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This study concentrates on the analysis of a stochastic SIC epidemic systemwith an enhanced and general pertur-
bation. Given the intricacy of some impulses caused by external disturbances, we integrate the quadratic Lévy
noise into our model. We assort the long-run behavior of a perturbed SIC epidemic model presented in the
form of a system of stochastic differential equations driven by second-order jumps. By ameliorating the hypoth-
eses and using some new analytical techniques, we find the exact threshold value between extinction and ergo-
dicity (persistence) of our system. The idea and analysis used in this paper generalize the work of N. T. Dieu et al.
(2020), and offer an innovative approach to dealing with other random population models. Comparing our re-
sults with those of previous studies reveals that quadratic jump-diffusion has no impact on the threshold
value, but it remarkably influences the dynamics of the infection and may worsen the pandemic situation. In
order to illustrate this comparison and confirm our analysis, we perform numerical simulations with some real
data of COVID-19 inMorocco. Furthermore,we arrive at the following results: (i) the time average of the different
classes depends on the intensity of the noise (ii) the quadratic noise has a negative effect on disease duration (iii)
the stationary density function of the population abruptly changes its shape at some values of the noise intensity.
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1. Introduction

1.1. Study background

Infectious illnesses are health disruptions caused by tiny compo-
nents like viruses, germs, bacteria, fungi, or parasites. These microor-
ganisms live in and on our bodies and propagate through many ways
of dissemination such as direct physical contact (horizontal spread),
mother to baby (vertical transfer), airborne particles, water, food, ani-
mal, or insect bite [1]. Minor infections may respond the rest and
home treatments, while life-threatening diseases may require hospital-
ization.

In late 2019, a deadly disease (Coronavirus disease 2019, abbreviated
as COVID-19) obstructed ordinary lifestyles [2] and highly strained the
healthcare professionals and medical structures [3]. Biologically, the
bar), sekaraja.sp@gmail.com
great contagiousness and quick spread of this epidemic following its in-
sertion into the host population is due to the shortage of pre-existing
immunity against the virus [4]. This latter is transmitted between
humans by direct contact with frequently touched objects and surfaces
or by small water droplets produced by the exhalation of infected indi-
viduals [5]. Respiratory problems, change in the sense of smell or taste,
fever, and dry cough represent the principal symptoms of the disease
[6]. In order to partially prevent and control the spread of this epidemic,
the government and its authorities have ordered everyone to wear a
mask ormuzzle, clean hands frequently and takemeasures such as gen-
eral curfews, isolation and vaccination [7,8].

In mathematical biology, dynamical systems have long been em-
ployed for analyzing and understanding the behavior of diseases in
the population and examining the impact of intervention strategies
[9]. The SIC (Susceptibles–Infected–Constantly recovered) model is one
of themost substantial systems in epidemiological patterns andmalady
control which was originally proposed and treated by Kermack and
McKendrick [1] in 1927. From then on, various formulations of the SIC
model with different factors have been investigated by many re-
searchers due to their theoretical and functional value [10,11]. In this
model, the overall population is typically divided into three sub-
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populations, susceptible S(t), infectious I(t), and constantly recovered C
(t) individuals. The SIC epidemicmodel is basically expressed by the fol-
lowing deterministic system of nonlinear differential equations:

dS tð Þ ¼ Π � ηdS tð Þ � τβS tð ÞI tð Þ
� �

dt,
dI tð Þ ¼ τβI tð ÞS tð Þ � ηd þ ηα þϖ

� �
I tð Þ

� �
dt,

dC tð Þ ¼ ϖI tð Þ � ηdC tð Þ
� �

dt,

8><>: ð1:1Þ

where the positive constants Π, ηd, ηα, τβ and ϖ are respectively the
insertion or inflow average into the population, the normal death rate,
the mortality rate due to the disease, the transmission rate, and the
recovery rate of the infected individuals. For the simplicity of notation,
we define S⋆ ¼ Π

ηd
. The model (1.1) and its general shapes were

extremely applied in the COVID-19 case and several authors demon-
strated that the first phase of COVID-19 (March–May 2020) followed
the SIC dynamic. For easier reference, let us quote the following works:

• In [12], Prodanov presented some novel analytical findings and nu-
merical algorithms for parametric estimation of the SIC model (1.1)
with COVID-19 data.

• In [13], the authors proposed a two-parameters SICmodel and offered
a general analytical solution of the model with an application to
COVID-19 case.

• In [14], the authors analyzed an SIC epidemic model for COVID-19
spread with fuzzy parameters and presented an application to the
case of Indonesia.

The deterministic model (1.1) offers a systematic way to investigate
transmission dynamics and produce long-termpredictions [9]. Based on
the expression r0 ¼ τβS⋆ � ηd þ ηα þϖ

� �
, we can analytically establish

the asymptotic behavior of the epidemic. If r0>0, then the disease per-
sists in the population, and if r0 ≤ 0, the disease dies out. Commonly,

r0 can be formulated as the basic reproduction number R0 ¼ τβS⋆

ηdþηαþϖ

and we can compare this ratio with the number 1 to distinguish be-
tween the suppression and the continuation of the illness. More inter-
esting results on the SIC model can be found in [15] where the
stability properties of equilibrium are studied. It is worth noting
that model (1.1) can be improved by taking into account some realistic
assumptions such as randomness. We introduce this idea in the next
subsection.

1.2. The role of stochasticity in biological and physical systems

Biological and physical systems are sophisticated and complex. One
of the hallmarks of complexity is randomness and uncertainties, either
in the reasons of a happened phenomenon or in predicting its long-
run [16]. The stochastic approach highlights many hypotheses and pre-
occupations by investigating the dynamics of a system. For this reason,
multiplicative and additive noise sources carry out a significant role in
the transient dynamics of biological and physical systems [17]. Techni-
cally, if the noise level is abnormally high, the signal can be drowned
out, the similar logic for biological systemswhere noises help reduce in-
fection. Regarding the physical grasp of biological models, the above
two types of random noise have been extensively greatly used
[18–21]. Clearly, additive noise is characterized by its proactive role in
the transient dynamics of dynamical systems, and multiplicative noise
is accountable for noise-induced transitions [22]. In this context,
Spagnolo et al. [23] studied the dynamics of an ecosystemwithmultipli-
cative noise and a stochastic interference between the species. They
showed that noise plays a pivotal role in population dynamics and its
presence is responsible for the generation of quasi-deterministic tem-
poral oscillations. Furthermore, they demonstrated that noise affects
the extinction of species, which confirms the role of including
stochasticity. By consideringwhite and colored noise sources, Guarcello
et al. [24] analyzed the phase dynamics in ballistic graphene-based
2

short Josephson junctions. They explored the effects of thermal and cor-
related fluctuations on the escape time from these metastable states in
the case of the aforementioned noises. More investigation on stabiliza-
tion effects of dichotomous noise on the lifetime of the superconducting
state, geometric approach to quantum phase transitions, and other in-
triguing studies can be found in [25–30]. Concerning bio-mathematical
systems, we can also show that casual and extrinsic perturbations have
a considerable effect on the infection dynamic [31–41]. In [42], the author
showed that due to potential environmental changes, the epidemic
model parameters are exhibit atypical and stochastic fluctuations with
different degrees. Subsequently, lots of studies have inserted the white
noise into the corresponding deterministic setup to show the impact of
the environmental disturbances on the population dynamics [43–54].
The important issue in dealing with dynamic models is the stability of
their equilibrium. To this end, Chichigina et al. [55] treated the stability
of a simple systemsubject tomultiplicative one-side pulse noisewith hid-
den periodicity. By varying the memory, the authors in [56] analyzed the
random variability of the stochastic process. As an example, they studied
an epidemiological model, and they established that the noise affects the
time behavior of the illness.

The previously cited systems are probabilistic models with Gaussian
noise and hence their solution is continuous. However, when facedwith
sudden environmental shocks (earthquakes, cyclones, fires, etc.), these
disturbances can brutally affect the solution in some cases, thus break-
ing its continuity [57–59]. Moreover, the impact of human interven-
tions, economic crises, and uncontrolled flow of people may have
cruel consequences on epidemiological systems and this cannot be de-
scribed by using differential systems driven by white noise [60–64].
Consequently, we should employ the stochastic differential equation
with significant discontinuities, so-called jumps [65]. Based on some
nice properties: (i) stationary and independent increments (ii) sample
paths which are almost surely right continuous with left limits, Lévy
processes can be applied to many concrete and real situations [54,
66–70]. To depict this randomness, Zhang and Wang in [57] proposed
the following SIC epidemic model with Lévy perturbation:

dS tð Þ ¼ Π � ηdS tð Þ � τβS tð ÞI tð Þ
� �

dt þ dA1 tð Þ,
dI tð Þ ¼ τβI tð ÞS tð Þ � ηd þ ηα þϖ

� �
I tð Þ

� �
dt þ dA2 tð Þ,

dC tð Þ ¼ ϖI tð Þ � ηdC tð Þ
� �

dt þ dA3 tð Þ,

8><>: ð1:2Þ

where

dA1 tð Þ ¼S tð Þξ11dW1 tð Þ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{White noise part

þ
Z
H
S t �ð Þχ11 uð ÞL dt, duð Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Jumps noise part

,

dA2 tð Þ ¼ I tð Þξ21dW2 tð Þ þ
Z
H
I t �ð Þχ21 uð ÞL dt, duð Þ,

dA3 tð Þ ¼ C tð Þξ31dW3 tð Þ þ
Z
H
C t �ð Þχ31 uð ÞL dt, duð Þ:

To describe the stochastic components of this system, we consider
firstly a probability triple (Ω,ℰ,ℙ) and an increasing, right continuous
filtration {ℰt}t≥0 with the fact that ℰ0 includes all ℙ-null sets. Then, we
present the following definitions:

• The left limits of S(t), I(t) and C(t) are denoted by S(t−), I(t−), C(t−).
• TheWiener processesWi tð Þ (i=1,2,3) aremutually independent and
defined on (Ω,ℰ, {ℰt}t≥0,ℙ).

• ξi1 > 0 (i = 1,2,3) are the white noise intensities.
• L is the compensator associatedwith Poisson randommeasureN and
special measure ϑ(⋅) defined on a measurable set ℋ ⊂ (0,∞).

• ϑ(ℋ) < ∞ and L t, duð Þ is an {ℰt}-martingale, where
N t, duð Þ ¼ L t, duð Þ þ tϑ duð Þ.

• N is independent toWi (i = 1,2,3).
• χi1 : ℋ → (−1,∞) (i = 1,2,3) are three continuous functions.
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For simplicity and convenience of discussion, we let ξ⋆ = max
{ξ112 ,ξ212 ,ξ312 }, χ⋆(u) = max {χ11(u),χ21(u),χ31(u)} and χ⋆(u) = min
{χ11(u),χ21(u),χ31(u)}. Concerning the results on the asymptotic
behavior of the model (2), we cite the following works:

• In [58], the authors established the threshold of the disappearance
and perseverance of the disease under the following key parametric
condition

ηd > 0:5 p � 1ð Þξ⋆ þ 1
p

Z
H

1þ χ⋆ uð Þð Þp � 1 � pχ⋆ uð Þ
� �

ϑ duð Þ, p > 1:

ð1:3Þ

• In [71], the authors provided a critical review indicating that the
condition (1.3) is actually a restricted hypothesis in the sense that
there are many cases where it cannot be verified. Without making
(1.3), they proposed an alternative approach to determine the thresh-
old of (1.2).

• In [72], the authors proposed a general class of Lévy-jumps perturba-
tion by considering the system (1.2) with infinite Lévy measures
ϑ(ℋ) = ∞ and possible correlation between stochastic components.
They established the threshold of (1.2).

Lévy jumps are also used in physical domains and allow precise
characterization of random processes with some discontinuities. In
[73], Guarcello et al. explored the effects of Lévy noise on the dy-
namics of sine-Gordon solitons in long Josephson junctions. In
[74], the authors investigated the influence of Gaussian and non-
Gaussian noises on the ballistic graphene-based small Josephson
junctions. Notably, they provided a comparative study and some
useful outcomes.

1.3. Stochastic SIC system with quadratic Lévy perturbation

In this article, we introduce a generalization of the work
presented in [71]. We consider a more realistic situation of the ep-
idemics dissemination in the case of sudden environmental catas-
trophes and some human interventions. These disorders greatly
affect the number of individuals and the random perturbation
may be dependent on the square of the variables S, I, and C respec-
tively. In view of this, we include the second-order Lévy jumps into
the epidemic model (1.1) as follows:

dS tð Þ ¼ Π � ηdS tð Þ � τβS tð ÞI tð Þ
� �

dt þ dP1 tð Þ,
dI tð Þ ¼ τβI tð ÞS tð Þ � ηd þ ηα þϖ

� �
I tð Þ

� �
dt þ dP2 tð Þ,

dC tð Þ ¼ ϖI tð Þ � ηdC tð Þ
� �

dt þ dP3 tð Þ,

8><>: ð1:4Þ

where

dP1 tð Þ ¼ ξ11S tð Þ þ ξ12S
2 tð Þ

� �
dW1 tð Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Quadratic white noise part

þ
Z
H

χ11 uð ÞS t �ð Þ þ χ12 uð ÞS2 t �ð Þ
� �

L dt, duð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Quadratic jumps noise part

,

dP2 tð Þ ¼ ξ21I tð Þ þ ξ22I
2 tð Þ

� �
dW2 tð Þ þ

Z
H

χ21 uð ÞI t �ð Þ þ χ22 uð ÞI2 t �ð Þ
� �

L dt, duð Þ,

dP3 tð Þ ¼ ξ31C tð Þ þ ξ32C
2 tð Þ

� �
dW3 tð Þ þ

Z
H

χ31 uð ÞC t �ð Þ þ χ32 uð ÞC2 t �ð Þ
� �

L dt, duð Þ:

Here, ξi1 > 0 (i= 1,2,3) denote the Brownian motions intensities of
the linear stochastic perturbation, and ξi2 > 0 (i = 1,2,3) stand for the
intensities of the quadratic case. We assume that the positive
quantities χij(u) (i = 1,2,3, j = 1, 2) are continuous functions and
satisfy the following main criterion

Að Þ :
Z
H
χ2

ij uð Þϑ duð Þ < ∞, i ¼ 1, 2, 3, j ¼ 1, 2: ð1:5Þ
3

Set ℝ+
3,⋆ = {(x,y,z) : x > 0,y > 0,z > 0} and assume that (A) holds,

then by using the same arguments presented in ([57], Theorem 1), we
can readily prove that for any initial data (S(0), I(0),C(0)) ∈ ℝ+

3,⋆, there
exists a unique, global and positive solution (S(t), I(t),C(t)) ∈ ℝ+

3,⋆. That
is to say that the system (1.4) is well-posed biologically andmathemat-
ically.

Remark 1.1. Clearly, the dynamic of the third compartment has no im-
pact on the behavior ofmodel (1.4), Sowe can only consider the follow-
ing reduced model:

dS tð Þ ¼ Π � ηdS tð Þ � τβS tð ÞI tð Þ
� �

dt þ dP1 tð Þ,
dI tð Þ ¼ τβI tð ÞS tð Þ � ηd þ ηα þϖ

� �
I tð Þ

� �
dt þ dP2 tð Þ:

(
ð1:6Þ

In this case, we define ℝ+
2,⋆ = {(x,y) : x > 0,y > 0} and we merely

examine the asymptotic behavior of the susceptible and infected
compartments.

1.4. Problematic and methodology

Similar to the deterministic framework, the main objective of
exploring the dynamic of the disturbed epidemic models is to es-
tablish the conditions which guarantee the extinction and the per-
manence of the infection. Since the stochastic model (1.6) is
perturbed by a quadratic stochastic perturbation, the threshold
analysis is not only a complicated but also an intriguing question.
In addition, Liu et al. [75] in 2017 indicated that the quadratic sto-
chastic disturbance will be studied in the future due to technical
difficulties and the feasibility of the system in mathematical epide-
miology. Recently, some authors have analyzed the dynamical be-
havior of epidemic models with white noises in the quadratic
form (see for example, [76–79]). To the best of our knowledge, to
this day, stochastic epidemic systems with quadratic Lévy jumps
perturbation have not been treated due to their complexity. In
this paper, we try to deal with the extinction of the infection and
the existence of a single stationary distribution (stochastic positive
equilibrium state) of system (1.6). Roughly speaking, ergodic sta-
tionary distribution means the permanence of the epidemic. In
the literature, one of the standard approaches to prove ergodicity
is the Lyapunov-candidate-function, which provides just sufficient
conditions in the majority of cases [80,81]. Thus, the main problem-
atic of this article can be stated as follows:

• Is it possible to provide the sufficient and necessary condition for the
ergodic property of the system (1.6) and illness extinction under only
(A) without adding more assumptions?

Accurately, this current study proposes a novel method to deal
with stochastic models driven by quadratic Lévy jumps. We present
the enough and almost requisite criterion for the extinction of the
epidemic and the ergodic property of the model (1.6). Based on
some nice properties of an auxiliary equation with quadratic
jump-diffusion, we establish the exact expression of the threshold
T ⋆

0. In other words, if T ⋆
0 < 0, then the number of infected individ-

uals will quickly converge to zero, and if T ⋆
0>0, then system (1.6)

admits a single stationary ergodic distribution. To examine the ef-
fect of the nonlinear jump-diffusion, we illustrate its impact on the
threshold value T ⋆

0 and generally on the asymptotic behavior of
the epidemic.

The remnant of this study follows the following planning: in the sec-
ond part, we present some asymptotic properties of an auxiliary equa-
tion with quadratic jump-diffusion, then we introduce the value of T ⋆

0.
In Section 3, we prove that T ⋆

0 is the threshold of the stochastic model
(1.6). In Section 4, numerical examples are introduced to highlight
and emphasize our theoretical outcomes.
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2. Some results on auxiliary equation with quadratic Lévy noise

In this section,wewill briefly present some characteristics and properties of themodel in the case of no infection. For this reason,we consider this
auxiliary equation

dΦ tð Þ ¼ Π � ηdΦ tð Þ
� �

dt þ ξ11Φ tð Þ þ ξ12Φ
2 tð Þ

� �
dW1 tð Þ þ

Z
H

χ11 uð ÞΦ t �ð Þ þ χ12 uð ÞΦ2 t �ð Þ
� �

L dt, duð Þ,

Φ 0ð Þ ¼ S 0ð Þ>0:

8<: ð2:1Þ

The following two properties can be proven effortlessly:
• The Eq. (2.1) is well posed, that is to say that for any initial data Φ(0) > 0, (2.1) has a unique positive and global solution.
• By the stochastic comparison theorem [82], we deduce that S(t) ≤ Φ(t) for any t ≥ 0 almost surely (briefly, a.s.).

To proceed further, we start with the following estimation.
Lemma 2.1. For any q ∈ (0,1], there exists a constant em independent of Φ(0) such that

limsup
t!∞

E q � 1 1þΦð Þq
� �

≤ em < ∞: ð2:2Þ

Proof. We choose the Lyapunov-candidate-function V(Φ) = q−1(1 + Φ)q, and we apply the operator ℒV related with (2.1). Then, we get

LV Φð Þ ¼ 1þΦð Þq � 1 Π � ηdΦ
� �

þ 0:5 q � 1ð Þ 1þΦð Þq � 2 ξ11Φþ ξ12Φ
2

� �2
þ
Z
H

q � 1 1þΦð Þ þ χ11 uð ÞΦþ χ12 uð ÞΦ2
� �q

� q � 1 1þΦð Þq � 1þΦð Þq � 1 χ11 uð ÞΦþ χ12 uð ÞΦ2
� �� �

ϑ duð Þ:

For any q ∈ (0,1], we have the following inequality

Z
H

1þ χ11 uð ÞΦ
1þΦ

þ χ12 uð ÞΦ2

1þΦ

 !q

� 1 � q
χ11 uð ÞΦ
1þΦ

þ χ12 uð ÞΦ2

1þΦ

 !" #
ϑ duð Þ ≤ 0,

which implies that ℒV(Φ) ≤ (Π + ηd)(1 + Φ)q−1 − ηd(1 + Φ)q. We choose v1 = qηd and v2 = Π + ηd, then we obtain

LV Φð Þ ≤ � v1V Φð Þ þ v2: ð2:3Þ

By using the identical arguments exposed in the proof of Lemma 2.3 in [83], we have

limsup
t!∞

E q � 1 1þΦð Þq
� �

≤
v2
v1

¼ em < ∞:

Thus, we get (2.2).
Remark2.1. Ifwe consider only thewhite noise perturbation (see for example [78,79]), thenwe canfind the stationary distribution expression of

the auxiliary process (2.1). But, this expression or formula does not exist in the case of the linear Lévy jumps and even in the quadratic case. Thismat-
ter is recently indicated in [84] as an openquestion, and the authors gave the threshold analysis of theirmodelwith anobscure stationary distribution
formula. In this study, we suggest an alternate method to get the precise expression of the threshold parameter. This fresh idea that we offer is pre-
sented in the following lemma.

Lemma 2.2. The Eq. (2.1) admits a unique ergodic stationary distribution π⋆(⋅). Moreover, one derives from the ergodic theorem [85] that

lim
t!∞

1
t

Z t

0
Φ sð Þds ¼

Z ∞

0
xπ⋆ dxð Þ ¼ S⋆: ð2:4Þ

Proof. As stated in [86], to prove the ergodic property of (2.1), it be sufficient to check the existence of a positive function V and constants
v1, v2 > 0, such that

LV Φð Þ ≤ � v1V Φð Þ þ v2:

From the inequality (2.3), and Theorem 6.3 in [86], we can infer the existence and uniqueness of an ergodic stationary distribution π⋆(⋅) and

lim
t!∞

1
t

Z t

0
Φ sð Þds ¼

Z ∞

0
xπ⋆ dxð Þ a:s: ð2:5Þ

Now, taking the mathematical expectation on the sides of (2.1), yields

0 ¼ lim
t!∞

E Φ tð Þ½ �
t

¼ Π � ηd lim
t!∞

1
t

Z t

0
E Φ sð Þ½ �ds ¼ Π � ηdE lim

t!∞

1
t

Z t

0
Φ sð Þds

	 

¼Π � ηdE

Z ∞

0
xπ⋆ dxð Þ

	 

via 2:5ð Þð Þ

¼Π � ηd

Z ∞

0
xπ⋆ dxð Þ:

ð2:6Þ
4
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Then, we get

lim
t!∞

1
t

Z t

0
Φ sð Þds ¼

Z ∞

0
xπ⋆ dxð Þ ¼ Π

ηd
¼ S⋆:

This completes the proof.
Remark 2.2. To illustrate the significance of the result (2.6), let's compare it to that of [58]. In fact, according towork [71], we can get the results in

[58] without considering (1.3). Usually, this clause is widely used to prove the following long-time estimates:

1. lim
t!∞

Φ tð Þ
t ¼ 0 a.s.

2. lim
t→∞

1
t

Z t

0
ΦðsÞdW1ðsÞ ¼ 0, and lim

t→∞

1
t

Z t

0
Φ2ðsÞdW1ðsÞ ¼ 0 a.s.

3. lim
t→∞

1
t

Z t

0

Z
ðχ11ðuÞΦðs−Þ þ χ12ðuÞΦ2ðs−ÞÞLðds;duÞ ¼ 0 a.s.

Elimination of (1.3) allows us to study the model (1.4) without restrictions or assumptions on the parameters of the model.
Remark 2.3. Lemma 2.2 takes into consideration the effect of quadratic Lévy jumps, and this makes it clearly an extended version of the results

presented in ([71], Remarks 2 and 3).

Now we present the threshold value of our stochastic model (1.6) which is expressed by the following form

T ⋆
0 ¼ τβS⋆ � ηd þ ηα þϖ

� �
� 0:5ξ221 �

Z
H

χ21 uð Þ � ln 1þ χ21 uð Þð Þð Þϑ duð Þ:
Remark 2.4. Note that without using the result (2.6), the threshold takes the following form

T ⋆
0 ¼ τβ

Z ∞

0
xπ⋆ dxð Þ � ηd þ ηα þϖ

� �
� 0:5ξ221 �

Z
H

χ21 uð Þ � ln 1þ χ21 uð Þð Þð Þϑ duð Þ:

Since the expression of π⋆ is unknown, our alternative method offers an exact value of the threshold value of the model (1.6).

In the next section, we will show analytically that T ⋆
0 is the real threshold among suppression and tenacity of the disease.
3. Threshold analysis of the model (1.6) with quadratic Lévy noise

As stated in the introduction, the central question related to the analysis of epidemiological systems is to predict what will happen in the long
term? So, the main purpose of this part is to process this query.

3.1. Extinction case

Theorem 3.1. Assume that T ⋆
0 < 0. Then, the solution (S(t), I(t)) to system (1.6) (with any positive initial value) follows

limsup
t!∞

ln I tð Þ
t

≤ T ⋆
0 < 0 a:s:,

which indicates that the illness will exponentially (rapidly) extinctwith probability 1. In addition, the distribution of susceptible population S(t) con-
verges weakly to the single stationary distribution π⋆ of Φ(t).

Biological signification 3.1. By Theorem 3.1, we show that:
1. If the Lyapunov characteristic quantity of infected persons is negative, then I(t) exponentially tends to 0, explicitly, when the growth rate of I(t) is

negative, the disease should go away.
2. The distribution of the susceptible persons converges weakly to a unique stable distribution, which indicates that the S(t) level eventually reaches

a steady-state, meaning that S(t) persists.

Proof of Theorem 3.1. Computing the Itô's formula of ln I(t) over the solution (S(t), I(t)) gives

d ln I tð Þ ¼ ðτβS tð Þ− ηd þ ηα þϖ
� �

−0:5 ξ21 þ ξ22I tð Þð Þ2

þ
Z
H

ln 1þ χ21 uð Þ þ χ22 uð ÞI tð Þð Þð Þϑ duð Þ−
Z
H
ððχ21 uð Þ

þχ22 uð ÞI tð ÞÞÞϑ duð Þ
�
dt þ ξ21 þ ξ22I tð Þð ÞdW2 tð Þ þ

Z
H

ln 1þ χ21 uð Þ þ χ22 uð ÞI t−ð Þð ÞL dt;duð Þ:

According to the stochastic comparison result, we have

d ln I tð Þ≤ðτβΦ tð Þ− ηd þ ηα þϖ
� �

−0:5 ξ21 þ ξ22I tð Þð Þ2

þ
Z
H

ln 1þ χ21 uð Þ þ χ22 uð ÞI tð Þð Þð Þϑ duð Þ−
Z
H

χ21 uð Þ þ χ22 uð ÞI tð Þð Þð Þϑ duð ÞÞdt

þ ξ21 þ ξ22I tð Þð ÞdW2 tð Þ þ
Z
H

ln 1þ χ21 uð Þ þ χ22 uð ÞI t−ð Þð ÞL dt;duð Þ:
5
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We integrate both sides from 0 to t, then after dividing by t, we get

ln I tð Þ− ln I 0ð Þ
t

≤
τβ
t

Z t

0
Φ sð Þds− ηd þ ηα þϖ

� �
−0:5ξ221−

Z
ℋ

χ21 uð Þ− ln 1þ χ21 uð Þð Þð Þϑ duð Þ

−
ξ21ξ22

t

Z t

0
I sð Þds−0:5ξ222

t

Z t

0
I2 sð Þdsþ 1

t

Z t

0
ξ21dW2 sð Þ

þ 1
t

Z t

0

Z
ℋ

ln 1þ χ21 uð Þð ÞL ds;duð Þ þ 1
t

Z t

0

Z
ℋ

ln
χ22 uð ÞI sð Þ
1þ χ21 uð Þ þ 1
� �

−χ22 uð ÞI sð Þ
	 


ϑ duð Þds

þ 1
t

Z t

0
ξ22I sð ÞdW2 sð Þ þ 1

t

Z t

0

Z
ℋ

ln
χ22 uð ÞI s−ð Þ
1þ χ21 uð Þ þ 1

� �
L ds;duð Þ:

Let

G1 tð Þ ¼
Z t

0
ξ21dW2 sð Þ,

G2 tð Þ ¼
Z t

0

Z
H
ln 1þ χ21 uð Þð ÞL ds, duð Þ:

The quadratic variations [87] of G1 tð Þ and G2 tð Þ are presented as follow

〈G1 tð Þ,G1 tð Þ〉 ¼ ξ221t and 〈G2 tð Þ,G2 tð Þ〉 ¼ t
Z
H

ln 1þ χ21 uð Þð Þð Þ2ϑ duð Þ:

According to the strong large numbers theorem for local martingales [87], we get

t � 1 G1 tð Þ ! 0 a:s: and t � 1 G2 tð Þ ! 0 a:s:, as t ! ∞:

Applying the exponential inequality for martingales described in [87], we obtain

ℙf sup
0≤ t ≤n

"
−0:5

Z t

0
ξ222I

2 sð Þds−
Z t

0

Z
H

χ22 uð ÞI sð Þ
1þ χ21 uð Þ

� �
þ ln

χ22 uð ÞI sð Þ
1þ χ21 uð Þ þ 1
� �� �

ϑ duð Þds

þ
Z t

0
ξ22I sð ÞdW2 sð Þ þ

Z t

0

Z
H

ln
χ22 uð ÞI s−ð Þ
1þ χ21 uð Þ þ 1

� �
L ds;duð Þ

#
≥2 lnn

)
≤ n−2:

Via Borel-Cantelli Lemma [87] (with the fact that∑n=1
∞ n−2 < ∞), we deduce that for almost ω inΩ, there exists n0 > 0 that verifies for all n ≥ n0

and t ∈ [n − 1,n),

Z t

0
ξ22I sð ÞdW2 sð Þ þ

Z t

0

Z
H

ln
χ22 uð ÞI s−ð Þ
1þ χ21 uð Þ þ 1

� �
L ds; duð Þ2 lnnþ 0:5

Z t

0
ξ222I

2 sð Þdsþ
Z t

0

Z
H

 
χ22 uð ÞI sð Þ
1þ χ21 uð Þ

� �
− ln

χ22 uð ÞI sð Þ
1þ χ21 uð Þ þ 1
� �!

ϑ duð Þds:

Then, for all n ≥ n0, t ∈ [n − 1,n) ⊆ ℝ+ a.s., we get that

ln I tð Þ− ln I 0ð Þ
t

≤

"
τβ
t

Z t

0
Φ sð Þds− ηd þ ηα þϖ

� �
−0:5ξ221−

Z
H

�
χ21 uð Þ− ln 1þ χ21 uð Þð Þ

�
ϑ duð Þ

#
−

ξ21ξ22
t

Z t

0
I sð Þdsþ 1

t

Z t

0

Z
H

χ22 uð ÞI sð Þ
1þ χ21 uð Þ

� �
−χ22 uð ÞI sð Þ

� �
ϑ duð Þds

þG1 tð Þ
t

þ G2 tð Þ
t

þ 2 lnn
n−1

:

Letting and taking superior limit on the both sides, we have

limsup
t→∞

lnI tð Þ
t

≤τβ
Z ∞

0
xπ⋆ dxð Þ− ηd þ ηα þϖ

� �
−0:5ξ221−

Z
H

�
χ21 uð Þ

− ln 1þ χ21 uð Þð Þ
�
ϑ duð Þ ≜ T ⋆

0 < 0 a:s:

So, lim
t!∞

I tð Þ ¼ 0 a.s. To put it another way, the epidemic of the system (1.6) will quickly be removed, and its deterioration rate is at least T ⋆
0. Ac-

cordingly, we can conclude that: for any sufficiently small h > 0, there are t0 and Ωh ⊂ Ω such that the following results hold

ℙ Ωhð Þ > 1−h; and τβSI ≤ τβhI; for all t ≥ t0; ω ∈Ωh:
6
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Now, from

Π � ηdS tð Þ � τβS tð Þh
� �

dt þ dP1 tð Þ ≤ dS tð Þ ≤ Π � ηdS tð Þ
� �

dt þ dP1 tð Þ,

it follows that the distribution of the susceptible persons S(t) convergesweakly to the ergodic stationary distribution π⋆(⋅). The proof of the extinction
theorem is finished.

3.2. Permanence case

In this subsection, we use Feller's property for Markov processes and the mutually exclusive possibilities result to establish the condition of the
ergodic property of system (1.6), which can deal with the gap left by employing the Khasminskii analysis [88] used in [78,79]. Let's start with the
following lemma.

Lemma 3.1. (Mutually limited possibilities lemma, [89]).We consider a stochastic processX ∈ Rn that verifies the Feller property. Then,we have
two possibilities:

1. a single ergodic probability measure exists, or
2. the following result is satisfied

lim
t→∞

sup
ρ̂

1
t

Z t

0

Z
ℝn
ℙ x; s;Uð Þρ̂ dxð Þds ¼ 0; ð3:1Þ

for a given compact domain U⊂Rn, where bρ is the initial distribution on ℝn and P x; s,Uð Þ stands for the probability of X belongs to U with
X 0ð Þ ¼ x ∈ Rn.

Theorem 3.2. For any initial data (S(0), I(0)) ∈ ℝ +
2, ⋆, if T ⋆

0>0, the solution (S(t), I(t)) to system (1.6) has the ergodic property and admits a
unique stationary distribution π(⋅).

Biological signification 3.2. The stationary and ergodic properties indicate that the stochastic model (1.6) has a limiting distribution that pre-
dicts the subsistence of the illness in the future. That means that the epidemic will continue regardless of the initial situation.

Proof of Theorem 3.2. Analogous to the demonstration of the result presented in Lemma 3.2. of [90], we directly check the Feller hypothesis of
the higher perturbed system (1.6). The principal intent of the following analysis is to demonstrate that (3.1) is impossible. Through using Itô's for-
mula, one obtains

L − ln I tð Þð Þ ¼ − τβS tð Þ þ ηd þ ηα þϖ
� �

þ 0:5 ξ21 þ ξ22I tð Þð Þ2

−
Z
H

 
ln
�
1þ χ21 uð Þ þ χ22 uð ÞI tð Þ

�
− χ21 uð Þ þ χ22 uð ÞI tð Þð Þ

!
ϑ duð Þ

¼ − τβΦ tð Þ þ ηd þ ηα þϖ
� �

þ 0:5ξ221

þ
Z
H

�
χ21 uð Þ− ln 1þ χ21 uð Þð Þ

�
ϑ duð Þ þ τβΦ tð Þ−τβS tð Þ þ ξ21ξ22I tð Þ

þ0:5ξ222I
2 tð Þ þ

Z
H

χ22 uð ÞI tð Þ− ln 1þ χ22 uð ÞI tð Þ
1þ χ21 uð Þ

� �	 

ϑ duð Þ:

Hence, we have

L − ln I tð Þð Þ ≤ − τβΦ tð Þ þ ηd þ ηα þϖ
� �

þ 0:5ξ221

þ
Z
H

�
χ21 uð Þ− ln 1þ χ21 uð Þð Þ

�
ϑ duð Þ þ τβ Φ tð Þ−S tð Þð Þ

þ ξ21ξ22 þ
Z
H
χ22 uð Þϑ duð Þ

� �
I tð Þ þ 0:5ξ222I

2 tð Þ: ð3:2Þ

On the other hand

L lnΦ tð Þ− lnS tð Þð Þ≤ Π
Φ tð Þ−

Π
S tð Þ

� �
þ τβI tð Þ−0:5

�
ξ11 þ ξ12Φ tð Þð Þ2

− ξ11 þ ξ12S tð Þð Þ2
�
þ
Z
H

"
ln

1þ χ11 uð Þ þ χ12 uð ÞΦ tð Þ
1þ χ11 uð Þ þ χ12 uð ÞS tð Þ

� �
−χ12 uð Þ Φ tð Þ−S tð Þð Þ

#
ϑ duð Þ≤τβI tð Þ−ξ11ξ12 Φ tð Þ−S tð Þð Þ

− Φ tð Þ−S tð Þð Þ
Z
H

χ12 uð Þ χ11 uð Þ þ χ12 uð ÞS tð Þð Þ
1þ χ11 uð Þ þ χ12 uð ÞS tð Þ

	 

ϑ duð Þ

≤τβI tð Þ−ξ11ξ12 Φ tð Þ−S tð Þð Þ: ð3:3Þ
7
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By combining (3.2) and (3.3), we get

L − ln I tð Þ þ τβ
ξ11ξ12

lnΦ tð Þ− lnS tð Þð Þ
� �

≤−τβΦ tð Þ þ ηd þ ηα þϖ
� �

þ 0:5ξ221 þ
Z
H

�
χ21 uð Þ− ln 1þ χ21 uð Þð Þ

�
ϑ duð Þ

þ ξ21ξ22 þ
Z

ℋ
χ22 uð Þϑ duð Þ

� �
I tð Þ þ

τ2β
ξ11ξ12

I tð Þ þ 0:5ξ222I
2 tð Þ

¼ − τβ
Z ∞

0
xπ⋆ dxð Þ þ ηd þ ηα þϖ

� �
þ 0:5ξ221 þ

Z
H

�
χ21 uð Þ− ln 1þ χ21 uð Þð Þ

�
ϑ duð Þ

þ τβ
Z ∞

0
xπ⋆ dxð Þ−Φ tð Þ

� �
þ

τ2β
ξ11ξ12

þ ξ21ξ22 þ
Z
H
χ22 uð Þϑ duð Þ

 !
I tð Þ þ 0:5ξ222I

2 tð Þ:

Choose a positive value m verifying m≥ 1
ðηdþηαþϖÞ

� τ2β
ξ11ξ12

þ ξ21ξ22 þ
R
ℋχ22ðuÞϑðduÞ

�
, and define

V tð Þ ¼ � ln I tð Þ þ τβ
ξ11ξ12

ln Φ tð Þ � ln S tð Þð Þ þmI tð Þ:

Then, we have

LV tð Þ ≤ − τβ
Z ∞

0
xπ⋆ dxð Þ þ ηd þ ηα þϖ

� �
þ 0:5ξ221

þ
Z
H

�
χ21 uð Þ− ln 1þ χ21 uð Þð Þ

�
ϑ duð Þ þ τβ

Z ∞

0
xπ⋆ dxð Þ−Φ tð Þ

� �
þm τβS tð ÞI tð Þ þ 0:5ξ222I

2 tð Þ ¼ −T ⋆
0 þ τβ

Z ∞

0
xπ⋆ dxð Þ−Φ tð Þ

� �
þmτβS tð ÞI tð Þ þ 0:5ξ222I

2 tð Þ:

Once again, applying Itô's formula to p−1(1 + S)p and p−1Ip for 0 < p < 1, we easily derive

L 1þ S tð Þð Þp

p

� �
¼ 1þ S tð Þð Þp−1 Π−τβS tð ÞI tð Þ−ηdS tð Þ

� �
þ0:5 p−1ð Þ 1þ S tð Þð Þp−2 ξ11S tð Þ þ ξ12S

2 tð Þ
� �2

þ
Z
H

 
1þ S tð Þð Þ þ χ11 uð ÞS tð Þ þ χ12 uð ÞS2 tð Þ

� �p
p

−
1þ S tð Þð Þp

p

− 1þ S tð Þð Þp−1 χ11 uð ÞS tð Þ þ χ12 uð ÞS2 tð Þ
� �!

ϑ duð Þ

≤ Π−0:5 1−pð Þξ212S
pþ2 tð Þ;

and
1I tð Þ þ ξ22I
2 tð Þ

�2
ÞI tð ÞÞ

1CAϑ duð Þ

tð Þ

tÞ:
L Ip tð Þ
p

� �
¼ Ip−1 tð Þ τβS tð ÞI tð Þ− ηd þ ηα þϖ

� �
I tð Þ

� �
þ 0:5 p−1ð ÞIp−2 tð Þ ξ2

�
þ
Z
H

I tð Þ þ χ11 uð ÞI tð Þ þ χ12 uð ÞI2 tð Þ
� �p

p
−

Ip tð Þ
p

−Ip tð Þ χ11 uð Þ þ χ12 uðð

0B@
≤ τβS tð ÞIp tð Þ− ηd þ ηα þϖ

� �
þ 0:5 1−pð Þξ221

� �
Ip tð Þ− 1−pð Þξ21ξ22Ipþ1

−0:5 1−pð Þξ222I
pþ2 tð Þ≤ τβ

pþ 1
Spþ1 tð Þ þ pτβ

pþ 1
Ipþ1 tð Þ−0:5 1−pð Þξ222I

pþ2ð
Define a C2-function eV in the following form

eV S tð Þ, I tð Þð Þ ¼ KV tð Þ þ 1þ S tð Þð Þp

p
þ Ip tð Þ

p
,

where K>0 is a sufficiently large number satisfying the following condition

� KT ⋆
0 þ C ≤ � 2,

and

ℭ ¼ maxf sup
S;Ið Þ∈ℝ2;⋆

þ
f τβ
pþ 1

Spþ1−0:25 1−pð Þξ212S
pþ2 þ pτβ

pþ 1
Ipþ1

−0:25 1−pð Þξ222I
pþ2 þΠg;1g:
8
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In addition, it is seen that the function eV S, Ið Þ reaches the lower bound at a point S, Ið Þ in the interior ofℝ+
2 , so we will deal with the non-negative

C2-function expressed by

eV S tð Þ, I tð Þð Þ ¼ KV tð Þ þ 1þ S tð Þð Þp

p
þ I tð Þp

p
� eV S, Ið Þ:

Then, one can see that

L~V S tð Þ; I tð Þð Þ≤−KT ⋆
0 þ KmτβS tð ÞI tð Þ þ 0:5Kξ222I

2 tð Þ þ τβK
Z ∞

0
xπ⋆ dxð Þ−Φ tð Þ

� �
− 0:25 1−pð Þξ212S

pþ2 tð Þ−0:25 1−pð Þξ222I
pþ2 tð Þ þΠþ τβ

pþ 1
Spþ1 tð Þ

− 0:25 1−pð Þξ212S
pþ2 tð Þ þ pτβ

pþ 1
Ipþ1 tð Þ−0:25 1−pð Þξ222I

pþ2 tð Þ

¼ Z S tð Þ; I tð Þð Þ þ τβK
Z ∞

0
xπ⋆ dxð Þ−Φ tð Þ

� �
:

Now, we set up the following bounded domain

Uϵ ¼ S; Ið Þ ∈ℝ2;⋆
þ j ϵ ≤ S ≤ ϵ−1; ϵ ≤ I ≤ ϵ−1

n o
;

where 0 < ϵ < 1 is a small enough constant. In the set ℝ2;⋆
þ nUϵ, we can choose ϵ sufficiently small such that the following assumptions hold

Kmτβϵþ
pK mτβϵþ 0:5ξ222
� �

2þ p

2K mτβϵþ 0:5ξ222
� �

0:25 1 � pð Þ 2þ pð Þξ222

0@ 1A
2
p

≤ 1, ð3:4Þ
Kε mτβ þ 0:5ξ222ϵ
� �

þ pKmτβϵ
2þ p

2Kmτβϵ

0:25 1 � pð Þ 2þ pð Þξ212

 !2
p

≤ 1, ð3:5Þ
� KT ⋆
0 þD � 0:25 1 � pð Þξ212ϵ � 2þpð Þ ≤ � 1, ð3:6Þ
� KT ⋆
0 þD � 0:25 1 � pð Þξ222ϵ � 2þpð Þ ≤ � 1, ð3:7Þ

where
D ¼ sup
S;Ið Þ∈ℝ2;⋆

þ

0:5KmτβS2 þ 0:5K mτβ þ ξ222
� �

I2 þΠþ τβ
pþ 1

Spþ1



−0:25 1−pð Þξ212S
pþ2 þ pτβ

pþ 1
Ipþ1−0:25 1−pð Þξ222I

pþ2
�
:

For the convenience, we can divide ℝ2;⋆
þ nUε into four sub-domains,

Uϵ;1 ¼ S; Ið Þ∈ℝ2;⋆
þ j 0 < S < ϵ

n o
; Uϵ;2 ¼ S; Ið Þ∈ℝ2;⋆

þ j 0 < I < ϵ
n o

;

Uϵ;3 ¼ S; Ið Þ∈ℝ2;⋆
þ j S > ϵ−1

n o
; Uϵ;4 ¼ S; Ið Þ∈ℝ2;⋆

þ j I > ϵ−1
n o

:

Plainly, Uc
ϵ ¼ ℝ2;⋆

þ nUϵ ¼ Uϵ;1∪ Uϵ;2∪ Uϵ;3∪ Uϵ;4. In the following, we will verify that

Z S, Ið Þ ≤ � 1, ð3:8Þ

for any S, Ið Þ ∈ Uc
ϵ which is equivalent to proving it on the above four do-
mains, respectively.

First situation: for any S, Ið Þ ∈ Uϵ,1, we use the inequality SI ≤ ϵI ≤ ϵ(1 + I2) and (3.4) to get that

Z S tð Þ; I tð Þð Þ≤−KT ⋆
0 þ Kmτβϵþ KmτβϵI2 tð Þ þ 0:5Kξ222I

2 tð Þ

− 0:25 1−pð Þξ222I
pþ2 tð Þ þΠþ τβ

pþ 1
Spþ1 tð Þ

−0:25 1−pð Þξ212S
pþ2 tð Þ þ pτβ

pþ 1
Ipþ1 tð Þ−0:25 1−pð Þξ222I

pþ2 tð Þ

≤−KT ⋆
0 þ Kmτβϵþ

pK mτβϵþ 0:5ξ222
� �

2þ p

2K mτβϵþ 0:5ξ222
� �

0:25 1−pð Þ 2þ pð Þξ222

0@ 1A
2
p

þℭ≤−1:
9
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Second situation: if S, Ið Þ ∈ Uϵ,2, similar to the first case, one obtains from (3.5) that

Z S tð Þ; I tð Þð Þ≤−KT ⋆
0 þ Kmτβϵþ 0:5Kξ222ϵ

2 þ KmτβϵS2 tð Þ

−0:25 1−pð Þξ212S
pþ2 tð Þ þΠþ τβ

pþ 1
Spþ1 tð Þ

−0:25 1−pð Þξ212S
pþ2 tð Þ þ pτβ

pþ 1
Ipþ1 tð Þ−0:25 1−pð Þξ222I

pþ2 tð Þ

≤−KT ⋆
0 þ Kmτβϵþ 0:5Kξ222ϵ

2 þ pKmτβϵ
2þ p

2Kmτβϵ

0:25 1−pð Þ 2þ pð Þξ212

 !2
p

þℭ≤−1:

Third situation: when S, Ið Þ ∈ Uϵ,3, we use the classical inequality SI ≤ S22−1 + I22−1, then

Z S tð Þ; I tð Þð Þ ≤ −KT ⋆
0 þ 0:5KmτβS2 tð Þ−0:25 1−pð Þξ212S

pþ2 tð Þ þ 0:5KmτβI2 tð Þ

þ 0:5Kξ222I
2 tð Þ þΠþ τβ

pþ 1
Spþ1 tð Þ−0:25 1−pð Þξ212S

pþ2 tð Þ

þ pτβ
pþ 1

Ipþ1 tð Þ−0:25 1−pð Þξ222I
pþ2 tð Þ≤−KT ⋆

0 þD

−0:25 1−pð Þξ212ϵ− 2þpð Þ≤−1;

which is established by (3.6).
Fourth situation: for any S, Ið Þ ∈ Uε,4, similar to the case 3, we get by (3.7)

Z S tð Þ; I tð Þð Þ ≤ −KT ⋆
0 þ 0:5KmτβS2 tð Þ−0:25 1−pð Þξ222I

pþ2 tð Þ þ 0:5KmτβI2 tð Þ

þ 0:5Kξ222I
2 tð Þ þΠþ τβ

pþ 1
Spþ1 tð Þ−0:25 1−pð Þξ212S

pþ2 tð Þ

þ pτβ
pþ 1

Ipþ1 tð Þ−0:25 1−pð Þξ222I
pþ2 tð Þ≤−KT ⋆

0 þD

−0:25 1−pð Þξ222ϵ− 2þpð Þ ≤−1:

Generally, the result (3.8) is obtained. On the other hand, we can easily show that there exists a positive value a such thatZ S, Ið Þ ≤ a, for all (S, I) ∈
ℝ+
2,⋆. Accordingly, we get

−E ~V S 0ð Þ; I 0ð Þð Þ
� �

≤E ~V S tð Þ; I tð Þð Þ
� �

−E ~V S 0ð Þ; I 0ð Þð Þ
� �

¼
Z t

0
E L~V S sð Þ; I sð Þð Þ
� �

ds

≤
Z t

0
E Z S sð Þ; I sð Þð Þð Þdsþ τβK E

Z t

0

Z ∞

0
xπ⋆ dxð Þds−

Z t

0
Φ sð Þds

	 

:

By using the ergodic property of Φ(t), we obtain

0 ≤ liminf
t→∞

1
t

Z t

0
E Z S sð Þ; I sð Þð Þ½ �ds ¼ liminf

t→∞

1
t

Z t

0

�
E Z S sð Þ; I sð Þð Þ1 S sð Þ;I sð Þð Þ∈Uc

ϵf g
h i

þE Z S sð Þ; I sð Þð Þ1 S sð Þ;I sð Þð Þ∈Uϵf g
� ��

ds ≤ liminf
t→∞

1
t

Z t

0

�
−ℙ S sð Þ; I sð Þð Þ∈Uc

ϵ
� �

þaℙ S sð Þ; I sð Þð Þ∈Uϵð Þ
�
ds ¼ −1þ aþ 1ð Þ liminf

t→∞

1
t

Z t

0
ℙ S sð Þ; I sð Þð Þ∈Uϵð Þds:

Therefore,

liminf
t→∞

1
t

Z t

0
ℙ S sð Þ; I sð Þð Þ∈Uϵð Þds ≥ 1

1þ a
> 0:

In other word, we have proved that

liminf
t→∞

1
t

Z t

0
ℙ S 0ð Þ; I 0ð Þð Þ; s;Uϵð Þds≥ 1

1þ a
> 0; ∀ S 0ð Þ; I 0ð Þð Þ∈ℝ2;⋆

þ :

The proof of Theorem 3.2 is completed.
Remark 3.1. In view of Theorems 3.1 and 3.2, we conclude that quadratic jump-diffusion has no impact on the threshold of system (1.4).
4. Numerical simulations and discussion

4.1. Numerical experiments

Now, let uswork out some simulations to illustrate the impact of qua-
dratic jump-diffusion on the dynamic of an SIC epidemic model, and to
10
infer the future of the ongoing COVID-19 pandemic under the assumption
of stochasticity. Here, we apply the algorithm presented in [93] to
discretize the disturbed system (1.4). By using the softwareMatlab2015b
and the parameter values listed in Table 1, we treat the COVID-19
Morocco case till May 2021 under unexpected and higher-order fluctua-
tions. We mention that we have combined two types of data:



Table 1
List of deterministic parameters in model (1.4).

Parameters Test 1 Test 2 Test 3 Source

Π 1.9 day−1 1.9 day−1 1.9 day−1 [91]
τβ 0.23 day−1 (Estimated) 0.1015 day−1 (Assumed) 0.1 day−1 (Assumed) –
ηd 0.35 day−1 0.35 day−1 0.35 day−1 [92]
ηα 0.038 day−1 0.038 day−1 0.038 day−1 [92]
ϖ 0.15 day−1 0.15 day−1 0.15 day−1 [92]
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1. Estimated values which are established using a long time series of
cross-sections of actual data. We notice that, in Morocco, the
COVID-19 pandemic persists up to now and the situation is relatively
stable without complete extinction.

2. Assumed value (τβ in Test 2 and Test 3) which is selected according
to two criteria:

(a) Appropriately verify the analytical result obtained in the case of
extinction.

(b) To numerically show the sharpness of our threshold.

For illustrative goals, in some cases, we simulate the model without
noise (deterministic solution) besides the stochastic one, andwe choose
Fig. 1. The left-hand column presents the trajectories of individuals S, I and C of system (1.4) w
without noise, respectively. The right-hand column presents the frequency histogram fitting c

11
this initial condition: (S(0), I(0),C(0)) = (0.5,0.1,0.1). Furthermore, we
consider that the unity of time is one day and the number of individuals
is expressed in tenmillion population. To fully understand the results of
this subsection and for the convenience of the reader, we will divide it
into three parts.

4.1.1. Test 1: continuation of COVID-19
For the sake of simplicity, we assume thatϑ(ℋ)= 1 andwe choose

the deterministic parameter values from Table 1 (Test 1). Regarding
the intensities of the noises, we select ξ11 = 0.08, ξ21 = 0.02, ξ31 =
0.07, ξ12 = 0.028, ξ22 = 0.03, ξ32 = 0.02, χ11 = 0.04, χ21 = 0.07,
χ31 = 0.04, χ12 = 0.01, χ22 = 0.012, χ32 = 0.01. A simple calculation
leads to
ith data appearing in the second column of Table 1 - Test 1, and its deterministic system
urves at time t = 600 and the theoretical density functions, respectively.



Fig. 2. The left-hand columnpresents themarginal two dimensional densities at time t=600 of individuals S, I and C of system (1.4)with data appearing in the second column of Table 1 -
Test 1, diverse colors represent distinct sizes of the density. The right-hand column presents the 3D graph of the joint 2-dimensional densities of (S(t),I(t),C(t)).

Table 2
Calculation of the time average of S(t), I(t), and C(t) for different values of linear white noise intensities. The deterministic parameters are selected from Table 1 - Test 1. For other noise
intensities, we select ξ12 = 0.01, ξ22 = 0.01, ξ32 = 0.01, χ11 = 0.1, χ21 = 0.1, χ31 = 0.1, χ12 = 0.1, χ22 = 0.1, χ32 = 0.1.

Time average (ξ11,ξ21,ξ31) =
(0.05,0.05,0.05)

(ξ11,ξ21,ξ31) =
(0.1,0.1,0.1)

(ξ11,ξ21,ξ31) =
(0.5,0.5,0.5)

lim
t→∞

Z t

0
SðτÞdτ

2.3455 2.3742 ↑ 2.6281↑

lim
t→∞

Z t

0
IðτÞdτ

2.0028 1.9718 ↓ 1.5536 ↓

lim
t→∞

Z t

0
CðτÞdτ

0.8603 0.8640 ↑ 0.8696 ↑

Table 3
Calculation of the time average of S(t), I(t), and C(t) for different values of quadraticwhite noise intensities. The deterministic parameters are selected from Table 1 - Test 1. For other noise
intensities, we select ξ11 = 0.01, ξ21 = 0.01, ξ31 = 0.01, χ11 = 0.01, χ21 = 0.1, χ31 = 0.1, χ12 = 0.1, χ22 = 0.1, χ32 = 0.1.

Time average (ξ12,ξ22,ξ32) =
(0.01,0.01,0.01)

(ξ12,ξ22,ξ32) =
(0.05,0.05,0.05)

(ξ12,ξ22,ξ32) =
(0.1,0.1,0.1)

lim
t→∞

Z t

0
SðτÞdτ

2.3434 2.3777 ↑ 2.6808 ↑

lim
t→∞

Z t

0
IðτÞdτ

2.0072 1.9660 ↓ 1.4667 ↓

lim
t→∞

Z t

0
CðτÞdτ

0.8606 0.8626 ↑ 0.8651 ↑
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Table 4
Calculation of the time average of S(t), I(t), and C(t) for different values of linear jumps intensities. The deterministic parameters are selected from Table 1 - Test 1. For other noise inten-
sities, we select ξ11 = 0.01, ξ21 = 0.01, ξ31 = 0.01, ξ12 = 0.01, ξ22 = 0.01, ξ32 = 0.01, χ12 = 0.1, χ22 = 0.1, χ32 = 0.1.

Time average (χ11,χ21,χ31) =
(0.1,0.1,0.1)

(χ11,χ21,χ31) =
(0.3,0.3,0.3)

(χ11,χ21,χ31) =
(0.5,0.5,0.5)

lim
t→∞

Z t

0
SðτÞdτ

2.3457 2.3627 ↑ 2.4824 ↑

lim
t→∞

Z t

0
IðτÞdτ

2.0061 1.9907 ↓ 1.8757 ↓

lim
t→∞

Z t

0
CðτÞdτ

0.8610 0.8615 ↑ 0.8622 ↑

Table 5
Calculation of the time average of S(t), I(t), and C(t) for different values of linear jumps intensities. The deterministic parameters are selected from Table 1 - Test 1. For other noise inten-
sities, we select ξ11 = 0.01, ξ21 = 0.01, ξ31 = 0.01, ξ12 = 0.01, ξ22 = 0.01, ξ32 = 0.01, χ11 = 0.1, χ21 = 0.1, χ31 = 0.1.

Time average (χ12,χ22,χ32) =
(0.1,0.1,0.1)

(χ12,χ22,χ32) =
(0.3,0.3,0.3)

(χ12,χ22,χ32) =
(0.5,0.5,0.5)

lim
t→∞

Z t

0
SðτÞdτ

2.3463 2.5503 ↑ 2.9240 ↑

lim
t→∞

Z t

0
IðτÞdτ

2.0027 1.7154 ↓ 1.4871 ↓

lim
t→∞

Z t

0
CðτÞdτ

0.8614 0.8636 ↑ 0.8642 ↑

Fig. 3. Top views of the joint density functions of the solution for different values of linearwhite noise intensities. The deterministic parameters are selected from Table 1 - Test 1. For other
noise intensities, we select ξ12 = 0.028, ξ22 = 0.03, ξ32 = 0.02, χ11 = 0.04, χ21 = 0.07, χ31 = 0.04, χ12 = 0.01, χ22 = 0.012, χ32 = 0.01.
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Fig. 4. Top views of the joint density functions of the solution for different values of quadratic white noise intensities. The deterministic parameters are selected from Table 1 - Test 1. For
other noise intensities, we select ξ11 = 0.08, ξ21 = 0.02, ξ31 = 0.07, χ11 = 0.04, χ21 = 0.07, χ31 = 0.04, χ12 = 0.01, χ22 = 0.012, χ32 = 0.01.
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T ⋆
0 ¼ τβΠ

ηd
� ηd þ ηα þϖ
� �

� 0:5ξ221 �
Z
H
χ21 uð Þ � ln 1þ χ21 uð Þð Þð Þ

ϑ duð Þ ¼ 0:7080> 0:

Theoretical result check: since T ⋆
0>0, we infer from Theorem 3.2

that there is a unique ergodic stationary distribution which is depicted
in Fig. 1 (see the right-hand column). Analytically, we can extract inter-
esting information on the continuation of the processes S(t), I(t) and C
(t) which are π-integrable. Explicitly, by ergodic property, we have that
Fig. 5. Computer simulation of the trajectories I(t) of system (1.4) with various values of quadra
For other noise intensities, we select ξ11 = 0.08, ξ21 = 0.02, ξ31 = 0.07,χ11 = 0.15, χ21 = 0.17

14
lim
t→∞

t−1
Z t

0
S τð Þdτ ¼

Z
ℝ3;⋆

þ

xπ dx;dy;dzð Þ < ∞;

lim
t→∞

t−1
Z t

0
I τð Þdτ ¼

Z
ℝ3;⋆

þ

yπ dx;dy;dzð Þ < ∞;

lim
t→∞

t−1
Z t

0
C τð Þdτ ¼

Z
ℝ3;⋆

þ

zπ dx;dy;dzð Þ < ∞:

Interpretation: biologically, this indicates the permanence in the
mean of all classes of the population. FromFig. 1 (see left-hand column),
tic white noise intensities. The deterministic parameters are selected from Table 1 - Test 2.
, χ31 = 0.11, χ12 = 0.075, χ22 = 0.075, χ32 = 0.075.



Fig. 6. Computer simulation of the trajectories I(t) of system (1.4) with various values of quadratic jumps intensities. The deterministic parameters are selected from Table 1 - Test 2. For
other noise intensities, we select ξ11 = 0.08, ξ21 = 0.02, ξ31 = 0.07, ξ12 = 0.043, ξ22 = 0.043, ξ31 = 0.043, χ11 = 0.15, χ21 = 0.17, χ31 = 0.11.

Fig. 7. Left figure: computer simulation of the path of S(t). Right figure: the frequency histogram fitting curves at time t = 10000 ofΦ and its theoretical density function.

Fig. 8. Probability density function of (S,I) and its projection drawing on different coordinate planes. The deterministic parameters are selected from Table 1 - Test 3. For other noise in-
tensities, we select ξ11 = 0.1, ξ21 = 0.1, ξ12 = 0.1, ξ22 = 0.1, χ11 = 0.15, χ21 = 0.17, χ12 = 0.12, χ22 = 0.12. In this case, T ⋆

0 ¼ � 0:0131 < 0.

Y. Sabbar, D. Kiouach, S.P. Rajasekar et al. Chaos, Solitons and Fractals 159 (2022) 112110

15



Y. Sabbar, D. Kiouach, S.P. Rajasekar et al. Chaos, Solitons and Fractals 159 (2022) 112110
we show that COVID-19 persists continuously in the deterministic case.
That is, the deterministic model (system (1.4) without noises) reaches
the following stable steady point:

P⋆ ¼ S⋆; I⋆;C⋆� �
¼ Π

ηdR0
;
ηd
τβ

R0−1ð Þ;ϖ
τβ

R0−1ð Þ
� �

¼ 2:3391;2:0099;0:8614ð Þ;

where R0 ¼ τβS⋆

ηdþηαþϖ ¼ 2:3208>1. Now, by including random effects, we
observe the permanence of the stochastic paths of system (1.4). There-
fore, and by using real data, we interpret the strong persistence of
COVID-19 in Morocco in the situation of high physical contact between
individuals (τβ =0.23). This is due to the lifting of the lock-down strat-
egy inMorocco after summer of 2020which leads to some jumps in the
number of infected people. This last fact reinforces our consideration of
Lévy noises in our model. On the other hand, we sketch experimental
two-dimensional densities of (S(t), I(t),C(t)) in Fig. 2 in order to give a
good overview of the stationarity property.

Obviously, the endemic equilibrium P⋆ of the corresponding deter-
ministic version is no longer the steady state of the stochastic model
(1.4). Therefore, in the following, we will numerically explore how the
solutions of the stochastic model (1.4) behave around the deterministic
equilibrium. For a sufficiently large time, we will calculate the time
average of quantities S(t), I(t), and C(t), for different noise intensities,
and we discuss the asymptotic behaviors around P⋆. From Table 2, we
observe that the intensity of linear white noise affects the fluctuation
of the solution around the equilibrium. By way of explanation, the
time average is close to P⋆ when the noise intensities are low. Most im-
portantly, as noise intensity increases, the time-average of susceptible
and recovered individuals raises, while the time-average of the infected
population reduces. This phenomenon is observed for all types of noise
Fig. 9. Probability density function of (S,I) and its projection drawing on different coordinate p

tensities, we select ξ11 = 0.01, ξ21 = 0.09710056563, ξ12 = 0.1, ξ22 = 0.1, χ11 = 0.15, χ21 =
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with some variations (see Tables 3, 4, 5). Therefore, this fact illustrates
the need to clearly integrate the influence of environmentalfluctuations
in the phenomenological description of biological systems. It is already
clear that the quadratic fluctuations can explain the generalized effect
of the worsening of the epidemiological situation, but in certain critical
cases, the quadratic noise drastically affects the time extinction of the
disease (we will discuss this case in Test 2).

In fact, noise is responsible for noise-induced transitions such that a
stationary probability density function can suddenly change shape at
certain noise intensity values (we will discuss this case in Test 3).
From Remark 2.1, wementioned that the explicit stationary distribu-
tion of a one-dimensional random differential equation with Lévy
jumps is unknown. Same thing for a multidimensional systems. So,
in this situation, we cannot analytically calculate the probability
density function of some quantities during the transient dynamics.
For a more physical understanding of the effect of noises on the
shape of the density function (in the persistence case), we talk
about the dispersion phenomenon. Explicitly, we plot the upper
view of the joint density of the solution with some different values
of white noises. Obviously, as the white noises increases, the distri-
bution of the solution to system (1.4) will become more dispersed
(see Fig. 3 (linear case) and Fig. 4 (quadratic case)).

4.1.2. Test 2: disappearance of COVID-19
Due to some intervention strategies to inhibit the spread of COVID-

19 like lock-down, media coverage and vaccination, it makes sense
that some parameters would be changed. In fact, these public health in-
terventions are essential for minimizing the infection, but some mea-
sures are not really sufficiently functional when applied on their own
and could not contain the outbreak.Multiple intrusions (likemedia cov-
erage and vaccination) must be applied together in order to control the
lanes. The deterministic parameters are selected from Table 1 - Test 3. For other noise in-

0.017, χ12 = 0.12, χ22 = 0.12. In this case, T ⋆
0 ¼ 7:3284� 10 � 13≈0.
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outbreak. For this reason, we theoretically consider a slight application
of these strategies and we choose the values of the parameters from
Table 1- Test 2. Concerning linear noises, we select ξ11 = 0.08, ξ21 =
0.02, ξ31 = 0.07, ξ12 = 0.043, ξ22 = 0.043, ξ32 = 0.043, χ11 = 0.15,
χ21=0.17,χ31=0.11,χ12=0.075,χ22=0.075,χ32=0.075. A simple
calculation gives

T ⋆
0 ¼ τβΠ

ηd
− ηd þ ηα þϖ
� �

−0:5ξ221−
Z
H

χ21 uð Þ− ln 1þ χ21 uð Þð Þð Þϑ duð Þ

¼ −1:9625� 10−4 < 0:

Theoretical result check: according to Theorem 3.1, COVID-19 goes
to extinction exponentially with probability one, and its deteriorate
ratio constant is at least T ⋆

0.
Interpretation: epidemiologically, if the physical contact between in-

dividuals is minimized, the infection will disappear in the population.
Specifically, if the transmission rate reaches at most 0.1015, we need
200 days for COVID-19 to disappear under some random factors of
course. This randomness has a huge impact on the extinction time of
COVID-19. Since quadratic noise do not appear in the threshold value,
we explore its influence on the duration of infection. From Figs. 5 and
6, we emphasize that strong fluctuations (especially quadratic) have a
passive influence on the time extinction of the disease. To illustrate
the convergence of the distribution of the stochastic process S(t) to
that of Φ(t), we offer Fig. 7. Note that we have theoretically chosen
the value of τβ to get a threshold value close to zero, which makes us
properly examine the sharpness of our threshold T ⋆

0.

4.1.3. Test 3: stochastic phenomenological bifurcation (SP-bifurcation)
In the above two subsections, we have studied numerically the dy-

namical bifurcation (D-bifurcation), which is caused by the abrupt
Fig. 10. Probability density function of (S,I) and its projection drawing on different coordinate

tensities, we select ξ11 = 0.01, ξ21 = 0.09, ξ12 = 0.1, ξ22 = 0.1, χ11 = 0.15, χ21 = 0.017, χ12 =
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change in the sign of the threshold T ⋆
0. In this part, we will explore

the stochastic phenomenological bifurcation (SP-bifurcation), which
principally depends on the abrupt change in the shape of the stationary
probability density function of themodel (1.6). Explicitly, we will show
that the joint stationary probability density function of the classes S and
I abruptly changes its shape at some values of the noise intensity. Firstly,
we take deterministic parameter values from Table 1 - Test 3, and sto-
chastic noise intensities as follows: ξ11 = 0.1, ξ21 = 0.1, ξ12 = 0.1,
ξ22 = 0.1, χ11 = 0.15, χ21 = 0.17, χ12 = 0.12, χ22 = 0.12. Then, we
get T ⋆

0 ¼ � 0:0131 < 0. From Fig. 8, we plot the joint probability
density function of (S, I) and its projection drawing on S and I planes.
Plainly, we show the extinction of the class I and we remark that
larger noise is not conducive to the continuation of the infection.
Now, we keep the deterministic parameter values unchanged, and
we select the stochastic noise intensities as follows: ξ11 = 0.01, ξ21 =
0.09710056563, ξ12 = 0.1, ξ22 = 0.1, χ11 = 0.15, χ21 = 0.017, χ12 =
0.12, χ22 = 0.12. In this situation, we obtain T ⋆

0 ¼ 7:3284� 10 � 13

which is very very close to zero. In fact, the case of T ⋆
0 ¼ 0 is an

absorbing state and the conditions of extinction and persistence of the
infection are not so clear from physical point of view (see Fig. 9). Now
we make slight changes to the stochastic noise intensities as follows:
ξ11 = 0.01, ξ21 = 0.09, ξ12 = 0.1, ξ22 = 0.1, χ11 = 0.15, χ21 = 0.017,
χ12 = 0.12, χ22 = 0.12. Then, we have T ⋆

0 ¼ 6:6426� 10 � 4>0 and
we observe a significant change in the shape of the joint density
function which is illustrated in Fig. 10. To more depict this, we
decrease the amplitude of noises as follows: ξ11 = 0.01, ξ21 = 0.01,
ξ12 = 0.01, ξ22 = 0.01, χ11 = 0.015, χ21 = 0.017, χ12 = 0.012, χ22 =
0.012. In this case, T ⋆

0 ¼ 0:0029>0. From Figs. 9–11, we can find that
there is a sudden change for the probability density function at some
values of the noise intensities. For a weak stochastic intensities: ξ11 =
0.001, ξ21 = 0.001, ξ12 = 0.001, ξ22 = 0.001, χ11 = 0.001, χ21 =
planes. The deterministic parameters are selected from Table 1 - Test 3. For other noise in-

0.12, χ22 = 0.12. In this case, T ⋆
0 ¼ 6:6426� 10 � 4>0.



Fig. 11. Probability density function of (S,I) and its projection drawing on different coordinate planes. The deterministic parameters are selected from Table 1 - Test 3. For other noise in-
tensities, we select ξ11 = 0.01, ξ21 = 0.01, ξ12 = 0.01, ξ22 = 0.01, χ11 = 0.015, χ21 = 0.017, χ12 = 0.012, χ22 = 0.012. In this case, T ⋆

0 ¼ 0:0029>0.
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0.001,χ12= 0.001,χ22= 0.001, we get, T ⋆
0 ¼ 0:0049>0, and the shape

of the density of (S, I) is depicted in Fig. 12. That is, the system (1.6) is
strongly persistent.

4.2. Discussion

Environmental factors and unexpected phenomena have significant
impacts on the spread of epidemics. This paper takes into account these
two factors with quadratic representation. Specifically, we have ana-
lyzed an SIC epidemic model that incorporates quadratic Lévy jumps.
Compared to previous works, many authors have considered the qua-
dratic white noise perturbation (without Lévy jumps) in the various
kinds of systems [75,94–96]. But there are some limitations of these pa-
pers, which can be explained as:

1. The complex and brutal random fluctuations are simulated by the
white noise or Lévy jumps?

2. Can we obtain the exact value of the threshold between extinction
and persistence?

3. Are the techniques and analysis presented in mentioned papers gen-
eral for other stochastic models?

For this purpose, this study is dedicated to presenting a new general
setting and to answer the above questions. Accurately,

1. We have mentioned (in the introduction) that in themajority of real
and concrete situations, external disturbances are not continuous.
For this, we have used the stochastic model with Lévy jumps.

2. Using the ergodic characteristic of the auxiliary system (2.1), the
probabilistic comparison result, and the Lyapunov function ap-
proach, we have provided the sufficient and necessary criterion for
the extinction and ergodicity of the distributed system (1.4). We
18
indicate that the critical case T ⋆
0 ¼ 0 is still an open question that

we will treat in the future. It is interesting to highlight that the
state of T ⋆

0 ¼ 0 is an absorbed state and that the conditions for ex-
tinction and persistence of contagion are not very clear from a phys-
ical point of view

3. In this study, we have given the exact value of T ⋆
0. It is obvious that

the linear noise intensities ξ21 and χ21(u) have a passive influence
on its value, and the quadratic noise quantities have no effect on it.

4. To prove the ergodicity, we have presented a novel technique that
joins the Lyapunov method with the analysis used in [53].

To illustrate the sharpness of our results, we have performed some
numerical simulations and we have confirmed that the impact of qua-
dratic jumps on the threshold value is negligible. However, the non-
linearity hypothesis has a positive effect on the disease in the perma-
nence case.

Generally speaking, we point out that this paper extends the study
presented in [71] to the case of quadratic Lévy jumps and delivers
some new insights for understanding the propagation of diseases with
complex fluctuations. In other words, the proposed approach leaves
many research paths to be explored in future works.

Concerning the exact expression of the probability density function
of a stochastic system (1.4), we mention that this density obeys a
non-local Fokker–Planck equation, difficult to solve analytically. Alter-
natively, we can obtain estimates of the probability density function
through some numerical methods. In subsection 4.1.3, we have ana-
lyzed the effect of noises on the probability density function. We have
concluded that its shape is changed at certain noise intensity values.
This phenomenon requires more theoretical investigations. We will ad-
dress this idea in our next investigation.



Fig. 12. Probability density function of (S,I) and its projection drawing on different coordinate planes. The deterministic parameters are selected from Table 1 - Test 3. For other noise in-
tensities, we select ξ11 = 0.01, ξ21 = 0.001, ξ12 = 0.001, ξ22 = 0.001, χ11 = 0.001, χ21 = 0.001, χ12 = 0.001, χ22 = 0.001. In this case, T ⋆

0 ¼ 0:0049>0.
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