an alternate, tumor murine model of exhaustion (Miller et al., 2019) 

also segregated pre- and post-DLI enriched clusters in an unsupervised analysis (Figure 

3B). While pre-DLI enriched clusters expressed transcription factors (TOX, ID2, PRDM1), 

co-inhibitory receptors (HAVCR2, PDCD1, ENTPD1, CD160, CD244), chemokines and 

associated receptors (CCL3, CCL4, CCL5, CX3CR1), and effector molecules (PRF1, 

GZMA, GZMB) classically associated with TEX cells, post-DLI enriched clusters expressed 

transcription factors (TCF7, ID3, LEF1), surface receptors (CXCR5, IL7R), and chromatin 

regulators (SATB1) consistent with TPEX cells (Alfei et al., 2019; Brummelman et al., 2018; 

Im et al., 2016; Kallies et al., 2020; Khan et al., 2019; Leong et al., 2016; Scott et al., 2019; 

Wu et al., 2016) (Figure 3B). Finally, unlike many studies that used antigen-specific models 

of CD8+ T cell responses (Im et al., 2016), we found a mixture of both CD4+ and CD8+ T 

cells to constitute these expanding, early differentiated clusters. Within the MC1 and MC2 

meta-clusters, both subtypes exhibited global transcriptional similarity, with similar TPEX 

scores and similar expression of key TFs such as TCF7, indicating the importance of both 

CD4+ and CD8+ subtypes to DLI response (Figure S3G).

To further investigate the exhausted immunophenotypes of these DLI response-associated 

clusters, we generated combined single cell transcriptome and barcoded antibody (CITE-

seq) measurements from matched longitudinal bone marrow samples (n=5) collected from 

2 additional long-term DLI responders (Figure 1A). We first mapped the scRNA-seq profile 

of each T cell in the confirmation cohort to a cluster identified in the discovery cohort, 

finding clear separation between cells mapping to pre-DLI enriched metaclusters (“pre-

DLI T cells”) with late differentiated programs, and cells mapping to post-DLI enriched 

metaclusters (“post-DLI T cells”) with early differentiated programs (Figure 3C; STAR 

Methods). We analyzed the paired CITE-seq protein expression for each group, revealing 

classic co-expression of multiple co-inhibitory receptors (CTLA4, LAG3, TIGIT, TIM3, 

PD1, and 2B4) on pre-DLI T cells, especially in relation to post-DLI T cells and all other 

T cells in our dataset (Figure 3D). Similarly, post-DLI T cells demonstrated co-expression 

of a few exhaustion markers (i.e. co-inhibitory receptors CTLA4 and LAG3) as well as 

ectonucleotidase enzymes CD39 and CD73 (Chen et al., 2019a; Sade-Feldman et al., 2019), 

indicating their exhausted lineage, though clearly not to the extent, by either magnitude of 
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expression or number of expressed receptors, seen on pre-DLI T cells. Key co-stimulatory 

receptors (OX40 and CD28) shown to be critical for efficacy of exhaustion resolution 

(Kamphorst et al., 2017) and known self-renewal/memory markers (CD62L, IL7RA, CD95) 

were also maximally expressed on post-DLI T cells indicating the same “late versus early” 

differentiation distinction seen in our discovery cohort. The post-DLI kinetics of expanding 

early and contracting late differentiated T cells mirrored those observed in the discovery 

cohort, confirming that the mapping strategy selected appropriate counterpart cells (Figure 

3E). Of note, we observed similar post-DLI kinetics of expanding and contracting TPEX/

TEX-like cells after DLI response in a patient with chronic lymphocytic leukemia (CLL) 

(Figure 3F; Figure S7D, STAR Methods). Analysis of the CLL recurrence 11 years after 

DLI therapy revealed reversion back to the pre-DLI states. Overall, this index case supports 

the notion that these T cell subsets define graft-versus-leukemia responses following DLI, 

beyond CML.

Thus, late and early differentiated T cells enriched pre- or post-DLI in responding patients 

exhibit transcriptional, dynamic and immunophenotypic profiles of TEX and TPEX cells, 

respectively; in addition, we confirm these properties in an independent cohort of DLI 

responders, both for CML and CLL. Taken together, our data shows that resolution of T 

cell exhaustion is driven not by changes in gene expression, but rather by shifts in cell type 

composition – specifically, the expansion of early differentiated, TPEX-like populations and 

contraction of late differentiated, TEX-like subsets.

Cell-state specific gene regulatory networks affirm exhausted subset identities

While recent work has described epigenetic (i.e. changes in gene expression not due to 

alterations in the DNA sequence) T cell states that drive dedifferentiation (Youngblood et 

al., 2017), effector “poising” (Akondy et al., 2017) and exhaustion (Pauken et al., 2016; 

Sen et al., 2016), their relevance to clinical immunotherapeutic outcomes is unclear. To 

investigate the regulatory circuitry underlying the T cell transcriptional states associated 

with DLI outcome, we compared chromatin accessibility profiles between Rs and NRs 

(STAR Methods). Consistent with our scRNA-seq analysis, we found increased chromatin 

accessibility in Rs in regions near TEX- and TPEX-associated genes in CD8+CD45RA+ and 

CD8+CD45RO+ cells, respectively, further supporting the association of these exhausted 

subsets with DLI response (Figure 4A-B, Figure S4A). Notably, we found similar 

accessibility for these genes among R samples, regardless of timing relative to DLI. In 

fact, we observed that the genome-wide accessibility landscape of T cells is more similar 

between pre- and post-DLI timepoints of Rs, than between Rs and NRs (Figure 4C-D), 

suggesting that DLI response does not involve the global rewiring of epigenetic landscapes. 

This potentially inflexible global landscape in response to DLI is similar to observations 

made in murine models of response to PD-1 blockade (Pauken et al., 2016; Sen et al., 2016).

To further study the circuitry underlying the distinct expanding and contracting subsets, 

we developed Symphony (C. Burdziak, E. Azizi, S. Prabhakaran, D. Pe’er, 2019), a 

probabilistic multi-view model to infer gene regulation in each exhausted cluster (Figure 

5A; Figure S7A,B). Symphony uses co-expression patterns between transcription factors 

(TF) and targets as evidence suggesting a potential regulatory impact. However, since 
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co-expression between genes could be a by-product of indirect regulation or co-regulation, 

Symphony integrates scRNA-seq data with chromatin accessibility data from ATAC-seq, 

together with TF motif information to resolve direct links between genes. We first evaluated 

the performance of Symphony on data from well-characterized PBMCs (STAR Methods; 

Figure S7C) and then confirmed the robustness of predicted links in our cohort with leave 

one (patient) out analysis (Figure S4B; STAR Methods).

To determine the strongest regulators underlying the differences in gene expression across 

the clusters, we summarized predicted gene regulatory networks (GRNs) in each cluster and 

defined master-regulators as TFs with strong average regulatory impact (either activation 

or repression) on the differentially expressed genes (DEGs) characterizing each cluster. 

Strikingly, the inferred master regulators organized into distinct groups associated with early 

or late differentiated subsets (Figure 5B). From our unsupervised analysis, we predicted 

many TFs previously known to associate with exhaustion in general (e.g. EOMES, TBX21) 

(Paley et al., 2012; Utzschneider et al., 2016) or regulate TEX (e.g. MYB, NFATC1, TOX) 

(Chen et al., 2019b) and TPEX subsets (e.g. TCF7, PRDM1, LEF1) (Utzschneider et al., 

2016) in particular. Two of the identified TFs, MTF2 and GATA3, were recently defined 

as mediators of intratumoral CD8+ T cell dysfunction in murine models (Singer et al., 

2017). While master regulators identified by TEX-associated DEGs were largely shared 

among disparate late differentiated clusters, the two early differentiated meta-clusters were 

well-discriminated by two distinct sets of master regulators. We also observed a smaller 

group of master regulators including LEF1 and RORA that were shared across early and 

late differentiated subsets (Figure 5B), suggesting a core shared regulatory program. Finally, 

we confirmed the differential expression of the predicted master regulators in early and late 

differentiated subsets in our confirmation cohort (Figure S4C).

Despite shared master regulators even within highly related transcriptional late or early 

differentiated states (dotted line boxes in Figure 5B), Symphony revealed a distinct 

regulatory network architecture for each cluster (Figure 5C, Figure S5) suggesting 

differences in wiring and target genes influenced by these regulators. Importantly, these 

cluster-specific regulatory networks imply that master regulators (shown in green, Figure 

5C e.g. TOX) for pre-DLI enriched clusters appear to be directly linked to known TEX 

markers; similarly, master regulators (shown in pink) for post-DLI enriched meta-clusters 

directly regulate known TPEX markers. For example, in pre-DLI enriched cluster 27, PDCD1 
is inferred to be activated by TOX, while the effector molecule PRF1 is predicted to be 

combinatorially activated by TOX, IKZF1, TBPL1 and STAT2 which are all up-regulated 

in this subset. Similarly, in post-DLI enriched cluster 11, TCF7 acts as a hub, predicted 

to be regulated by ELF1 and activating known TPEX markers IL7R, SELL and CXCR5 
as expected. These connections, between regulators found from our unbiased approach 

and known markers of exhaustion, support the central role of these TFs in defining the 

identities of potentially exhausted T cell clusters. Furthermore, their regulatory function, 

inferred with Symphony, is supported by evidence in TF and target gene co-expression 

(Figure 5C) and/or chromatin accessibility (STAR Methods). Thus, in addition to identifying 

known, exhaustion-related regulators driving these DLI response-associated T cell clusters, 

Symphony provides a roadmap for future investigation on the role of previously unexplored 

regulators.

Bachireddy et al. Page 9

Cell Rep. Author manuscript; available in PMC 2022 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TCR sequencing reveals sources of expanding early differentiated T cells

In murine models, TPEX and TEX subsets have been reported to share a lineage relationship 

in which the former self-renews and gives rise to the latter (Kallies et al., 2020). For two 

Rs (5311, 5314) with multiple timepoints, we used paired single-cell TCR- and RNA-seq 

to compare TCR clonotype sequences of TPEX-like and TEX-like clones (defined as >1 cell 

sharing the same TCR and enriched for TEX/TPEX gene scores). We observed that 27% of 

TPEX-like clones overlapped with TEX-like clones (p<10−14 for both patients), confirming 

their common ancestry (Figure 6A; STAR Methods, Table S9). The clones with TPEX-like 

phenotype were predominantly CD4+ T cells (81%) and clones with TEX-like phenotype 

were predominantly CD8+ T cells (99%) as were TEX/TPEX-like overlapping clones (93%). 

Clonotype diversity was higher in cells with a TPEX-like phenotype than in those with a 

TEX-like phenotype (P<0.05) for both patients (Figure 6B), consistent with previous reports 

in murine and human studies (Miller et al., 2019); and TEX-like clonotypes resided in larger 

clones than TPEX-like clonotypes (Figure 6C).

To study the dynamics of how clonal populations initially shifted in response to DLI in these 

two patients, we evaluated their TCR repertoire within one month before and after DLI and 

identified significantly expanding and contracting clonotypes (Figure 6D, left). Consistent 

with our observation of expanding TPEX-like states following DLI, dynamic clonotypes 

from TPEX-like clusters were more likely to expand than contract compared to those from 

TEX-like clusters (Figure 6D, middle and right). Thus, the evolution of TCRs mirrors that of 

TEX/TPEX-like transcriptional states after DLI.

We noted that clonal TCRs following DLI were more likely to be shared with pre-DLI 

timepoints than were singletons, and many of these shared clones persisted even 3 years 

after DLI (Figure 6E, 7A-D; P<10−15, 4 wks and 144 wks post-DLI). Because the post-DLI 

expansion of TPEX-like cells was tightly linked to DLI response, we sought to determine its 

source by also profiling the DLI infusion products. We found that only 1.4% of TPEX-like 

cells from all post-DLI timepoints share clonotypes exclusively with the infusion product 

(Figure 7B, D pie charts). Although viral reactivity can be common in the post-transplant 

period (Link et al., 2016), we found scant evidence for viral antigen recognition among 

the post-DLI clonotypes (<1.5% across the 2 patients), suggesting it did not explain the 

expansion or durability of TPEX-like cells (STAR Methods). Thus, for these two patients, the 

vast majority of post-DLI expanding TPEX-like cells either shared clonotypes with pre-DLI 

samples or exhibited clonotypes specific to that timepoint. Single cell TCR analysis of 

a marrow specimen from an independent R patient (5313) again demonstrated a higher 

proportion of their post-DLI clonotypes to be shared only with the pre-DLI sample rather 

than with the DLI product (Figure 7E; STAR Methods). For another independent R 

patient (5316), we performed bulk TCR sequencing due to lower cell viability, and only 

the post-DLI specimen and the infusion product were of sufficient quality for analysis. 

Comparison of the clonotypes between these two compartments reveal a modest overlap 

(14%), suggesting that a minority of clonotypes may be contributed by the DLI product 

though their specificity to the DLI product could not be determined given the low quality 

of the pre-DLI sample (Figure S7E; STAR Methods). Altogether, these results demonstrate 

that the DLI product may not directly introduce the clonotypes that constitute the post-DLI 
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TPEX-like expansion in Rs (Figure 7B, D); instead, it may predominantly drive expansion of 

pre-existing clonotypes as well as the recruitment of new T cell clones.

DISCUSSION

In 1878, Leo Tolstoy published his masterpiece Anna Karenina and its eponymous principle 

that “all happy families are alike; each unhappy family is unhappy in its own way.” 

Likewise, our analysis of the evolution of T cell states following DLI unveiled common, 

shared pathways defining DLI response whereas multiple dysfunctional T cell states shaped 

DLI resistance, evoking a clinical outcome paradigm characteristic of other therapeutic 

scenarios where a limited set of targetable alterations predicts response in contrast to a 

diversified set of resistance mechanisms (Goetz and Garraway, 2012; Ricordel et al., 2019).

To enable such clear insights from a limited patient cohort, we leveraged two 

critical features: samples collected from an informative clinical setting and innovative 

computational tools. Specifically, we exploited a scenario with unambiguous, binary clinical 

outcomes (response or resistance) in the absence of any toxicities; longitudinal sample 

collection; and uniform patient treatment with CD8-depleted DLI for relapsed CML in 

the absence of any confounding chemotherapy or immunomodulators. Furthermore, we 

consistently sampled a single leukemic microenvironment (i.e. bone marrow) for all patient-

timepoints as opposed to varied sites of metastases.

To overcome limitations of experimental design inherent to clinical studies such as 

variable timing of sample collection, patient heterogeneity, sample quality, measurement 

uncertainty, and challenges in hypothesis testing on key populations, we adapted statistical 

techniques and developed longitudinal and integrative probabilistic models. These models, 

in turn, allowed us to detect and define intratumoral T-cell dynamics in relation to 

immunotherapeutic outcome in humans. Importantly, these computational approaches for 

dissecting global heterogeneity, identifying immune states related to dynamics of tumor 

burden, and integrative gene regulatory network inference are readily generalizable to other 

longitudinal, clinical settings. Indeed, with the increasing number of clinical correlative 

studies using longitudinal tumor biopsies (Olson et al., 2011; TRACERx Renal consortium, 

2017), we anticipate a growing need for such analytic frameworks.

Through direct interrogation of the human bone marrow microenvironment, we readily 

identified T cell states enriched pre- and post-DLI in Rs who followed late and 

early differentiation programs, respectively. Intriguingly, their dynamic, transcriptional, 

immunophenotypic, epigenetic and clonal properties mirror those of TEX and TPEX 

exhaustion subsets, previously identified from murine models of chronic viral infections 

(Kallies et al., 2020; Leong et al., 2016; Miller et al., 2019; Pauken et al., 2016). Our 

results now implicate the hierarchy of both TEX- and TPEX-like states for immunotherapeutic 

responses in leukemia, extending the scope of their relevance to adoptive cellular therapies 

and nominating this cellular program as a potent effector of GvL. Furthermore, these 

data indicate that resolution of T cell exhaustion may be driven not by changes in 

gene expression, but rather by shifts in cell type composition – namely, expansion of 

TPEX-like populations and contraction of TEX-like subsets. Because such distinctions 
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cannot be delineated by bulk measurements, our findings highlight the advantages of 

single cell transcriptomics for discriminating between these possibilities. Future studies 

that demonstrate the hypofunctionality of these T cell subsets ex vivo or in vitro will be 

important in confirming their exhausted status.

Remarkably, the rapid expansion of TPEX-like states after DLI dovetail with similar 

observations in murine models of response to PD-1 pathway blockade (He et al., 2016; 

Im et al., 2016; Miller et al., 2019; Siddiqui et al., 2019; Utzschneider et al., 2016). 

In conjunction with recent studies indicating a role for TPEX cells during outcomes to 

checkpoint blockade in advanced melanoma (Miller et al., 2019; Sade-Feldman et al., 2019), 

these data now suggest similar mechanisms of action between PD-1 blockade and DLI. 

Our data moreover offer mechanistic insight into DLI efficacy. Our scTCR analysis not 

only confirmed the common ancestry shared between TEX- and TPEX-like states but now 

also explains that previous independent observations of increased TCR diversity detected 

in the setting of DLI response (Claret et al., 1997) are a consequence of TPEX-like subset 

expansion. Provocatively, this expansion of TPEX-like cells during DLI response did not 

primarily arise directly from the DLI product. Instead, we observed both marked recruitment 

of previously undetected clonotypes (potential clonal replacement (Yost et al., 2019)) and 

expansion of pre-existing ones (clonal expansion), suggesting that immunologic ‘help’ from 

DLI, rather than direct transfer of anti-leukemic T cells, may drive leukemic remission. 

Similar results have been observed in murine models of exhaustion reversal after adoptive 

transfer of CD4+ T cells (Aubert et al., 2011; Zander et al., 2019). These data suggest that 

TEX/TPEX-like subsets serve as both marker and mechanism for DLI response. Our findings 

motivate future clinical trial designs to test the status of TEX cells as a biomarker for 

predicting DLI response and to evaluate therapeutic strategies that enhance TPEX recruitment 

and expansion. Pursuing such approaches offers the possibility of enhancing the GvL effect 

during relapse after allo-SCT. In addition, recent observations that chimeric antigen receptor 

(CAR)-T cells also activate endogenous, non-CAR T cells (Chen et al., 2020), affirm the 

relevance of our findings to newer generations of ACT and warrant study of exhausted-like 

cells in these contexts as well.

Functional interrogation of the regulatory networks proposed by our joint analysis of 

scRNA- and bulk ATAC-seq datasets through Symphony should accelerate these efforts with 

identification of potential targets for therapeutic drug development. Future studies should 

also address the mechanism of DLI-induced TPEX-like expansion and whether molecular 

therapies can recapitulate this effect. The critical roles likely played by leukemia cells 

and alloreactivity should also be better understood given their known influence on GvL 

escape (Bachireddy et al., 2020). In addition, while these T cell exhausted subsets have 

now been observed in multiple clinical settings, which aspects of their underlying molecular 

machinery and distinct regulatory circuits remain specific to the leukemic or GvL setting 

and which generally extend to other cancers and human diseases should be explored. 

Finally, our analytic approaches serve as a template for future studies that seek to harness 

such multidimensional data sets for clinical and therapeutic relevance within oncology and 

beyond.
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STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contacts, Catherine J Wu (cwu@partners.org).

Materials Availability—All unique/stable reagents generated in this study are available 

from the Lead Contact with a completed Materials Transfer Agreement.

Data and Code Availability—Single cell transcriptome and TCR as well as chromatin 

accessibility data will be submitted to NCBI’s Database of Genotypes and Phenotype 

(dbGaP; https://www.ncbi.nlm.nih.gov/gap) under study number phs001998.v3 and will be 

made publicly available as of the date of publication. Accession numbers are listed in the 

key resources table.

Code availability:  The hierarchical Gaussian Process model is implemented using 

the probabilistic programming language pyro (Bingham, Eli and Chen, Jonathan P and 

Jankowiak, Martin and Obermeyer, Fritz and Pradhan, Neeraj and Karaletsos, Theofanis and 

Singh, Rohit and Szerlip, Paul and Horsfall, Paul and Goodman, Noah D, 2019) available 

at: https://github.com/dpeerlab/dli_gpr. The integrative model Symphony is implemented 

using the probabilistic language Edward (Tran et al., 2016) with code available at: https://

github.com/dpeerlab/Symphony. All original code has been deposited at [repository] and is 

publicly available as of the date of publication. DOIs are listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects—Bone marrow (BM) biopsies were obtained pre- and post-DLI after 

relapse following allo-SCT (or during remission following allo-SCT) from patients enrolled 

in Dana-Farber Cancer Institute (DFCI) clinical trials (94-009, 95-011, 96-372, 96-022, and 

96-277) between 1994-2001 that were approved by the DFCI Human Subjects Protection 

Committee. The sex for each patient is reported in Table S1. These studies were conducted 

in accordance with the Declaration of Helsinki; informed consent was obtained from the 

patients. Bone marrow mononuclear cells (BMMCs) were isolated via Ficoll-Hypaque 

density gradient centrifugation, cryopreserved with 10% dimethyl sulfoxide, and stored in 

vapor-phase liquid nitrogen until the time of sample processing.

Cohort sample characteristics—All 17 patients had CML that was treated with CD6-T 

cell depleted allo-SCT. Of these, 15 patients had CML relapse after allo-SCT that was 

treated with CD8-depleted DLI, and 2 patients never had CML relapse and served as non-

relapse controls (Table S2). DLIs were infused at weekly intervals until the target cell dose 

was reached. No significant differences were observed between the number of infusions 

or total cells infused between responders and nonresponders. No post-DLI samples were 

collected in between the infusions (which, if more than one session were required, occurred 

1 week apart). None of the patients received imatinib or any other TKIs after transplant or 
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during the course of relapse treatment. All study samples reported in this manuscript were 

obtained between 1994-1998, before imatinib was FDA-approved. The presence of acute 

and chronic GVHD was graded by standard criteria (Przepiorka et al., 1995); grades 0 and I 

acute GvHD were considered clinically equivalent (Gratwohl et al., 1995). The median age 

of all samples was 23 years, ranging from 20-25 years. In the discovery cohort, a median 

of 3 timepoints was available for each R and NR patient (range: 2-6), and there were no 

significant differences between R and NR cohorts regarding time from allo-SCT to DLI (R: 

median 702, range 362-2371 days; NR: median 1064, range 422-1787 days; P=0.6) (Figure 

S1A), time from allo-SCT to pre-DLI sample (R: median 583, range 138-2344 days; NR: 

median 809, range 147-1783 days; P=0.2), nor time from allo-SCT to post-DLI sample (R: 

median 925, range 447-2561 days; NR: median 1512, range 674-1916 days; P=0.2). The 

times from transplant to sample for the two non-relapsed control samples fell within this 

range of times (1113 and 1817 days). Time from allo-SCT to sample for the non-relapsed 

controls was 1817 days for 5379 and 1113 days for 5380. Sample characteristics are listed 

in Table S2. Given the size of the cohort, no association of sex with the results of the study 

could be detected.

The single patient with CLL (5283) was also treated with CD6-T cell depleted allo-SCT. His 

subsequent relapse initially responded to CD8-depleted DLI until a repeat relapse 11 years 

after DLI infusion (Table S2).

Cytogenetic and molecular information on CML tumor burden—The percent 

positivity of the Philadelphia (Ph) chromosome for each BM sample was extracted from 

the clinical record where available (as described previously (Alyea et al., 1998)). Molecular 

remission was defined as achievement of molecular response (defined as the absence of 

BCR-ABL transcripts by RT-PCR). This data is shown in grey crosses in Figure 2D,E.

METHOD DETAILS

Sample processing—Cryopreserved primary bone marrow mononuclear cells (BMMCs) 

were thawed on the day of sequencing at 37°C and dispensed drop-wise into a warmed 

solution of 10% FBS, 10% DNaseI (StemCell Technologies, cat. No. 07900) in PBS. The 

cell suspension was centrifuged at 200g for 10 minutes at room temperature. Viable cells 

were negatively selected using MACS Dead Cell Removal Kit (Miltenyi Biotec, cat. No. 

130-090-101), running on MS columns to prevent sample loss. Collected live cells were 

resuspended in 0.04% BSA in PBS and diluted to a concentration of 1000 cells/uL. These 

cells were then divided into portions taken immediately for scRNA-seq (samples B1-B46) 

or for FACS isolation (described below) for subsequent ATAC-seq. For paired scTCR- and 

scRNA-seq on samples D1-D7, E1-E3, and E6-E7 (Table S9), BMMCs were processed 

as described here and then samples D1-D7 were taken for FACS enrichment of T cells 

described below while confirmation cohort samples E1-E3 and E6-E7 were taken directly 

for scRNA/TCR-seq.

For cryopreserved PBMCs of DLI products (D8, D9, E9; Table S9), cells were thawed as 

described above, T cells were enriched using the human Pan T Cell Isolation Kit (Miltenyi 
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Biotec), and then processed with the MACS Dead Cell Removal Kit (Miltenyi Biotec) 

before scRNA- and TCR-seq.

For cryopreserved BMMCs from patient 5283 with CLL, samples were processed as 

previously described for subsequent inDrop sequencing (Bachireddy et al., 2020). Briefly, 

dead cells were removed via an OptiPrep selection protocol, and viable cells were then 

subjected to immunomagnetic selection (MACS CD19 MicroBeads; Miltenyi Biotec) using 

MS columns to isolate C19+ and CD19−, which were then mixed at a 1:1 ratio at a total 

concentration of 1.15 x 105 cells/mL in a 15% OptiPrep solution in PBS and kept on ice 

until time of encapsulation.

Fluorescence activated cell sorting (FACS)—For downstream ATAC-seq which was 

performed on samples B1-B46 (Table S8), viable BMMC single-cell suspensions (prepared 

as above) were stained using antibody cocktails in the dark at 4oC, washed and run 

on a 5-laser FACSAria II (BD Biosciences) cell sorter. Cells then underwent FACS for 

the following CD14−CD19−CD3+ T cell populations: CD45RA+CD4+, CD45RA−CD4+, 

CD45RA+CD8+, and CD45RA−CD8+. The following fluorochrome-conjugated antibodies 

were used: CD14-FITC (M5E2, BD Biosciences); CD19-FITC (HIB19, BD Biosciences); 

CD3-PE (HIT3A, BD Biosciences); CD4-BUV395 (SK3, BD Biosciences); CD8-APC 

Vio770 (BW135/80, Miltenyi Biotec); CD45RA-BV510 (HI100, BD Biosciences) (Figure 

S6A).

In order to perform paired scRNA- and scTCR-seq on samples D1-D7 (Table S9), BMMCs 

were thawed as above without dead cell removal, stained with human Fc block (BD 

Pharmingen) for 10 minutes in the dark at 4oC, stained with antibody cocktail, washed 

and run on a 4-laser, FACSAria II (BD Biosciences) cell sorter. DAPI (BD Pharmingen) 

was used to exclude dead cells, and the following fluorochrome-conjugated antibodies 

were used to negatively select for T cells (to avoid stimulation of gene expression by 

anti-CD3 antibodies): Lineage 1: CD11c-FITC (B-ly6, BD Biosciences); CD14-FITC 

(M5E2, BD Biosciences); CD36-FITC (CB38, BD Biosciences); CD33-FITC (HIM3-4, BD 

Biosciences); CD16-FITC (3G8, BD Biosciences)

Lineage 2: CD11b-PE (ICRF44, BD Biosciences); CD15-PE (HI98, BD Biosciences); 

CD34-PE (8G12, BD Biosciences); CD56-PE (B159, BD Biosciences); CD123-PE (7G3, 

BD Biosciences); CD235a-PE (GA-R2, BD Biosciences).

Library preparation for scRNA- , scTCR-seq, and scCITE-seq—For BMMC 

samples B1-B46 (Table S2), approximately 17,000 BMMCs (after dead cell removal) were 

loaded across 2 lanes onto a 10x Genomics Chromium™ instrument (10x Genomics) 

according to the manufacturer’s instructions. The scRNAseq libraries were processed 

using Chromium Single Cell 3’ Library & Gel Bead v2 Kit (10x Genomics). Quality 

control for amplified cDNA libraries and final sequencing libraries were performed using 

Bioanalyzer High Sensitivity DNA Kit (Agilent). scRNAseq libraries were normalized to 

4nM concentration and pooled before loading onto Illumina sequencer. The pooled libraries 

were sequenced on the Illumina HiSeq X or NovaSeq S4 platform. The sequencing data 

were demultiplexed and processed as described below.
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For BMMC samples processed for CITE-seq (E1-E3 and E6-E7; Table S9), 500,000 

cells were labeled with a pool of 70 CITE-seq antibodies selected for identification and 

characterization of key immune cell populations. For all BMMC samples processed for 

scRNA- and sc-TCRseq (Table S9), approximately 17,000 cells were loaded across two 

lanes onto a 10x Genomics Chromium™ instrument (10x Genomics) according to the 

manufacturer’s instructions. The scRNAseq libraries were processed using Chromium™ 

single cell 5’ library & gel bead kit, coupled scTCRseq libraries were obtained using 

Chromium™ single cell V(D)J enrichment kit (human T cell) (10x Genomics), and coupled 

scCITE-seq libraries were obtained using Chromium™ single cell Feature Barcode kit. 

Quality control for amplified cDNA libraries and final sequencing libraries were performed 

using Bioanalyzer High Sensitivity DNA Kit (Agilent). Both scRNAseq, scTCRseq, and 

CITE-seq libraries were normalized to 4nM concentration and pooled in a volume ratio 

of 4:1. The pooled libraries were sequenced on an Illumina NovaSeq S4 platform. The 

sequencing parameters were: Read 1 of 150bp, Read 2 of 150bp and Index 1 of 8bp. The 

scRNA-, sxTCR-seq, and CITE-seq data were processed as described in Suppl. Text.

For BMMC samples from patient 5283, cell encapsulation and subsequent library 

preparation were performed as previously described (Bachireddy et al., 2020). Briefly, cells 

were encapsulated with RT/lysis mix and barcoded hydrogen beads (BHBs; from 1CellBio) 

and maintained at 4oC in their respective syringes throughout using refrigerated copper 

coiling. Similar working flow rates as previously described were used to obtain similar 

encapsulation times and calculated cell doublet percentages. Libraries were prepared using 

overnight in vitro transcription (16 hours at 37oC), followed by fragmentation of amplified 

RNA, and PCR amplification. Sequencing was performed on NextSeq Illumina Sequencer.

Library preparation for ATAC-seq—After FACS isolation of CD45RA+CD4+, 

CD45RA−CD4+, CD45RA+CD8+, and CD45RA−CD8+ T cell populations, the Fast-ATAC 

protocol was then performed as previously described(Corces et al., 2016). Briefly, fifty 

microliters of transposase mixture (25 μl of 2× TD buffer, 2.5 μl of TDE1, 0.5 μl of 1% 

digitonin, and 22 μl of nuclease-free water) (FC-121-1030, Illumina; G9441, Promega) 

was added to a cell pellet consisting of 10000-50000 cells and incubated at 37°C for 30 

minutes. Transposed DNA was purified using a MinElute Reaction Cleanup kit (Qiagen), 

and purified DNA was eluted in 10 μl of elution buffer (10 mM Tris-HCl, pH 8). Libraries 

were barcoded (Nextera Index Kit, Illumina), amplified with NEBNext High Fidelity PCR 

Mix (New England Biolabs), and cleaned using a 1x volume of AMPure XP beads. Libraries 

were quantified using Agilent BioAnalyzer and sequenced on the HiSeq High Output and 

NovaSeq Illumina Sequencers (25 bp, paired-end).

Bulk TCR-seq—Because we were unable to isolate sufficient numbers of viable BMMCs 

for samples from patient 5316, we were not able to collect single-cell TCR data and, 

instead, followed the rhTCRseq protocol for bulk TCR sequencing and repertoire analysis 

as described previously (Li et al., 2019b). Total RNA samples were extracted from DLI 

products, pre-infusion, and post-infusion BMMCs. From the RNA samples, we generated 

cDNA libraries with a reverse transcriptase reaction that appends a Unique Molecular 

Identifier (UMI) to each cDNA molecule to facilitate frequency calculations in later 
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steps. We ensure TCRs are specifically amplified by performing RNase H-dependent PCR 

(rhPCR)–which uses 3’ blocked primers that incorporate a single ribo residue. The blocked 

ends are cleaved, and the proceeding sequence is amplified if, and only if, the primer 

is hybridized to the appropriate target. After rhPCR, we performed a second PCR on 

the pooled samples to create a sequencing library, followed by sequencing on the Miseq 

platform.

QUANTIFICATION AND STATISTICAL ANALYSIS

Preprocessing single-cell RNA-seq data—FASTQ files were preprocessed using the 

Sequence Quality Control (SEQC) bioinformatics pipeline (Azizi et al., 2018) with aligning 

reads to the hg38 genome and turning off the mitochondrial filter (using the option --no-

filter-mitochondrial-rna). Empty droplets were identified using SEQC default parameters 

followed by further filtering of cell barcodes per sample. Specifically, if the histogram of 

log10 of library size (i.e. sum of counts per cell) was bimodal, the lower mode was removed. 

Characteristics of samples and quality control (QC) metrics are provided in Table S2. In 

total, 381,462 total cells including 87,939 T cells (identified in the next section) from the 

combination of 41 bone marrow (BM) samples passed SEQC QC metrics, with a median of 

2548 UMIs/cell and 8735 cells/sample.

Constructing global single cell map of T cells

Identifying T cells.: To select T cells, we first normalized all n=381K BM cells to median 

library size and computed the log of normalized expression as log(0.1 + yj) for each cell j = 

(1,…,n) where yj contains the normalized expression of genes in cell j. To identify major 

cell types, we filtered genes expressed in less than 2% of cells (resulting in 9767 genes) 

and performed PCA on the log-transformed normalized expression. The number of PCs was 

selected based on the knee-point (defined as minimum curvature radius) of eigenvalues. 

Then cells were clustered by applying Phenograph (Levine et al., 2015) with the number 

of nearest neighbors set to 30, on the first 24 principal components (PCs), resulting in 94 

clusters.

The normalized expression of {CD3D, CD3E} gene markers were averaged across cells in 

each Phenograph cluster and clusters with a high average expression of CD3 (right tail of 

distribution across all clusters) were selected as T cells, which consisted of 97,355 cells. 

A lower threshold of CD3 expression selected clusters with high expression of markers of 

other major cell types (myeloid, B or NK cells).

Biscuit normalizing and clustering.: To construct a more refined map of T cells, we 

performed simultaneous clustering and cluster-dependent normalization on raw counts for 

n = 97,355 T cells using Biscuit (Azizi et al., 2018; Prabhakaran et al., 2016) . Using 

a hierarchical Dirichlet process mixture model, Biscuit performs a cell-type dependent 

normalization on the count matrix X = [x1, …, xn] where each column xj 1, …, d contains the 

expression (number of unique mRNA molecules) of d genes in cell j, while simultaneously 

inferring robust subsets of cells with zj denoting assignment of cell j to cluster k. Biscuit 

assumes that the log of counts lj = log(0.1 + xj) follow a multivariate Normal distribution: 
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lj ∣ zj = k ∼ N(αjμk, βjΣk) where μk, Σk are the mean and covariance, respectively, of the k-

th mixture component (cluster), and scalars αj,βj are cell-dependent scaling factors used for 

normalization. We have previously shown that this cluster-dependent normalization removes 

batch effects while retaining biological signal (Azizi et al., 2018). In particular, Biscuit helps 

retain biological processes that are entwined with library size. For example in the case of 

immune cell activation, activated cells have a higher number of transcripts (Blackinton and 

Keene, 2016; Cheadle, 2005; Marrack et al., 2000; Singer et al., 2016) leading to higher total 

counts captured, hence variation due to real immune activation can be partially removed 

with methods that normalize cells by library size, whereas Biscuit performs a more careful 

normalization of cells conditioned on the cell state (captured by cluster assignment).

For faster inference, we used the implementation described in (Azizi et al., 2018) (from 

https://github.com/sandhya212/BISCUIT_SingleCell_IMM_ICML_2016) which deploys a 

conjugate prior for the multivariate Gaussian, namely the Normal-inverse Wishart 

distribution for joint inference of cluster means and covariances.

After fitting the model, we transform the data from lj  to y j in which the expression 

is corrected for cell-specific factors αjβj using a linear transformation yj = A lj + b with 

A = I
βj

 ,b = (1 − αjA)μk such that imputed expression for cell j follows N(μk, Σk) and hence 

all cells assigned to the same cluster follow the same distribution after correction.

Using Biscuit with 500 iterations; gene batch size set to 50, and alpha (dispersion parameter) 

set to 200, we identified 65 unique clusters. This choice of parameters led to both relatively 

good mixing of samples (Figure 1B and Figure S1E), and distinct sets of differentially-

expressed genes (Figure S1C). Only 3 clusters were found to be exclusive to one single 

patient (all 3 in NR 5326), who was the only patient with CML in blast crisis (Figure S1E, 

Table S1).

Figure S1E shows the distribution of each cluster across clinical groups of R/NR and pre/

post-DLI. Prior to computing the distribution, the number of cells in each cluster was first 

normalized by the total number of cells in each clinical group to account for imbalanced 

cell/sample numbers. The size of bubbles in each cluster is proportional to the distribution of 

normalized values and each cluster (column) sums to 100%.

Importantly, the interpretability of Biscuit enables the use of inferred parameters in 

downstream characterization of clusters: The inferred cluster mean μk and its conjugate 

prior μk ∼ N(μ′, Σ′) are used for estimating differentially expressed genes as detailed in the 

Cluster Annotation section below. To ensure each cluster is a legitimate cell population, we 

then scanned the clusters for doublets as explained below.

Removing doublets.: Doublet cells were identified by applying DoubletDetection (https://

github.com/dpeerlab/DoubletDetection), using the Biscuit derived clusters, with 50 iterations 

and p_thresh=1e-6, voter_thresh=0.8 followed by inspection of the co-occurrence of 

contradictory markers (including T cell and B cell markers; T cell and myeloid markers, T 
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cell and erythroid markers etc). With this approach, 8.4% of cells were marked as doublets, 

which matches expectations given our cell loading (described in Method Details). This 

resulted in 87,939 cells in 43 T cell clusters that were not flagged as doublets and retained 

for the remainder of the analysis.

Visualization.: The Biscuit-normalized data for the 87,939 cells are projected to 2D 

in Figure 1B and also expanded in Figure S6B using tSNE (Maaten and Hinton, 

2008),(Amir et al., 2013) on the first 18 PCs (identified based on knee-point of eigenvalues 

- defined as min curvature radius).

Cluster annotation.: T cell clusters were annotated through: (1) identifying cell type 

signatures enriched in each cluster (listed in Table S7) by computing the expression of 

each signature (defined as average expression across all genes in a signature) per cluster 

and comparing to all other clusters using a t-test with p<0.1. The list of signatures compiled 

from literature are provided in Table S7. The expression of enriched cell type signatures 

are shown in Figure 1C and Figure S1D; (2) differentially expressed genes (DEGs) (Figure 

S1C, Figure S3A) were computed with t-test (p<0.01) comparing inferred mean expression 

of a gene in each cluster μk (listed in Table S5) to its prior mean μ′ which represents 

expression across the entire population of cells. Since Biscuit fits a multivariate Gaussian 

mixture model to log-transformed data, the assumptions for a t-test are satisfied. Figure S1C 

shows the specificity of most DEGs to clusters as a block diagonal structure. The DEGs are 

listed in Table S6.

The genesets derived from murine models of chronic viral infection (Im et al., 2016) were 

used for characterizing exhausted T cell subsets (Figure 3A) listed in Table S3. The TEX and 

TPEX score per cell was defined as normalized expression averaged across all genes in the 

geneset. Cell scores are aggregated by cluster in Figure 3A.

For signatures related to T cell differentiation states (Figure 1C, top), we used genesets from 

Gattinoni et al. (Gattinoni et al., 2017) To consider both up-regulated and down-regulated 

genes, we defined the expression of these signatures as a weighted sum of expression of 

genes in the geneset, with the weights being +1 or −1 for up-regulated and down-regulated 

genes respectively. We replaced CD45RO with the gene HNRNPLL gene which has been 

shown to regulate alternative splicing of CD45 (Oberdoerffer et al., 2008).

Quantifying Diversity of T cell states—We evaluated if response to DLI was 

associated with a change in the number of distinct T cell transcriptional states. We found 

a marked increase in the number of T cell clusters in post-DLI samples compared to 

matched pre-DLI samples after controlling for cell number (t-test p-value <0.001). For this 

test, we corrected for differences in the number of cells. We downsampled each clinical 

group (R/NR, pre-/post-DLI, control) to 5000 cells by uniformly sampling with replacement 

from each group and clustering using Phenograph (using 20 PCs, K=30). This process was 

repeated 20 times and the number of clusters were compared with a t-test (Figure S6C).

However, because T cell states are known to reside on continuous trajectories explaining 

the majority of variation (Azizi et al., 2018; Li et al., 2019a; Singer et al., 2016) we 
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used the Phenotypic Volume metric devised in (Azizi et al., 2018) to compare the global 

transcriptional diversity between clinical groups and before/after DLI.

Phenotypic volume (V) for a subpopulation of cells is defined as the determinant of the gene 

expression covariance matrix for that subpopulation, which considers covariance between 

all gene pairs in addition to their variance. The covariance matrix can be written as Σ d x d 

and its pseudo-determinant det (Σ) is equal to the volume of a parallelepiped spanned by 

vectors of the covariance matrix (Tao and Vu, 2005) and can be computed as the product 

of nonzero eigenvalues of the covariance matrix. To improve sensitivity to noise and avoid 

multiplication of small nonzero eigenvalues, we compute the log of phenotypic volume 

which is the sum of log of non-zero eigenvalues:

log (V ) = log (det(Σ)) = log(∏e = 1
E λe) = ∑e = 1

E log(λe)

for λe > ε representing the e-th non-zero eigenvalue (ε is set to a small value instead of zero 

to improve stability of the metric).

To correct for differences in number of cells, we downsampled each clinical group (R/NR, 

pre-/post-DLI, control) to 5000 cells by uniformly sampling with replacement from each 

group and computing the phenotypic volume. Only time points immediately pre-DLI and at 

remission post DLI (in Rs) were considered in this analysis. Patient 5321 was excluded in 

this analysis, as it did not have any post-DLI samples. Below is a list of samples used in this 

analysis.

List of scRNA-seq sample IDs from baseline pre-DLI and the remission timepoint following 

DLI:

Patient ID Outcome Time scRNA-seq Sample ID

5309 Responder Pre B05

5309 Responder Post B06

5310 Responder Pre B01

5310 Responder Post B02

5311 Responder Pre B09

5311 Responder Post B12

5312 Responder Pre B21

5312 Responder Post B22

5314 Responder Pre B25

5314 Responder Post B26

5317 Responder Pre B23

5317 Responder Post B24

5318 Non-Responder Pre B27

5318 Non-Responder Post B28
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Patient ID Outcome Time scRNA-seq Sample ID

5322 Non-Responder Pre B03

5322 Non-Responder Post B04

5324 Non-Responder Pre B07

5324 Non-Responder Post B08

5325 Non-Responder Pre B17

5325 Non-Responder Post B18

5326 Non-Responder Pre B19

5326 Non-Responder Post B20

This process was repeated 50 times to achieve a range summarized in boxplots in Figure 2A, 

Figure S3B showing statistically significant expansion of volume after DLI in both Rs and 

NRs. Importantly, the phenotypic volume is higher in Rs compared to NRs in particular in 

baseline (pre-DLI). Both R and NR cases exhibited increases in phenotypic volume induced 

by DLI (log fold change=104.6, p<10−6). At both pre- and post-DLI timepoints, phenotypic 

volumes in R cases were higher than that of NR cases, (mean R-pre vs mean NR-pre, 

log-fold change = 199.1, p<10−6; mean R-post vs mean NR-post, log-fold change = 49.3, 

p=1.5x10−6), but a far greater increase in phenotypic volume was observed within NRs than 

within R’s (log-fold change [NR-post vs pre] = 203.8 vs log fold change [R-post vs pre) = 

54.1; p<10−6].

Comparing the pre-DLI volume to that in non-relapse control samples in Figure S3B reveals 

greater diversity of T cells in the leukemic microenvironment (in R/NR pre-DLI samples) 

than in non-relapse control samples which are leukemia-free.

Common Factor Analysis—We aimed to decompose the T cells to uncover components 

potentially corresponding to response/resistance. The samples in from baseline pre-DLI and 

the remission timepoint following DLI were used in this analysis. To correct for differences 

in numbers of cells across samples, we first downsampled T cells from each sample to 1000 

cells, resulting in a total of 20,682 cells.

Applying PCA or diffusion component analysis (Coifman et al., 2010; Setty et al., 2016) 

showed that the top linear/nonlinear components explaining most of the variance across 

T cells are not highly correlated with response (Figure S2A). Instead, we used Common 

Factor Analysis (CFA), a method that assumes there are underlying latent (unknown) 

factors that explain shared variance between cells, and thus explains co-variation of cells 

Figure S2B illustrates an example where cells are varying along two trajectories that 

could be related to different gene programs, e.g. T cell activation and exhaustion. If these 

trajectories are correlated but not colinear, dimensionality reductions methods that maximize 

explained variance will capture the two trajectories. CFA however will seek underlying 

(latent) factors that explain the shared variance between the two trajectories, ignoring the 

portion of variance unique to cells. Our assumption is that response or resistance might 

involve underlying latent factors associated with multiple distinct processes that might 

co-vary across the cells. Thus, common factors identified through CFA could potentially be 
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related to response or resistance mechanisms affecting the majority of cells through multiple 

pathways (Figure S2B). A brief description of CFA follows:

Shared factors are denoted as f1, f2,…,fm for expression of n = 20,682 cells denoted with 

x1,…,xn:

x1 = μ1 + l11f1 + l12f2 + … + l1mfm + ϵ1
⋯

xn = μn + ln1f1 + ln2f2 + … + lnmfm + ϵn

CFA assumes that cov(fi, fj) and cov(ϵi, ϵj) = 0 for i ≠ j and cov(ϵi, fj) = 0.

Common factors were extracted using factanal function in R (https://

www.rdocumentation.org/packages/FAiR/versions/0.2-0/topics/Factanal) with the method of 

maximum likelihood and “varimax” rotation. Setting the number of factors to two, a chi-

square test rejected the hypothesis of model fit (p<0.05). Hence, we increased the number 

of factors to three which indicated that the hypothesis of perfect fit cannot be rejected. 

The first three common factors (Figure 1D.) explain 67% of variance (29%, 20%, 18% of 

variance by each of factor 1 to 3 respectively) and separate groups of T cells enriched in 

Rs or NRs. To annotate the factors, we correlated the loadings of cells on each factor with 

expression of gene signatures. Figure 1E shows gene signatures with the highest correlations 

with factors 1-3. Figure S2D shows that the signatures enriched for factors 2 and 3 are 

mostly non-overlapping, thus suggesting the involvement of different T cell dysfunction 

mechanisms in DLI resistance. Increasing the number of common factors to 4 and 5, we 

did not find any gene signatures highly correlated with the additional factors and factor 4 

showed weak correlation with Hypoxia. We repeated this analysis on multiple downsampled 

sets and achieved the same conclusions with regard to signatures most correlated with 

factors.

We also performed permutation tests with creating 500 randomly selected genesets of 

the same size of each manually curated geneset shown in Figure 1E and computing a 

null distribution for correlation with factors. We confirmed that the correlations observed 

between factors and manually curated genesets are indeed statistically significant compared 

to the null distribution (p<0.05).

Identifying T cell clusters enriched pre-therapy—We aimed to find any pre-DLI T 

cell states that are differentially enriched between Rs and NRs, that could potentially be 

predictive of response or resistance. Since different samples had differences in the total 

number of cells collected, this impacted our resolution of detecting a T cell state (cluster) 

in a patient. We therefore accounted for this uncertainty using a weighted one-sided t-test 

(using statsmodels.stats.weightstats.ttest_ind in Python). Within each clinical group (Rs or 

NRs), the weight of the i-thpatient was given by ni ∗ P ∕ ∑j = 1
P nj
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with ni denoting total number of T cells in patient i pre-DLI and P = 6 being the total 

number of patients in that group (R or NR).

We also corrected the p-values for the size of clusters using a bootstrapping technique: For 

each cluster k with size uk, we randomly select uk number of cells from the pool of all 

(R or NR) samples, and compute the p-value using the above test. Repeating this for 2000 

iterations, we achieve a null hypothesis for p-values. The actual p-value for the cluster is 

then compared to the null, resulting in an empirical FDR (q-value) calculation. Applying 

this to pre-DLI samples, we found clusters 4, 14, 21, and 27 were differentially enriched 

consistently across R patients compared to NRs (FDR<0.1) as shown in Figure 2B. These 

clusters are enriched for TEX gene signatures shown in Figure 3A,B.

Aligned with our global observation with common factor analysis, we did not find any 

clusters to be differentially enriched consistently across NR patients compared to Rs, and 

we rather found multiple clusters each mostly present in one NR patient (Figure S1E) 

suggesting that NR patients might be driven by different resistance mechanisms (Figure 1E, 

Figure S2D).

Identifying T cell dynamics associated with therapy outcome—We used a 

weighted t-test similar to the previous section to compare the change in proportion of each 

cluster from pre-DLI to post-DLI. We performed a weighted one-sided t-test, summing the 

total cells in the pre- and post-DLI samples (from P = 6 R patients and P = 5 NR patients 

who had both pre and post therapy samples). to determine the weights. Specifically, the 

expression we used for weights was:

(ni, Pre + ni, Post) ∗ P ∕ ( ∑
j = 1

P
(nj, Pre + nj, Post))

Where ni,Pre represents total number of cells in the pre-DLI sample of i-th patient and ni,Post 

represents the total number of cells in the post-DLI sample of i-th patient. Similarly, nj,Pre 

represents total number of cells in the pre-DLI sample of j-th patient and nj,Post represents 

the total number of cells in the post-DLI sample of j-th patient.

Compared to the test in the previous section which was performed on cluster proportions 

at one time-point (pre-DLI), this test involves computing the change in proportion from 

pre-DLI to post-DLI. Hence, the variance in the variable being tested is higher while the 

sample size (in this case number of patients) remains the same, meaning we have lower 

statistical power. In fact, across paired, pre- to post-DLI timepoints, we found no single 

cluster to consistently expand or contract over time in Rs or NRs using the above weighted 

t-test. Thus, to improve our statistical power in detecting consistent changes in clusters over 

time, we combined clusters that are transcriptionally most similar as described below.

Defining meta-clusters.: We computed the pairwise distance between each pair of clusters 

by comparing the distribution of expression of each gene across all cells in one cluster 

(from Biscuit normalized data) and comparing it to the distribution in another cluster 

using the Bhattacharyya distance metric (Bhattacharyya, 1990), which is effective in 
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pairwise comparisons of distributions. The advantage of computing cluster distances based 

on distribution is that we go beyond cluster means and also account for within-cluster 

variability, e.g. two clusters can have a similar mean expression but different variance. The 

total distance is then summarized across all genes, resulting in the distance matrix in Figure 

S3C. We then merged clusters that were most similar, resulting in 8 meta-clusters shown 

with white boxes.

Identifying expanding or contracting meta-clusters.: By applying the weighted t-test 

above, we identified two metaclusters consistently expanded and one consistently contracted 

after DLI therapy (weighted t-test p<0.1), only in Rs, shown in Figure 2C. The two 

expanding meta-clusters (MC1 consisting of clusters {19,28} and MC2 consisting of 

clusters {5,11,23}) are enriched for the Precursor Exhausted T cell gene signature TPEX 

shown in violin plots in Figure 3A and Figure S6D.

Interestingly, one expanding cluster (19 in MC1) is also enriched in the non-relapse control 

samples (Figure S1E), suggesting a transformation to normal T cell states after DLI in 

Rs. It should be noted that no meta-clusters or clusters consistently changed (expanding or 

contracting) in NRs, mirroring the Anna Karenina principle (Ahmed et al., 2019).

MC3 consisting of clusters {3,4,7,22} and MC4 consisting of clusters {2,14} (Figure S3C) 

are enriched for the Terminally Exhausted T cell gene signature TTEX.

Hierarchical Gaussian Process regression model—To study the dynamics of meta-

clusters and tumor burden over time, we used a Gaussian Process (GP) model. The 

advantages of a GP model are (1) it is nonparametric, hence we do not assume a functional 

form over time and rather learn a distribution over all functions that explain temporal 

dynamics; (2) we account for dependencies between all pairs of time points which tackles 

the problem of non-uniform distribution of time-points in our cohort (Figure 1A), for 

example in patient 5311, we have time-points within 19 days of each other, whereas in 

patient 5314 we have time-points 2.8 years (1059-29 days) apart from each other post-DLI 

and including them in the study can elucidate long-term sustainability of T cell states; (3) the 

probabilistic framework is flexible and we can therefore add priors representing uncertainty 

in measurements as explained below.

Tumor burden dynamics.: We fit two GP regression models (fb
R, fb

NR), each with a 

Radial Basis Function (RBF) kernel(Vert), to model the temporal changes in tumor burden in 

each outcome group (R or NR) separately in response to DLI therapy:

biR = fb
R(tiR) + ϵ

ϵ ∼ N(0, σϵ2)
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fb
R ∣ t ∼ N(0, Kb

R)

Kb
R(ti, tj) = cov(fb

R(tiR), fb
R(tjR) ) = σs2exp[ − (tiR − tjR)2 ∕ (2λ2)]

where bi
R is tumor burden (see definition in section “Cytogenetic and molecular information 

on CML tumor burden” in Materials and Methods) in sample i in Rs and tiR is time relative 

to DLI therapy in sample i of Rs. Similarly for NR samples:

biNR = fb
NR(tiNR) + ϵ

cov( fb
NR(tiNR), fb

NR(tjNR) ) = σs2exp[ − (tiNR − tjNR)2 ∕ (2λ2)]

We optimized σs with the gradient-based algorithm Adam to maximize the log likelihood 

of our observed data. We set σϵ2 = 10 and λ = 285 (which is the median distance between 

pairs of points). Results were robust to the choice of these parameters as shown in the next 

section.

Prior to regression, the mean tumor burden in each clinical group was subtracted so that our 

target variable bi would have zero mean, consistent with the distribution over fb
R/NR. This 

resulted in one model inferred for tumor burden in Rs (fb
R) and one model for tumor burden 

in NRs (fb
NR) shown in grey lines (mean) and shaded grey area (+/−1 standard deviation) in 

Figure 2D,E. The data points for tumor burden are shown in grey crosses.

Temporal dynamics of T cell clusters.: Similarly, we aimed to use a GP regression model 

to track the temporal dynamics of proportions of T cell meta-clusters in each outcome group. 

In other words, we learn two models fpk
R, fpk

NR on the proportion of each meta-cluster k 
over time separately in Rs and in NRs respectively. The proportion of a meta-cluster k in a 

sample i is defined as νi,k = mi,k/ni with mi,k being the number of cells in meta-cluster k in 

sample i and ni defined as sample size, i.e. total number of T cells in sample i.

Since there were significant differences in the size of samples and meta-clusters, we aimed 

to account for the uncertainty in detecting a metacluster in each sample (Figure S3C). For 

example, if metacluster k is not observed in two samples i1 and i2 such that: νi1,k = νi2,k, 

= 0 and sample i1 contains ni1 = 10000 total cells compared to ni2 = 1000 cells in sample 

i2, we have more certainty about the absence of metacluster k (representing a T cell state) in 

sample i1 than in sample i2 and the true value for νi2,k could be missing or underestimated 

due to lack of statistical power.

To build this uncertainty into the probabilistic framework, we use a Gaussian process 

regression model that accounts for heteroscedastic noise. The measurement precision (βi) 

has a conjugate Gamma prior, whose mean is inversely proportional to the number of T cells 
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measured in a given sample. Specifically we set the shape parameter of the prior distribution 

for βi as r = 1, and use the inverse of the number of cells collected for sample i as the rate 

parameter θ. This places more confidence on samples with larger sizes. For this model we 

use the RBF kernel K, with entries Kij = k(ti, tj) and scale parameter σs set to the empirical 

variance of the response variable.

k(ti, tj) = σsexp[ − (ti − tj)2 ∕ (λ2)]

fp ∣ t ∼ N(0, K)

The full generative model is as follows:

vi = fp(ti) + ϵ

vi ∣ fp, t, β ∼ N( fi, βi−1 )

where:

θi =
1 ∕ ni

∑j1 ∕ nj

βi ∼ Γ(r, θi)

As with standard GP regression, after we fit our model to data t and ν, we use the following 

joint marginal distribution to estimate the expected μ* for an input t*. Specifically, let k* 

= k(ti, t*) be a vector representing the kernel function computed between each input time 

point ti in our training data, and our out of sample point t*, and let c* = k(ν*, ν*) be the 

kernel function computed on the out-of-sample time point. The joint distribution between 

our training data ν and the new point ν* is then as follows:

ν
ν∗ ∼ N(0, K k∗

k ∗ T c∗
)

Because this is a multivariate normal distribution, we can use this distribution to compute 

the conditional distribution over fp* given our training data and t*:

fp∗ ∣ t∗, t, v ∼ N(μp, Kp)

where the predicted mean and covariance are defined as follows:
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μp = k∗K−1y

Kp = c∗ − k∗K−1k ∗ T

The plate model for this hierarchical GP model is shown in Figure S3F. We implemented 

this model in the probabilistic programming language pyro(Bingham, Eli and Chen, 

Jonathan P and Jankowiak, Martin and Obermeyer, Fritz and Pradhan, Neeraj and 

Karaletsos, Theofanis and Singh, Rohit and Szerlip, Paul and Horsfall, Paul and Goodman, 

Noah D, 2019) (https://pyro.ai/) and inferred the weights and temporal function with 

Stochastic Variational Inference, which computes an efficient approximation to the posterior 

by taking stochastic gradient steps to maximize the evidence lower bound (ELBO) (Blei 

et al., 2017). The code for our hierarchical GP model is available at: https://github.com/

dpeerlab/dli_gpr.

We first benchmarked this model on data simulated from a sinusoidal process y = 5sin(x) 

(shown as a grey line below) with two different noise variances representing levels of 

uncertainty in measurement: y1 = 5sin(x1)+ϵ1 with ϵ1 ~ N(0,1) (data points shown in blue) 

and y2 = 5sin(x2) + ϵ2 with ϵ2 ~ N (0,10) (data points shown in red) in Figure S6E. Please 

note the y notation here is not to be confused with expression in the Biscuit or Symphony 

models.

We combined these two datasets and fit the above hierarchical GPR model and compared it 

to the fit of a standard GPR (without prior) showing that the hierarchical model performs 

better in reconstructing the underlying sinusoidal function while a standard GPR model can 

overfit the noisy portion of data as shown in Figure S6E.

For quantitative comparison of the two models, we computed the log likelihood of 

unobserved noiseless simulated data along with the R2 score of the noiseless data vs. 

mean of the conditional distribution. The performance of hierarchical GP on simulated data 

compared to standard GP regression is listed below.

Model Negative log likelihood R2 score

Hierarchical GPR 193.24 0.801

Standard GPR 336.68 0.412

We then applied the hierarchical GPR mode to all meta-clusters in both Rs and NRs 

(Figure 2D,E) and use (TEX-like) metacluster MC3 in Rs as an illustration. As reference, we 

compared the fit of the hierarchical model to a standard (vanilla) GP model (Figure S3G). 

The blue dots show the actual data points with the size of dots proportional to sample size ni. 

The blue line and shaded area shows mean and standard deviation of fpTE*.
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Interestingly, the inferred hierarchical GP model shows that the TEX meta-cluster tracks 

the tumor burden dynamics. The strong similarity between the inferred fpMC3 and fb in Rs 

is quantified by correlation, i.e. cross correlation at zero lag. MC1 and MC2 (TPEX-like) 

meta-clusters did not show a correlation with tumor burden. Below is the similarity between 

inferred GP model for metacluster proportion and model for tumor burden in Rs:

Metacluster Correlation (Pearson R) at lag = 0 for Rs

MC1 −0.7436

MC2 −0.2633

MC3 0.9852

We found that the dynamics of MC3 do not follow tumor burden in NRs. Below is the 

similarity between inferred GP model for metacluster proportion and model for tumor 

burden in NRs

Metacluster Correlation (Pearson R) at lag = 0 for NR

MC1 0.6907

MC2 −0.7549

MC3 −0.7009

Additionally, the expansion of early differentiated, TPEX-like clusters post-DLI is durable 

in Rs and nonexistent in NRs. Results were robust to choice of of σϵ and λ. As shown in 

Figure S6F, similar fit is achieved on a range of values for λ from 150-300 compared to 285, 

which is the median distance between pairs of points, and the value used to generate Figure 

2D,E.

This example shows tumor burden and proportion of late differentiated, TEX-like metacluster 

MC3 in non-responders. To quantify the relative timing of TEX-like and TPEX-like meta-

clusters, we computed the cross-correlation between fp* and fb shown as purple bars in 

Figure 2D (second row). The max cross-correlation between MC3 and tumor burden in 

Rs (max{fpTE* ⋆ fbR} with ⋆ indicating cross-correlation) is at 75 days which is 1/4 of 

median time interval between samples (marked with a red line in Figure 2D left bottom; 

t-statistic=8.58, p=0) indicating they are almost in sync, whereas for the TPEX meta-clusters, 

max{fpPE* ⋆ fbR} occurs at 703 days (MC1: t-statistic=2.05, p=0.02; MC2: t-statistic=0.72, 

p=0.23) indicating a significant lag compared to the tumor burden.

Preprocessing ATAC-seq data—Bulk ATAC-seq data for each sorted subset of T cells 

from each bone marrow sample was processed using the automated end-to-end quality 

control (QC) and processing pipeline (https://github.com/kundajelab/atac_dnase_pipelines) 

from the ENCODE consortium with configuration SPECIES=hg38. Alignment is performed 

using Bowtie2(Langmead and Salzberg, 2012) and peak calling and normalization is done 

with MACS2 (Zhang et al., 2008). MACS2 normalization involves comparing ATAC signal 
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to local background noise using a Poisson test (Zhang et al., 2008)(Reske et al., 2020). The 

full list of samples and QC metrics for ATAC-seq data are provided in Table S8.

Correlation between accessibility profiles—We first aimed to study the potential 

impact of DLI in the global epigenetic landscape of T cells. We thus compared ATAC-seq 

samples with ID listed below. To compare chromatin accessibility between pairs of samples, 

we first created a consensus peak set similar to (Corces et al., 2016) as follows: Peak 

summits were extended to 150bp windows and a set of maximally non-overlapping peaks 

was generated across all samples, resulting in 133,968 peaks for CD8+ CD45RO+ and 

169,740 peaks for CD8+ CD45RA+ samples. Then Pearson correlation was computed 

between all pairs of 14 samples in each subset, and then correlations were averaged by pairs 

of clinical groups (Figure 4C,D).

List of ATAC-seq samples from IDs from baseline pre-DLI and the remission timepoint 

following DLI; n/a denotes low sample quality or excluded based on data preprocessing QC:

Patient Outcome Time
ATAC-seq sample ID for

CD8 CD45RA sorted T cells
ATAC-seq sample ID for

CD8 CD45RA sorted T cells

5309 Responder Pre C44 C45

5309 Responder Post n/a n/a

5310 Responder Pre C31 C32

5310 Responder Post C35 C36

5311 Responder Pre C63 C66

5311 Responder Post C79 C81

5312 Responder Pre C105, C106 n/a

5312 Responder Post n/a n/a

5314 Responder Pre n/a n/a

5314 Responder Post n/a C130

5317 Responder Pre n/a C114

5317 Responder Post C118 C119

5318 Non-Responder Pre C133, C134 n/a

5318 Non-Responder Post n/a C156

5322 Non-Responder Pre C38 C39

5322 Non-Responder Post C41 C42

5324 Non-Responder Pre C48 C49

5324 Non-Responder Post C54 C56

5325 Non-Responder Pre C91 C92

5325 Non-Responder Post C95 n/a

5326 Non-Responder Pre n/a n/a

5326 Non-Responder Post n/a n/a

Symphony model for cell type-specific gene regulatory networks—To study 

the underlying circuitry of distinct clusters, we developed an integrative model named 
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Symphony (C. Burdziak, E. Azizi, S. Prabhakaran, D. Pe’er, 2019), for inferring gene 

regulatory networks (GRNs) specific to subsets of cells.

Gene regulatory networks (GRNs) are directed weighted networks between genes depicting 

the extent to which a regulator gene influences (activation or repression) the expression of 

each of its downstream target genes. Symphony estimates these networks in each subset 

by extracting co-expression patterns between TFs and target genes from scRNA-seq and 

combining them with the presence of TF motifs within regions of chromatin accessibility 

in the vicinity of targets as derived from ATAC-seq. This is accomplished in Symphony by 

constructing a generative model that mimics transcriptional regulation illustrated in Figure 

5A.

Since the ATAC-seq data in this study measures accessibility summarized across all cells 

in a sorted compartment (e.g. CD8+CD45RO+) each consisting of multiple TTEX or TPEX 

clusters, we also leveraged the deconvolution capability of Symphony: bulk epigenetic data 

is deconvolved into cluster-specific epigenetic profiles. The deconvolved profiles are then 

used to explain gene co-expression patterns through GRNs, and thus resolve direct links 

from indirect links in the network (Figure 5A).

Symphony (C. Burdziak, E. Azizi, S. Prabhakaran, D. Pe’er, 2019) is an extension of the 

Biscuit (Azizi et al., 2018; Prabhakaran et al., 2016) model which clusters cells while 

simultaneously distinguishing biological heterogeneity from technical noise in single-cell 

gene expression data. Symphony extends this model by replacing the hyperparameter for 

gene co-expression in Biscuit with a generative process exclusively driven by epigenetic 

data (collected from the same sample or a sample with similar composition of cell types). 

Thus, Symphony models the biological mechanism responsible for the observed gene co-

expressions per cell type.

The model also simultaneously deconvolves the bulk epigenetic profiles (which denote 

accessible DNA) into cell-type (cluster)-specific accessible regions (Figure 5A) within a 

unified statistical framework. Within these regions, the binding of transcription factors (TF 

associated with open regions based on known DNA binding motifs) impacts the expression 

of nearby genes, such that accessible regions may help explain gene-gene interactions.

Given the observed bulk chromatin accessibility profiles and single-cell RNA-seq count 

matrix, the model finds a deconvolution of the bulk accessibility data into cluster-specific 

accessibility profiles that are best able to explain the gene-gene relationships observed in 

scRNA-seq. We note that Symphony can infer whether a TF impacts a target gene without 

requiring epigenetic evidence as well, which facilitates inferring the regulatory influence of 

the many TFs (e.g. TOX) for which a binding motif is unknown.

Symphony input, output and model specification are provided below:

Input data to Symphony.: The observed paired datasets are:

(1) Epigenetic data measured with ATAC-seq (Buenrostro et al., 2015), denoted as Cw×r = 

[c1,…,ct,…,cr] where ct ∈ Rw is epigenetic data for one patient (as replicate), containing 
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accessibility (quantified as peak height) in genomic regions m = [1,…,w] (identified from 

MACS2(Zhang et al., 2008)).

(2) Single-cell RNA-seq data Y = [y1, …, yn] where yj 1, …, d denotes log-transformed 

normalized single-cell expression data for cell j with d genes.

Symphony output.: The main latent variables being estimated (Figure 5A) are:

(1) Epigenetic profile for each cluster k represented as pk ∈ R+w which contains estimated 

genome accessibility in w genomic regions.

(2) Gene Regulatory Network (GRN) represented as Rk for each cluster k. Rk
d×d is an 

asymmetric matrix with nonzero entries Rk
a,b ≠ 0 if gene b is predicted to be regulated by 

gene a. Positive and negative values for Rk
a,b suggest activation and repression respectively.

Model details.: These latent parameters are estimated simultaneously in an integrative 

model with three components explained below:

Epigenetic model.: Bulk epigenetic profiles (ct) are assumed to be represented as a weighted 

sum of cluster-specific epigenetic profiles (pk) such that:

ct ∣ pk, πk ∼ N(∑k πkpk, ζI)

where the weights πk represent the proportion of clusters in the sample. This assumption is 

validated in (C. Burdziak, E. Azizi, S. Prabhakaran, D. Pe’er, 2019) using data on PBMCs 

with ground truth deconvolved profiles.

We set a Gamma prior for accessibility: pk ~ Gamma(η, Λ) to ensure a positive domain.

GRN model.: We assume a regulatory link is dependent on genome accessibility as well 

as motif information within an accessible region. Specifically, a genomic region m in C is 

mapped to an interaction between genes a, b in Y with a predefined function g(a, b) = m. We 

also define Md×d based on prior knowledge: Ma,b = 1 if the motif sequence for gene a exists 

in region m in the vicinity of gene b, suggesting a potential regulatory interaction from gene 

a to gene b. Motifs were scanned using FIMO (Grant et al., 2011) in this study.

We thus model Rk
a,b as:

Rk
a, b ∼ N(Sa, bMa, bpk

g(a, b), λ)

Where Sis a sign indicator representing activation or repression set according to the sign of 

empirical covariance:

Sa, b = sign(Σ′ a, b)
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Σ′a,b is an empirical prior set to the covariance between genes a, b across all cells in the 

scRNA-seq data. The variance λallows for Rk
a,b to have non-zero value, even when Ma,b = 

0.

Expression model.: Similar to Biscuit(Azizi et al., 2018; Prabhakaran et al., 2016), 

Symphony assumes that log-transformed normalized single-cell expression data follows a 

multivariate Normal distribution:

yj 1, …, d ∣ zj = k ∼ N(μk, Σk)

where zj denotes the assignment of cell j to cluster k modeled as:

zj ∣ πk ∼ Mult(zj ∣ πk)

Since the single cell expression data was already normalized and clustered with Biscuit as 

explained in section “Constructing global single cell map of T cells”, we did not use the 

clustering feature of Symphony and instead fixed the assignments (zj) of cells to clusters as 

assigned by Biscuit; the proportions πk are thus also fixed. The full normalized expression 

matrix Y = [y1, …, yn] (output from Biscuit) is thus used as the second input to Symphony 

in this case. However, as a more general tool Symphony is also able to successfully cluster 

de-novo as demonstrated in simulated data (C. Burdziak, E. Azizi, S. Prabhakaran, D. Pe’er, 

2019).

The parameters μk, Σk are the mean and covariance, respectively, of the k-th cluster. We 

define the prior for μk in Symphony as follows:

μk ∼ N(μ′, Σ′)

where μ′ is set to the empirical mean expression across all cells and Σ′ was set to I (identity) 

in this study.

Importantly, the covariance in observed gene expression is related to a graph power of the 

regulatory network, capturing the propagated impact of regulation in the network (indirect 

regulation) as depicted in Figure S7A. Specifically, co-expressed in each cluster is modeled 

as:

Σk ∣ Rk ∼ W isℎart((Rk + Rk
T)2, γ)

While using a Wishart instead of Inverse Wishart is not conjugate, this is valid as both 

distributions satisfy the positive semi-definite requirements for priors on the covariance 

matrix. The plate model for Symphony used in this study is shown in Figure S7B.

Inference, approximations and scalable implementation.: An EM-VI inference procedure 

was presented for Symphony in (C. Burdziak, E. Azizi, S. Prabhakaran, D. Pe’er, 2019). 
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We also showed the performance of Symphony on well-characterized peripheral blood 

mononuclear cells (PBMCs), and significant improvement over other deconvolution methods 

(C. Burdziak, E. Azizi, S. Prabhakaran, D. Pe’er, 2019). In this study, given the complexity 

of the model and size of data, we used a scalable implementation of Symphony (C. 

Burdziak, E. Azizi, S. Prabhakaran, D. Pe’er, 2019) in the probabilistic programming 

language Edward (Tran et al., 2016). This implementation in Edward is provided in https://

github.com/dpeerlab/Symphony with example input data for group 1.

The use of variational algorithms in Edward (Tran et al., 2016) allows for fast 

approximations of the posterior for large gene-by-gene matrices including GRNs and 

covariances per cluster, and scales well to additional cells and ATAC-seq replicates. Setting 

constraints on covariance matrices of a multivariate normal distribution are difficult to 

enforce in the optimization setting of variational inference. Thus, to avoid non-singularity 

issues during optimization, we define the Wishart distribution in Edward using the Bartlett 

Decomposition, rather than the built-in Wishart function of tensorflow, which allows us to 

more easily define variational parameters.

Specifically, we replace the sampling of covariance matrices Σk∣Rk ~ Wishart with 

a generative model constructed from univariate chi-squared distributions and normal 

distributions, which can be shown to produce a valid sample from the Wishart distribution 

(Kshirsagar, 1959). Given Lk as a cholesky factor of the prior (Rk + Rk
T)2, we sample the 

cluster-specific covariance as follows:

Σk = LkAkAk
TLk

T

where Ak is a lower triangular matrix whose diagonal elements are composed of χ2 random 

variables with γ – i + 1 degrees of freedom, where i indexes the rows of Ak, and the 

off-diagonal elements in the lower triangle are independent normal distributions. Hence each 

Σk is a positive semi-definite matrix centered at LkLkT or equivalently (Rk + Rk
T)2. In this 

setting, we define variational distributions corresponding to the dummy variables h ~ chi 
squared and v ~ Normal, as opposed to defining a matrix variate distribution which, during 

the course of optimization, must fit all the constraints of valid covariance matrices.

Still, in the Edward implementation, we observed that the Barlett product often produced 

matrices which are not positive semi-definite due to numerical instability, and hence did 

not generate a valid covariance matrix. As such, we approximated the mean of Σk with 

the highly-related (unitarily similar) matrix Lk
TLk, which we ensured produced a posterior 

in covariance which is highly correlated with its mean derived from the posterior GRNs 

(minimum correlation r=0.745 across all groups in this paper). For additional speed, the 

cholesky factor was computed from Gram matrix (Rk + Rk
T)2 using the QR decomposition 

of (Rk + Rk
T) where (Rk′ + Lk

T) given Qk′Rk′ = QR(Rk + Rk
T).

In addition to the use of the Bartlett Decomposition, the Edward version of Symphony 

replaces the standard Wishart with a scaled Wishart for added flexibility of the model in the 

variational inference case. The scaled Wishart necessitates addition of a latent parameter per 

cluster δk, such that Σk′ ~ Wishart and δk ~ Normal and Σk = ΔkΣk′Δk where diag(Δk) = δk.

Bachireddy et al. Page 33

Cell Rep. Author manuscript; available in PMC 2022 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/dpeerlab/Symphony
https://github.com/dpeerlab/Symphony


Addition of the normal distribution above to the generative process infuses flexibility to 

the Wishart, whose variance is usually defined by a single parameter (degrees of freedom 

(Alvarez et al., 2014)). In addition, the resulting matrix will have a diagonal scaled by 

δki
2, hence allowing better fit to the empirical per-gene variances which are not captured 

directly by the regulatory model driving the prior for covariances. Off-diagonal elements 

are scaled by δkiδkj, a transformation which decouples the correlation structure embedded 

in the off-diagonal elements from the scaling of the diagonal. Specifically, correlations 

between genes in the original matrix Σk′ are encoded as Σ′k,ij/σ′iσ′j. After scaling, δ’s in 

the numerator and denominator cancel, hence allowing the overall structure to be maintained 

under any arbitrary scaling of per-gene variances to fit the empirical data per cluster.

We note that with the above approximations, the constraint on the sign of Rk is not always 

enforced to be the same as Σ′. Thus, we have more confidence in the inferred strength of 

regulation (magnitude of Rk). The estimated regulatory strength is used to identify master 

regulators in Figure 5B (as explained in section “master regulators” below). We also show 

the robustness of inferred regulatory strength in the section “robustness analysis” below.

Guide for choice of parameters.: The variational inference implementation of Symphony 

requires choice of several hyperparameters. By default, priors on cluster mean expression 

are set with empirical means across the cells in that cluster as explained above, and shape 

and rate parameters for the Gamma prior on peak heights are set as 4.5 and 1 respectively 

for a relatively uninformative prior. Other parameters, particularly those controlling the 

variance of distributions in the generative model, are user-defined and should be tuned to 

each dataset.

As Symphony is designed to manage a trade-off between fitting to expression covariance 

and chromatin accessibility in the posterior distribution over GRNs, the choice of variance 

parameter on the prior distribution for each Rk denoted by λ, as well as the degrees of 

freedom in Wishart linking Rk to Σk denoted by γ, can be chosen to prioritize fit to each type 

of data. To inform the choice of these parameters, we recommend setting these parameters 

with small values and checking the empirical fit of the posterior to both data types. For 

example, the parameter settings used in this study (λ = 0.005, γ = d + 1 where d is the 

number of genes) ensured strong correlation of posterior GRNs with both the inferred peak 

heights, which in turn associated strongly with the bulk accessibility data, and further with 

the posterior covariance which itself associated with the empirical covariance. We also track 

these correlations over inference to ensure they increase over iterations. Details can be found 

in https://github.com/dpeerlab/Symphony.

Performance of Symphony on PBMC Data.: Prior to utilizing Symphony for discovery of 

regulators in our DLI cohort, we evaluated the performance of Symphony on an independent 

dataset from the well-studied PBMC system. We obtained publicly available PBMC scRNA-

seq data from (Zheng et al., 2017) and chose a subset of 6825 cells expressing markers 

for either B, T, NK cells, or Monocytes. For proper normalization of these subsets, we 

corrected data using the Biscuit algorithm (Azizi et al., 2018; Prabhakaran et al., 2016) 

prior to applying Symphony, and selected a subset of 500 highly variable genes. Clusters 

from Biscuit were manually merged to obtain a distinct cluster defining each of 5 major 
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celltypes: B cells, CD8 T cells, CD4 T cells, NK cells, and Monocytes (Figure S7C). 

These assignments were used as input to Symphony to fix the GRN and peak accessibility 

inference to these specific phenotypic categories. For epigenetic data, we obtained processed 

bulk ATAC-seq on PBMCs from (Kukurba et al., 2016) for two samples. Peaks were lifted 

over from hg19 to hg38 genome builds using the UCSC genome browser (Kent et al., 2002) 

liftover tool. To derive Symphony inputs, motifs were identified in peak regions using FIMO 

(Grant et al., 2011). The ATAC-seq peak counts reported in the original study were used as 

inputs for bulk chromatin accessibility measurements.

Figure S7C shows the results of Symphony applied to the PBMC data. First, we evaluated 

the extent to which key cell type regulators are identified through the cell type -specific 

GRN posteriors. To do so, we considered the absolute value (magnitude) of edge weights 

emanating from each of 8 regulators per cell type, which would indicate the degree of 

predicted activity for each TF in particular clusters (Figure S7C). As expected, we observed 

key regulators CEBPA, CEBPB, and CEBPD are substantially more active in Monocytes. 

A recent study (Jaitin et al., 2016) has shown that knock-outs of CEBPB block monocyte 

differentiation. We observe similarly strong regulatory edges in the GRNs for CD8 T cells 

between TFs RUNX3, EOMES and their target genes, and indeed these TFs are known to be 

associated with CD8 T cell development (Woolf et al., 2003) and activation of cytotoxic T 

cells (Pearce et al., 2003) respectively. We find that GATA3, a well-known master regulator 

of Th2 T cell subsets (Zheng and Flavell, 1997; Zhu et al., 2004), has the strongest (highest 

mean) regulatory interactions in CD4 T cells, followed by CD8 T cells where it has also 

been shown to be functionally active (Tai et al., 2013). Finally, PAX5 has several strong 

links exclusively within B cell subsets, as would be expected for its role as a regulator of 

B cell maintenance and function (Cobaleda et al., 2007; Schebesta et al., 2007). Thus, the 

GRNs output from Symphony successfully recovered many well-known master regulators in 

PBMC subsets.

To then evaluate the peak deconvolution function of Symphony, we inspected the posterior 

peak heights across each of the 5 cell subsets. Figure S7C also shows a heatmap of the 

posterior peak accessibilities z-scored to display differences across the cell types, with 

peaks (rows) ordered by a kmeans clustering of normalized peak heights to highlight 

accessibility modules. We observe several modules which are clearly differential across 

the cell subsets, suggesting that the posterior of our model peak heights can capture cell type 

specific regulatory activities. To interpret these modules, we annotated peaks’ target genes 

for several cell type markers. This revealed that cell type markers tend to fall in modules 

which are more highly accessible in their respective cell types. For instance, we find peaks 

associated with B cell marker CD79A fall within a B cell -specific module, and likewise for 

Monocyte marker CD14 and NK cell marker GNLY. This suggests that the deconvolution is 

identifying biologically-meaningful differences in peak accessibility. We also confirmed that 

the deconvolution correlates highly with the original bulk data (0.39<Spearman r<.51 for 

pairwise correlations of each cell type specific peak height vs. each bulk replicate) to ensure 

that the deconvolution is not over-fitting to covariances, but rather fits strongly to the input 

ATAC-seq data as well.
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ATAC-seq samples used in Symphony.: Prior to running Symphony, TEX-like and TPEX-

like clusters that fell in the same sort compartment of CD4 or CD8, CD45RA or CD45RO 

were grouped together as listed below. Figure 4A,B and Figure S4A show ATAC-seq 

accessibility profiles for these samples (full list of samples and QC metrics are provided 

in Table S8). Bigwig files were loaded to IGV(Robinson et al., 2011) to visualize normalized 

accessibility signal with differential accessibility identified with DESeq2(Love et al., 2014).

Groups of ATAC-seq samples used for deconvolution of accessibility profiles in Symphony:

Symphony
deconvolution group

Enriched
exhaustion state

Enriched exhausted
clusters cell type

ATAC-seq sample
ID

1 T_EX-like 14,27 CD8 CD45RO C149

1 T_EX-like 14,27 CD8 CD45RO C156

1 T_EX-like 14,27 CD8 CD45RO C45

1 T_EX-like 14,27 CD8 CD45RO C66

1 T_EX-like 14,27 CD8 CD45RO C75

2 T_EX-like MC3 (4,7,3,22) CD8 CD45RA C70

2 T_EX-like MC3 (4,7,3,22) CD8 CD45RA C171

2 T_EX-like MC3 (4,7,3,22) CD8 CD45RA C167

2 T_EX-like MC3 (4,7,3,22) CD8 CD45RA C144

2 T_EX-like MC3 (4,7,3,22) CD8 CD45RA C139

2 T_EX-like MC3 (4,7,3,22) CD8 CD45RA C106

3 P_EX-like MC2 (5,11,23) CD8 CD45RO C39

3 P_EX-like MC2 (5,11,23) CD8 CD45RO C36

3 P_EX-like MC2 (5,11,23) CD8 CD45RO C156

3 P_EX-like MC2 (5,11,23) CD8 CD45RO C164

3 P_EX-like MC2 (5,11,23) CD8 CD45RO C168

4 P_EX-like MC2 (5,11,23) CD4 CD45RO C37

4 P_EX-like MC2 (5,11,23) CD4 CD45RO C34

4 P_EX-like MC2 (5,11,23) CD4 CD45RO C127

4 P_EX-like MC2 (5,11,23) CD4 CD45RO C158

4 P_EX-like MC2 (5,11,23) CD4 CD45RO C162

5 P_EX-like MC1 (19,28) CD8 CD45RA C41

5 P_EX-like MC1 (19,28) CD8 CD45RA C79

5 P_EX-like MC1 (19,28) CD8 CD45RA C118

5 P_EX-like MC1 (19,28) CD8 CD45RA C35

6 P_EX-like MC1 (19,28) CD4 CD45RA C76

6 P_EX-like MC1 (19,28) CD4 CD45RA C33

6 P_EX-like MC1 (19,28) CD4 CD45RA C116

In each group 1-6, scRNA-seq data and ATAC-seq data from the same samples are used 

as input to Symphony. Bulk ATAC-seq samples from different patients are assumed as 

biological replicates, and deconvolved using Symphony to achieve accessibility profiles for 
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each cluster. Combined with scRNA-seq data for the clusters, Symphony infers a GRN for 

each cluster shown in Figure 5C and Figure S5. We limited target genes to the pool of 

differentially expressed markers (Table S6) across clusters. We filtered inferred regulatory 

links (entries of Rk) that had a magnitude less than two (∣Rk∣<2 selected based on knee-point 

of distribution, ∣CV∣>0.5).

Runtime.: With this implementation, the runtime for Symphony was 1h 52m on group 

4 containing 2593 cells and 1305 pooled DEGs and 5h 54m on group 1 with 7181 cells 

and 1459 DEGs, on a local machine with 64GB of RAM and 12 CPU cores (2.7 GHz 

processors). This runtime is at least 40 times faster than MCMC inference used in Biscuit 

which has a similar model structure.

Robustness analysis.: To test the robustness of GRN inference, we performed a leave one 

(patient) out analysis in the TEX CD8 and TPEX CD4 groups. Specifically, we fit Symphony 

to scRNA-seq and ATAC-seq data for each group and excluded ATAC-seq data from one 

patient at a time. We then compared the coefficient of variation (CV) of predicted regulatory 

links across the leave-one-out iterations to the inferred regulation from the entire data. As 

shown in Figure S4B, CV is lower for stronger regulatory links and the majority of links 

have CV<1.

Master regulators.: We used the output GRNs from Symphony to identify master 

regulators of each cluster as follows: For cluster k, we averaged the inferred impact of 

each TF a, across all targets b that are differentially expressed genes (DEGs) in the cluster 

(listed in Table S7): Σb ∈ DEGk∣Rk
a,b∣/Dk with Dk being the number of DEGs for cluster k. 

The resulting average regulatory strength of each TF in each cluster is shown in Figure 5B. 

We performed a one-sided t-test between late differentiated, TEX-like clusters and all other 

exhausted clusters to find “differential regulators” of TEX-like clusters shown with dotted 

line box in Figure 5B, and green nodes in Figure 5C and Figure S5. Similarly, we identified 

differential regulators of early differentiated, TPEX-like MC1 and MC2 subsets (Figure 5B) 

shown as pink nodes in Figure 5C and Figure S5.

Regulatory network.: To elucidate the target genes impacted most by these master 

regulators, we filtered the GRNs by centrality or out-degree of regulators (defined as 

number of target genes predicted to be regulated by the TF) as well as regulatory strength 

(∣Rk∣>2). Figure 5C and Figure S5 show subnetworks containing individual known (Man et 

al., 2017)(Wu et al., 2016) and previously unexplored links. The circuitry for exhausted 

clusters reveals similarity and differences in network architecture across clusters. We 

identified mediating regulators such as BCL6 connecting two other regulators (TBPL1 and 

E2F2) differentially regulating cluster 27. The network link predictions are supported by 

co-expression and/or accessibility (Figure 5C). Other predicted repressors such as TCF7L2 
are supported by mutually exclusive (negative) co-expression patterns with DEGs.

Analysis of paired single-cell TCR and RNA-seq data—Single cell 5’ RNA-seq 

reads were processed with the Cell Ranger pipeline available from 10x Genomics. QC 

metrics for this data is provided in Table S9. A total of 23K total T cells were identified 

based on {CD3D, CD3E} expression (similar to section “Constructing global single cell 
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map of T cells”) and normalized and clustered using Biscuit with the same parameters 

mentioned before. The 29 newly identified clusters were scored for the same TPEX and TEX 

signatures (listed in Table S3), and the clusters with the highest scores were identified as 

TPEX-like and TEX-like clusters.

Preprocessing and analysis of TCR clonotypes.: Single cell TCR-seq reads were aligned 

to the GRCh38 reference genome and consensus TCR annotation was performed using Cell 

Ranger V(D)J (10x Genomics, version 2.1.0.). QC metrics are provided in Table S9.

Clonotypes mapping to TRB loci were used to annotate each cell, similar to others(Yost 

et al., 2019). Overlap between clonotypes from TEX-like cells and TPEX-like cells (Figure 

6A) was measured by counting the number of cells from each group per clonotype and 

performing a hypergeometric test using the phyper function with R. Venn diagrams were 

drawn using the eulerr package.

TCR diversity (Figure 6B) was calculated between all RNA clusters on a per patient basis 

via Gini coefficient(Dixon et al., 1987) using the ineq() function within the ineq package.

To determine the kinetics of TEX-like and TPEX-like clonotypes after DLI (Figure 6D, Figure 

7A-D), the proportion of pre- and post-treatment cells were calculated for both patients 

together. Clonotypes were defined as expanding if they significantly enriched pre-DLI 

(p<0.05 according to Fisher’s exact test), contracting if they were enriched post-DLI (p<0.05 

by Fisher’s exact test), and persistent otherwise. Viral-specific clonotypes were identified via 

VDJdb(Bagaev et al., 2020) and marked (V). Statistical analysis was performed in R version 

3.5.3. Plots were generated using the ggplot package.

For analysis of bulk TCRseq, following sequencing we analyzed the resulting fastq files for 

unique TCR clonotypes using an in-house rhTCRseq analysis pipeline. The pipeline first 

separates reads by alignment to either TRA or TRB locus using BLAST. After separating 

the reads by locus of origin, the pipeline assembles component V, D, and J regions into 

TCR clonotypes with MiXCR and collapses the assemblies by CDR3 similarity into a list 

of unique clonotypes and associated frequencies. Figure S7E shows the percentage of TCR 

clonotypes (based on mapping to TRB loci) in the post-DLI sample (total, n=471) shared 

with the DLI product (total, n=68).

Analysis of Validation Cohort.: CITE-seq data was processed using Cellranger 5.0.1 count 

function and setting Gene Expression and Antibody Capture library types in the libraries 

argument. The chemistry argument was set to SC5P-R2. Transcriptomic data for T cells was 

normalized with Biscuit similar to the discovery cohort analysis explained above (Figure 

3C). CITE protein expression data was normalized by median of total counts across all 

proteins per cell (Figure 3D, Figure S4C). The proportion of T cells assigned to TEX-like or 

TPEX-like groups in each sample is shown in Figure 3E.

We mapped the 5-prime transcriptomic data for each individual T cell in the validation 

cohort to a cluster identified from the 3-prime discovery cohort (Figure 1B) by computing 

the likelihood of its assignment to the cluster according to mean and covariance model 

parameters inferred for the cluster. We limited this computation to 2517 genes that were 
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differentially expressed in at least one 3-prime cluster. We identified T cells with maximum 

likelihood of mapping to either MC1 or MC2 metacusters and labeled them as TPEX-like and 

similarly T cells mapped to either MC3 or MC4 metaclusters as TEX-like.

Analysis of CLL inDrop.: Raw count data were initially processed using the dropEst 

software suite as previously described (Bachireddy et al., 2020; Petukhov et al., 2018). 

Count matrices from bone marrow inDrop datasets for the patient with CLL were first 

filtered by library size, with a total of 12,254 T cells (3112, 5487, 3655 T cells from 

F1, F2, F3 samples respectively) remaining cells over 3 timepoints, which included 0 

(pre-DLI), and 6 and 128 months post-DLI (Figure 3F; Figure S7D). Normalization and 

UMAP projection were performed using scanpy. T cells were then isolated by clusters with 

the highest expression of CD3E and CD3D. T-cells were renormalized by median of total 

counts across all genes per cell and then clustered using PhenoGraph clustering and k=15. 

TEX-like and TPEX-like clusters were identified using gene expression markers in Figure 3B. 

Top TEX-like and TPEX-like cluster groupings were identified as clusters [11,2,1,15,13,6] 

and [5,16] respectively. Line plots were generated for each TEX-like and TPEX-like group by 

summing the number of cells belonging to each cluster grouping at each time point and then 

dividing by the total number of cells in that time point. Heatmap was generated by z-scoring 

expression across each gene of interest for all clusters.

ADDITIONAL RESOURCES

Because the clinical trials from which these samples were obtained (94-009, 95-011, 96-372, 

96-022, and 96-277) were conducted before Clinicaltrials.gov was made available to the 

public in 2000, these trials are not associated with a clinical registry number.

An earlier version of this manuscript was published at https://www.biorxiv.org/content/

10.1101/2020.07.08.194332v1

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental design and global map of T cell states.
(A) Clinical cohorts, and flow chart of experimental and analysis schema. (B) t-SNE 

projection of normalized scRNA-seq data for all T cells from 41 samples from discovery 

cohort. Each dot represents a cell colored by cluster, patient ID, clinical outcome and 

timing respectively (also expanded in Figure S6B). (C) Mean expression for a curated 

set of transcriptomic signatures representing T cell subtypes and differentiation states for 

each T cell cluster; expression values are z-scored relative to all T cell clusters. Additional 

signatures appear in Figure S1D. (D) Common Factor Analysis of T cells identifying 3 

common latent factors distinguishing T cells between responders (R) and non-responders 

(NR). Each dot represents a cell colored by patient outcome and axes show factor loadings. 
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(E) Pearson correlation between common latent factors and mean expression of curated 

signatures. See also Figures S1, S2, S6 and Tables S1, S2.
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Figure. 2. Identification of outcome-associated transcriptional states and their temporal 
dynamics.
(A) Phenotypic volume in log-scale (metric of transcriptional diversity (Azizi et al., 2018)) 

of T cells before and after DLI in n=6 responders (R) and n=5 non-responders (NR). Box 

plot elements display the center line as median; box limits as first and third quartiles; (B-C) 

Proportion of T cells for pre-DLI only (B) or paired pre-/post-DLI (C) samples from n=6 

Rs and n=5 NRs assigned to the indicated cluster or meta-cluster. Q-values determined from 

weighted t-test and empirical FDR estimation. Box plot elements display the center line as 

median; box limits as first and third quartiles; whiskers extend to maximum/minimum data 

points (A) or 1.5x interquartile range with points as outliers (B). Each line in (C) indicates 
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one patient. Stacked bars on the right indicate the proportion of CD4+ and CD8+ T cells. 

(D-E) Hierarchical GP regression models (STAR Methods; Figure S3D,E; Figure S6E,F) 

for both the proportion of the indicated meta-cluster (in blue dots for Rs and in orange 

dots for NRs) and the percentage of tumor burden (in grey crosses) (indicated by percent 

positivity of the Philadelphia chromosome) per longitudinal samples from n=6 Rs (D) or 

n=6 NRs (E). Each dot is one sample and dot size is proportional to sample size (total cells); 

inferred model mean is shown with lines and shaded area shows +/−1 standard deviation 

(SD). Cross-correlation plots (D; purple) indicate the time shift between the models for 

meta-cluster proportion and tumor percentage, showing in-sync dynamics for MC3 and 

tumor (left) and a lag between MC1/MC2 and tumor (middle, right). See also Figures S3 and 

S6.
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Figure 3. T cell states defining DLI response correspond to exhausted subsets.
(A) Violin plots showing density of viral-specific TEX (top) or TPEX (bottom) signature 

scores (Im et al., 2016) across T cells grouped by cluster. Clusters are ordered by median 

score. Colored violins refer to clusters enriched in pre-DLI Rs (dark blue, Figure 2B) or 

expanding in post-DLI Rs (light blue, Figure 2C). Full labels provided in Figure S6D. (B) 

Unsupervised hierarchical clustering based on tumor infiltrating TPEX or TEX genes (Miller 

et al., 2019) segregates dark/light blue clusters. (C) t-SNE projection of all T cells from 

patients 5313 and 5315, with cells colored by mapped metacluster (top), expression of TPEX 

gene set (bottom left) or TEX gene set (bottom right). (D) Normalized CITE-seq expression 

data for defined T cell phenotypes for enriched pre-DLI, enriched post-DLI and all other 

T cells from patients 5313 and 5315. (E) Post-DLI kinetics of enriched post-DLI (left) 

and enriched pre-DLI (right) T cells measured by their sample proportion with indicated 

percentage of tumor burden (%Ph+) for patients 5313 (red) and 5315 (blue). (F) Kinetics 

of TPEX-like and TEX-like cells in a patient with CLL in post-DLI remission as well as 

long-term relapse (after 11 years). See also Figures S3, S6, S7 and Table S3.
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Figure 4. Epigenetic landscape of T cell subsets.
(A-B) Chromatin accessibility signal from ATAC-seq data for CD8+ CD45RA+ (A) and 

CD8+ CD45RO+ (B) T cells indicating differential accessibility (p<0.05 indicated with 

boxes) between R and NR in regions near exhaustion marker genes. (C-D) Average pairwise 

Pearson correlation between normalized ATAC-seq peak heights for CD8+ CD45RA+ (C) 

and CD8+ CD45RO+ (D) T cells from different clinical groups. See also Figure S4.
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Figure 5. Regulatory circuitry underlying exhausted T cell subsets.
(A) Generative process for Symphony, a probabilistic model that infers regulation from 

integration of ATAC-seq and scRNA-seq data. Dotted line arrows indicate conditional 

probabilistic relationship. (B) Heatmap showing scaled values of predicted regulatory 

strength of TFs (i.e. magnitude of regulation independent of sign) from Symphony 

(STAR Methods; Figure S4B, M10-12), averaged across differentially expressed genes 

characterizing each cluster. Master regulators that are differential (t-test p<0.05) or shared 

between late and early differentiated (“diff”) T cell subsets are shown in dotted lines. 

(C) Predicted regulatory circuitry for two example clusters; arrows between nodes indicate 

regulatory impact of a TF on a target gene. Master regulators that are differentially enriched 
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in late differentiated, TEX-like and early differentiated, TPEX-like subsets are shown in green 

or pink nodes, respectively. Circuitry for other enriched clusters are shown in Figure S5. See 

also Figures S5 and S7.
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Figure 6. Clonal properties, distributions and evolution during response to DLI.
(A) Venn diagrams showing clonotype overlap between TPEX-like and TEX-like cells from 

two R patients (5311 and 5314), and stacked bars indicating percentage of CD8+ and 

CD4+ T cells in TPEX-like, TEX-like and overlap categories. P value calculated from 

hypergeometric test. (B) TPEX-like clusters show increased TCR diversity (quantified with 

Gini coefficient) compared to TEX-like clusters, Wilcoxon. Box plot elements display center 

line as median; box limits as first and third quartiles; whiskers extend to 1.5x interquartile 

range with points as outliers. TPEX-like clusters: 5311, n=6; 5314, n=8; TEX-like clusters: 

5311,5314 n=9. (C) Probability densities of clone sizes for all TEX-like and TPEX-like cells 

from samples derived from R patients 5314 and 5311. (D) Clonotype frequencies 1 month 

before and 1 month after DLI from both R patients. Each dot represents a clonotype with 

dot size proportional to size of clone for each cell subset. Expanding/contracting clonotypes 

determined with Fisher’s exact test (P<0.05). Left, clonotypes from all cells colored by 

one of three dynamic patterns: contracting, expanding, persistent. Middle, right dynamic 

clonotypes from TPEX-like clusters are less likely to be contracting compared to clonotypes 

from TEX-like clusters (pie charts). (E) Barplots of proportions of clonal versus singleton 

TCRs shared with pre-DLI samples from each post-DLI timepoint from 5314 (n=2 post-DLI 

samples) and 5311 (n=1 post-DLI sample).
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Figure 7. Source of expanding early differentiated T cells.
A-B) Frequency distribution of all (A) or TPEX-like (B) clonotypes per timepoint for patient 

5314. Blue arrows indicate clonotype expansion from pre-DLI (P<0.05, Fisher’s exact test). 

(C-D) Frequency distribution of all (C) or TPEX-like (D) clonotypes per timepoint for 

patient 5311. Post-DLI clonotypes marked in red indicate match exclusive to DLI product in 

all (A,C) or TPEX-like (B,D) post-DLI clonotypes. Arrows indicate P<0.05, Exact Fisher’s 

Test, for clonotype expansion from pre-DLI. (E) Pie charts displaying the percentage of 

overlap between expanded clonotypes in post-DLI sample with those in pre-DLI (blue) or 
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DLI product (red) using scTCR data from three patients; expanded clonotypes are defined as 

clonotypes detected in at least 2 cells. See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or
RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Human CD14, FITC BD Biosciences Cat#555397; AB_395798

Anti-Human CD19, FITC BD Biosciences Cat#555412; AB_395812

Anti-Human CD3, PE BD Biosciences Cat#555339; AB_395745

Anti-Human CD4, BUV395 BD Biosciences Cat#563550; AB_2738273

Anti-Human CD8, APC-Vio770 Miltenyi Biotec Cat#130-113-155; AB_2725983

Anti-Human CD45RA, BV510 BD Biosciences Cat#563031; AB_2722499

Human BD Fc Block BD Biosciences Cat#564219; AB_2728082

DAPI solution BD Biosciences Cat#564907; AB_2869624

Anti-Human CD11c, FITC BD Biosciences Cat#561355; AB_10611872

Anti-Human CD14, FITC BD Biosciences Cat#555397; AB_395798

Anti-Human CD36, FITC BD Biosciences Cat#555454; AB_2291112

Anti-Human CD33, FITC BD Biosciences Cat#555626; AB_395992

Anti-Human CD16, FITC BD Biosciences Cat#555406; AB_395806

Anti-Human CD11b, FITC BD Biosciences Cat#562793; AB_2737798

Anti-Human CD15, FITC BD Biosciences Cat#555401; AB_395801

Anti-Human CD34, FITC BD Biosciences Cat#348053; AB_2228982

Anti-Human CD56, FITC BD Biosciences Cat#562794; AB_2737799

Anti-Human CD123, FITC BD Biosciences Cat#558663; AB_1645485

Anti-Human CD235a, FITC BD Biosciences Cat#559943; AB_397386

IgG1 isotype Biolegend Cat#400187; AB_2888921

IgG2a isotype Biolegend Cat#400293; AB_2888922

IgG2b isotype Biolegend Cat#400381; AB_2888923

Anti-Human B2M Biolegend Cat#316323; AB_2800837

Anti-Human B7H4 Biolegend Cat#358116; AB_2800986

Anti-Human CD10 Biolegend Cat#312233; AB_2800817

Anti-Human CD117 Biolegend Cat#313243; AB_2810474

Anti-Human CD11a Biolegend Cat# 350617; AB_2800935

Anti-Human CD11b Biolegend Cat# 301359; AB_2800732

Anti-Human CD11c Biolegend Cat# 371521; AB_2801018

Anti-Human CD127 Biolegend Cat# 351356; AB_2800937

Anti-Human CD134 Biolegend Cat# 350035; AB_2800932

Anti-Human CD137 Biolegend Cat# 309839; AB_2800807

Anti-Human CD138 Biolegend Cat# 356539; AB_2810567

Anti-Human CD14 Biolegend Cat# 301859; AB_2800736

Anti-Human CD15 Biolegend Cat# 323053; AB_2800847

Anti-Human CD152 Biolegend Cat# 369621; AB_2801015
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REAGENT or
RESOURCE SOURCE IDENTIFIER

Anti-Human CD16 Biolegend Cat# 302065; AB_2800738

Anti-Human CD163 Biolegend Cat# 333637; AB_2810510

Anti-Human CD18 Biolegend Cat# 302129; AB_2800739

Anti-Human CD183 Biolegend Cat# 353747; AB_2800949

Anti-Human CD184 Biolegend Cat# 306533; AB_2800791

Anti-Human CD19 Biolegend Cat# 302265; AB_2800741

Anti-Human CD194 Biolegend Cat# 359425; AB_2800988

Anti-Human CD197 Biolegend Cat# 353251; AB_2800943

Anti-Human CD1c Biolegend Cat# 331547; AB_2800871

Anti-Human CD1d Biolegend Cat# 350319; AB_2800934

Anti-Human CD20 Biolegend Cat# 302363; AB_2800743

Anti-Human CD223 Biolegend Cat# 369335; AB_2814327

Anti-Human CD226 Biolegend Cat# 338337; AB_2800899

Anti-Human CD244 Biolegend Cat# 329529; AB_2800857

Anti-Human CD25 Biolegend Cat# 302649; AB_2800745

Anti-Human CD27 Biolegend Cat# 302853; AB_2800747

Anti-Human CD274 Biolegend Cat# 329751; AB_2800860

Anti-Human CD278 Biolegend Cat# 313553; AB_2800823

Anti-Human CD279 Biolegend Cat# 329963; AB_2800862

Anti-Human CD28 Biolegend Cat# 302963; AB_2800751

Anti-Human CD3 Biolegend Cat# 300479; AB_2800723

Anti-Human CD31 Biolegend Cat# 303139; AB_2800757

Anti-Human CD314 Biolegend Cat# 320837; AB_2800844

Anti-Human CD33 Biolegend Cat# 366633; AB_2801008

Anti-Human CD335 Biolegend Cat# 331941; AB_2800874

Anti-Human CD34 Biolegend Cat# 343537; AB_2749972

Anti-Human CD38 Biolegend Cat# 303543; AB_2800758

Anti-Human CD39 Biolegend Cat# 328237; AB_2800853

Anti-Human CD4 Biolegend Cat# 300567; AB_2800725

Anti-Human CD40 Biolegend Cat# 334348; AB_2800886

Anti-Human CD44 Biolegend Cat# 338827; AB_2800900

Anti-Human CD45 Biolegend Cat# 304068; AB_2800762

Anti-Human CD45RA Biolegend Cat# 304163; AB_2800764

Anti-Human CD45RO Biolegend Cat# 304259; AB_2800766

Anti-Human CD49f Biolegend Cat# 313635; AB_2800825

Anti-Human CD5 Biolegend Cat# 300637; AB_2800726

Anti-Human CD56 Biolegend Cat# 392425; AB_2801024

Anti-Human CD57 Biolegend Cat# 393321; AB_2801030

Anti-Human CD62L Biolegend Cat# 304851; AB_2800770
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REAGENT or
RESOURCE SOURCE IDENTIFIER

Anti-Human CD69 Biolegend Cat# 310951; AB_2800810

Anti-Human CD70 Biolegend Cat# 355119; AB_2800955

Anti-Human CD73 Biolegend Cat# 344031; AB_2800916

Anti-Human CD80 Biolegend Cat# 305243; AB_2800783

Anti-Human CD86 Biolegend Cat# 305447; AB_2800786

Anti-Human CD8a Biolegend Cat# 301071; AB_2800730

Anti-Human CD95 Biolegend Cat# 305651; AB_2800787

Anti-Human HLA-DR Biolegend Cat# 307663; AB_2800795

Anti-Human KLRG1 Biolegend Cat# 138433; AB_2800649

Anti-Human TCRab Biolegend Cat# 306743; AB_2800793

Anti-Human TCRgd Biolegend Cat# 331231; AB_2814199

Anti-Human TIGIT Biolegend Cat# 372729; AB_2801021

Anti-Human Tim3 Biolegend Cat# 345049; AB_2800925

Biological Samples

Cryopreserved bone marrow mononuclear cells Dana-Farber Cancer Institute Pasquarello Tissue Bank in Hematologic Malignancies

Cryopreserved donor lymphocyte infusion products Dana-Farber Cancer Institute Pasquarello Tissue Bank in Hematologic Malignancies

Chemicals, Peptides, and Recombinant Proteins

DNase I StemCell Technologies Cat#07900

Digitonin Promega Cat#G9441

AMPure XP beads Beckman Coulter A63881

Critical Commercial Assays

MACS Dead Cell Removal Kit Miltenyi Biotec Cat#130-090-101

Pan T Cell Isolation Kit, human Miltenyi Biotec Cat#130-096-535

MACS CD19 MicroBeads Miltenyi Biotec Cat#130-050-301

10X Chromium Single Cell 3′ Library & Gel Bead 
Kit (v2)

10x Genomics Cat#PN-120237

Bioanalyzer High Sensitivity DNA Kit Agilent Cat#5067-4626

10x Chromium Single Cell 5’ Library & Gel Bead 
Kit

10x Genomics PN-1000006

10x Chromium Single Cell V(D)J Enrichment Kit, 
Human T Cell

10x Genomics PN-1000005

5' Feature Barcode Kit 10x Genomics PN-1000256

10x Chromium Next GEM Single Cell 5' Kit v2 10x Genomics PN-1000263

10x Chromium Single Cell Human TCR 
Amplification Kit

10x Genomics PN-1000252

Nextera DNA Library Prep Kit Illumina FC-121-1030

NEBNext High Fidelity PCR Mix New England Biolabs M0541S

MinElute Reaction Cleanup kit Qiagen 28206

Deposited Data

10x scRNA-seq dbGaP phs001998.v3

10x scTCR-seq dbGaP phs001998.v3
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REAGENT or
RESOURCE SOURCE IDENTIFIER

10x CITE-seq dbGaP phs001998.v3

ATAC-seq dbGaP phs001998.v3

Symphony This paper DOI: https://zenodo.org/record/5498358

Gaussian process regression models This paper DOI: doi.org/10.5281/zenodo.5498361

Oligonucleotides

Primers for rhTCR-seq Translational 
Immunogenomics 
Laboratory, Dana-Farber 
Cancer Institute

(Li et al., 2019)

Software and Algorithms

Symphony This paper DOI: https://zenodo.org/record/5498358

Gaussian process regression models This paper DOI: doi.org/10.5281/zenodo.5498361

SEQC (Azizi et al., 2018) https://github.com/dpeerlab/seqc

Cell Ranger 5.0.1 10x Genomics https://support.10xgenomics.com/single-cell-gene-
expression/software/downloads/latest

Cell Ranger V(D)J 2.1.0 10x Genomics https://support.10xgenomics.com/single-cell-vdj/
software/downloads/latest?

scanpy 1.8.0 (Wolf et al., 2018) https://github.com/theislab/Scanpy

t-SNE (Maaten and Hinton, 2008) https://lvdmaaten.github.io/software/

Biscuit (Azizi et al., 2018) https://github.com/dpeerlab/
BISCUIT_SingleCell_IMM_ICML_2016

PhenoGraph (Levine et al., 2015) https://github.com/dpeerlab/phenograph

Pyro (Bingham et al., 2019) https://pyro.ai/

ATAC-seq pipeline ENCODE consortium https://doi.org/10.5281/zenodo.156534; https://
github.com/ENCODE-DCC/atac-seq-pipeline

MACS2 2.2.7.1 (Zhang et al., 2008) https://pypi.org/project/MACS2/
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