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A B S T R A C T   

Ultrasonic-assisted extraction (UAE) coupled with deep eutectic solvent (DES) is a novel, efficient and green 
extraction method for phytochemicals. In this study, the effects of 16 DESs coupled with UAE on the extraction 
rate of polyphenols from Paederia scandens (Lour.) Merr. (P. scandens), an edible and medicinal herb, were 
investigated. DES synthesised with choline chloride and ethylene glycol at a 1:2 M ratio resulted in the highest 
extractability. Moreover, the effects of extraction parameters were investigated by using a two-level factorial 
experiment followed by response surface methodology The optimal parameters (water content in DES of 49.2%, 
the actual ultrasonic power of 72.4 W, and ultrasonic time of 9.7 min) resulted in the optimal total flavonoid 
content (TFC) (27.04 mg CE/g DW), ferric-reducing antioxidant power (FRAP) value (373.27 μmol Fe(II)E/g 
DW) and 2,2′-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS+) value (48.64 μmol TE/g DW), 
closely matching the experimental results. Furthermore, a comparison study demonstrated that DES-UAE 
afforded the higher TFC and FRAP value than traditional extraction methods. 36 individual polyphenolic 
compounds were identified and quantified by ultra-high-performance liquid chromatography-mass spectrometry 
(UHPLC-MS) in P. scandens extracts, and of which 30 were found in the extracts obtained by DES-UAE. Addi
tionally, DES-UAE afforded the highest sum of individual polyphenolic compound content. These results revealed 
that DES-UAE enhanced the extraction efficiency for polyphenols and provided a scientific basis for further 
processing and utilization of P. scandens.   

1. Introduction 

Polyphenols, widely distributed in plants, are a very diverse and 
multifunctional group of phytochemicals, containing flavonoids, 
phenolic acids, anthocyanins, procyanidins, and stilbenes. Accumu
lating studies have shown that polyphenols have natural antioxidant 

properties and play an important role in preventing food oxidation and 
exerting health-promoting effects [1,2]. For these reasons, polyphenols 
or polyphenolic extracts from herbs, fruits, and vegetables have been 
wildly used in food, medicine, feed stuff and other fields [3,4]. 

Paederia scandens (Lour.) Merr. (P. scandens) (“Jishiteng” in Chi
nese), an edible herb primarily grown in southern China, Vietnam, 

Abbreviations: UAE, ultrasonic-assisted extraction; DES, deep eutectic solvent; P. scandens, Paederia scandens (Lour.); Merr. ABTS+, 2,2′-azino-bis(3-ethyl
benzthiazoline)-6-sulfonic acid radical; CE, catechin equivalent; CV, coefficient of variation; DES-UAE, ultrasonic-assisted extraction coupled with deep eutectic 
solvents; DW, dry weight; EtOH-UAE, ultrasonic-assisted extraction coupled with 80% ethanol; Fe(II)E, FeSO4 equivalent; FRAP, ferric-reducing antioxidant power; 
MetOH-UAE, ultrasonic-assisted extraction coupled with 70% methanol; MS, mass spectra; NMR, Nuclear magnetic resonance; TE, Trolox equivalent; TFC, total 
flavonoid content; 3D, three-dimensional; UHPLC-MS, ultra-high-performance liquid chromatography-mass spectrometry; W-UAE, ultrasonic-assisted extraction 
coupled with ultrapure water. 
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Japan and India, has been used as a Chinese traditional medicine for 
treating dyspepsia, jaundice, aches and dysentery, as well as used in 
many local traditional foods for centuries [5,6]. The medical injection of 
P. scandens made in China has been used for relieving pain [7]. Recent 
studies have reported that P. scandens shows anti-arthritis [6], antioxi
dant [8], antifungal [8], antinociceptive [9], uric-acid-lowering [10], 
anti-inflammatory, immunomodulatory [11], and anticonvulsant and 
sedative properties [12]. The plants belonging to Paederia scandens 
(Lour.) Merr. or Paederia, such as Paederia scandens (Lour.) Merr. var. 
Tomentosa and Paederia foetida, were reported to exert hepatoprotective 
effects [13], therapeutic effects on adjuvant-induced arthritis [14], 
antifungal, antioxidant and analgesic effects [15,7]. Some phytochem
icals, including iridoid glycosides [11,16], volatile oil [16], and 
phenolic acids [8,16], have been identified in P. scandens. Moreover, 
flavonoids have been identified in Paederia scandens var. Mairei and 
Paederia chinensis Hance [17,18], which may be primarily responsible 
for their pharmacological properties. Among these phytochemicals, iri
doid glycosides have been most commonly studied, while the other 
compounds have been explored sporadically. Due to the biological ac
tivities and health-promoting effects of polyphenols from plants, poly
phenols from P. scandens have attracted considerable attention. 
Quercetin and kaempferol were identified from the fruits of Paederia 
chinensis Hance [18]. Ishikura et al. [17] isolated and identified 13 fla
vonoids by 1H and 13C nuclear magnetic resonance (NMR) from leaves 
and stems of P. scandens var. Mairei. Bordoloi et al. [8] identified 6 
phenolic acids from the ethanolic extract of P. scandens using high- 
performance liquid chromatographic method with diode-array detec
tion (HPLC-DAD) and found the potent antioxidant and antifungal aci
tivties of the ethanolic extract. Cai et al. [19] also found that leaves and 
stems of P. scandens were rich in anthocyanin, with potent antioxidant 
capacity. These studies also revealed that potent biological properties of 
P. scandens extracts were closely correlated with polyphenol profiles 
(flavonoids, phenolic acids, and anthocyanin). The extraction methods 
played a key role in the analysis of polyphenol profiles of the extracts 
[20–23]. Therefore, a high-efficiency method for extracting polyphenols 
from P. scandens is urgently needed. 

DES is considered as a class of novel, efficient and green solvent, with 
the advantages of easy synthesis and a wide polarity range [24,25]. DES 
is formed with hydrogen-bond acceptors and hydrogen-bond donors via 
hydrogen-bond interactions [26]. Recently, DES has been used to extract 
bioactives, such as flavonoids and phenolic acids, from plants 
[20,23,24]. DES has shown higher extraction efficiency for polyphenols 
from plants as compared to traditional solvents [22,23]. UAE has been 
widely used for extracting protein, oil, and bioactives, including poly
phenols, from dairy products, oilseeds, grains, vegetables and fruits 
[27,28]. UAE can also improve the extraction efficiency of bioactive 
compounds by disrupting the cell-wall structure of plants using acoustic 
cavitation [27,22]. DES-UAE significantly improved the extraction ef
ficiency of polyphenols from ginger and Moringa oleifera L. leaves, as 
compared to UAE with organic solvents [22,23,29]. To the best of our 
knowledge, there is no study focusing on extraction of polyphenols from 
P. scandens using DES-UAE. 

The present study screened the best DES to extract polyphenols from 
P. scandens, then optimized DES-UAE parameters to improve TFC and 
antioxidant capacity using a two-level factorial experiment, followed by 
response surface methodology. We also evaluated and compared the 
TFC, antioxidant capacity, and polyphenol profiles (identified and 
quantified by UHPLC-MS) of extracts obtained by DES-UAE and UAE 
coupled with traditional solvents. 

2. Materials and methods 

2.1. Materials and chemicals 

The fresh aerial parts of P. scandens were purchased from the 
Dongmen Market (Haikou, Hainan Province, China) in August 2020 and 

identified by Dr. Qiang Liu from the Department of Pharmacognosy, 
Hainan Medical University (Haikou, China). After washing with tap 
water, plants were dried at 50 ℃ for 8 h in an electric thermostat blast 
drying oven (DHG-9140A, Shanghai Yiheng Scientific Instrument Co. 
Ltd, Shanghai, China), crushed through a 60 mm mesh, packed and 
stored at − 20℃. 

Apigenin, acacetin, diosmetin, hesperidin, rutin and quercitrin for 
UHPLC-MS were purchased from Qiyun Biotechnology (Guangzhou, 
China). Folin–Ciocalteu reagent, as well as the remaining polyphenol 
standards for UHPLC-MS, was purchased from Sigma Chemical Co., Ltd. 
(Shanghai, China). All chemicals used for DES synthesis were purchased 
from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Total 
antioxidant capacity assay kits employing ABTS+ scavenging capacity 
method and FRAP method were purchased from Nanjing Jiancheng 
Bioengineering Institute (Nanjing, Jiangsu, China). 

2.2. Preparation of DESs 

According to previously reported methods, 16 kinds of DESs were 
synthesized by mixing the hydrogen-bond acceptor and hydrogen-bond 
donor at the appropriate molar ratio with continuous stirring at 1500 
rpm at 80 ℃, forming a transparent and uniform liquid [24,22]. 
Chemicals and their molar ratios, as well as the abbreviations of the 
DESs, are shown in Table 1. 

2.3. Determination of TFC 

TFC was determined using the AlCl3-NaNO2 colorimetric method at 
510 nm as described previously [30]. Briefly, the extract or a standard 
solution (250 μL) was mixed with deionized water (1.25 mL) and NaNO2 
solution (5% [w/w], 75 μL) sequentially. After 6 min, 10% (w/w) 
AlCl3⋅6H2O solution (150 μL) was added, then 5 min later NaOH solu
tion (1 M, 0.5 mL) was added followed by adjusting the total volume to 
3.0 mL with deionised water. TFC was calculated by comparing the 
calibration curve of catechin and expressed as mg catechin equivalent 
per g of dry weight of plant powder (mg CE/g DW). 

2.4. Antioxidant capacity 

Antioxidant capacity was determined by commercial kits (FRAP and 
ABTS+ scavenging capacity assays) following the manufacturer’s pro
tocols. For FRAP assay, the extracts or FeSO4 solutions ranging from 
0.15 to 1.5 mmol (5 μL) was mixed with 180 μL of FRAP working so
lution and kept for 5 min at 37℃. The absorbance of the mixed solution 
was recorded at 593 nm. For ABTS+ scavenging capacity assay, the 

Table 1 
List of DESs.  

Solvent abbreviation Combination Molar ratio 

ChCl-MA Choline chloride-Malic acid 1:1 
ChCl-Gly Choline chloride-Glycerol 1:2 
ChCl-OA Choline chloride-Oxalic acid 1:1 
ChCl-Xyl Choline chloride-Xylitol 1:1 
Pro-Gly-1 L-Proline- Glycerol 2:5 
ChCl-Lev Choline chloride-Levulinic acid 1:2 
ChCl-EG Choline chloride-Ethylene glycol 1:2 
ChCl-Glu Choline chloride-Glucose 5:2 
ChCl-TrG Choline chloride-Triglycol 1:4 
Bet-Lev Betaine-Levulinic acid 1:2 
Bet-Gly Betaine-Glycerol 1:1 
Pro-EG L-Proline-Ethylene glycol 1:2 
Pro-Lev L-Proline-Levulinic acid 1:2 
Pro-Gly-2 L-Proline-Glycerol 1:2 
Pro-LA L-Proline-Lactic acid 1:2 
CA-Gly Citric acid-Glycerol 1:2 

DESs, deep eutectic solvents. DESs were chosen according to previous studies 
[22,23,25–27,29]. 
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extracts or Trolox solutions ranging from 0.15 to 1.5 mmol (10 μL) was 
mixed with 200 μL of ABTS+ working solution and kept for 6 min at 
37℃. The absorbance was recorded at 734 nm. Values were calculated 
by comparing standard curves of FeSO4 and Trolox, and expressed as 
μmol FeSO4 equivalent per g of dry plant powder (μmol Fe(II)E/g DW) 
and μmol Trolox equivalent per g of dry weight of plant powder (μmol 
TE/g DW), respectively. 

2.5. Optimization of extraction experiments 

2.5.1. Screening of DESs 
P. scandens powder (0.5 g) was added in the prepared DESs (5 mL, 

40% water, v/v) in a centrifuge tube and then the centrifuge tube was 
put into a bath-type ultrasonic instrument (SB25-12DTD, Ningbo Xinzhi 
Biotechnology Co. Ltd) with a temperature-controlled system under an 
ultrasonic frequency of 40 KHz. The mixture was extracted at the actual 
ultrasonic power 77.0 W (the set ultrasonic power 320 W) at 40 ◦C for 
30 min and centrifuged for 10 min at 13,000 rpm to obtain the super
natant. TFC of the supernatant was used to evaluate extraction efficiency 
of different DESs. 

A calorimetric assay was used to measure the actual ultrasonic power 
[31]. Briefly, 15 L water was poured into the bath system. The ultrasonic 
process lasted for 30 min at the ultrasonic power set at 240 W, 300 W, 
320 W or 360 W. The temperature was measured in the centrifuge tube 
before and after the ultrasonic process using thermometer. The tem
perature was collected at fifteen sites (four corners and the center at 
upper layer, middle layer, and bottom layer of water in the centrifuge 
tube from triplicate experiments. The actual ultrasonic power was 
calculated according to equation: the actual ultrasonic power (W) =
m*Cw*(dT/dt), where m was the mass (kg) of the water submitted to the 
ultrasonic processing, Cw was the specific heat of the water at constant 
pressure, and dT/dt was the rate of temperature rise during the process 
time (◦C/s) [31]. The actual ultrasonic power for 240 W, 300 W, 320 W 
and 360 W was 57.7 W, 72.2 W, 77.0 W, and 86.6 W, respectively. In 
order to increase the accuracy, the actual ultrasonic power was used. 

2.5.2. Two-level factorial experiment 
A two-level factorial experiment was performed using Minitab v.17 

(Philadelphia, PA, USA) to ascertain the effect of five factors (water 
content in DES [A], liquid–solid ratio [B], the actual ultrasonic power 
[C], ultrasonic time [D], and ultrasonic temperature [E]) and their 
interactive effects on TFC of P. scandens extracts (Table 2, Table 3), 
where TFC was the response. A normal plot of the standardized effects 
relied on position of effect points relative to the standard line, while a 
pareto chart of the standardized effects evaluated the significance of the 
primary or interactive effects according to the column magnitude in 
contrast to other columns [29]. The key factors with a remarkable in
fluence on TFC of P. scandens were selected to conduct the response 
surface methodology. 

2.5.3. Response surface experiment 
Based on the results of two-level factorial experiment, water content 

in DES (A, 30%, 50% and 70%), the actual ultrasonic power (B, 57.7, 
72.2 and 86.6 W), and ultrasonic time (C, 2, 10 and 18 min) were 
considered as the main driving factors. The impact of these three 

independent variables on the three related responses (TFC, FRAP value 
and ABTS+ value) were evaluated at a constant liquid–solid ratio (20 
mL/g) and ultrasonic temperature (40 ◦C) by performing the Box- 
Behnken design using Design-Expert v. 8.0.5 (Table 4, Table 5, Fig. 3). 
The verification experiments were conducted as DES-UAE in 2.6. 

2.6. Comparisons among DES-UAE and UAE coupled with traditional 
solvents 

After mixing 0.5 g P. scandens powder with 10 mL of the above 
selected DES (choline chloride-ethylene glycol [ChCl-EG] with 49.2% of 
water content in it) (DES-UAE), ultrapure water (W-UAE), 80% ethanol 
(EtOH-UAE) or 70% methanol (MetOH-UAE), ultrasonic-assisted 
extraction was performed under the actual ultrasonic power 72.2 W 
(the set ultrasonic power 300 W) at 40 ◦C for 9.7 min. The supernatant 
was obtained by centrifugation at 13,000 rpm for 10 min. The tradi
tional solvents used were chosen based on previous studies [27,32–35], 
which were efficient in polyphenolic extraction. 

2.7. Identification and quantification of polyphenols by UHPLC-MS 

UHPLC coupled with a Xevo triple quadrupole mass spectrometer 
system (Micromass Waters, Milford, MA, USA) was used for identifica
tion and quantification of polyphenols as per our previous methods, with 
some modifications [36]. An Acquity UHPLC BEH-C18 column (2.1 i.d. 
× 100 mm, 1.7 μm, Waters, USA) was used to separate polyphenols, with 
a gradient solvent system of 0.25% formic acid–water (elution A) and 
0.25% formic acid–methanol (elution B) using the following parameters: 
0–1 min, 5% B; 8 min, 25% B; 11 min, 60% B; 13 min, 100% B; 16 min, 
100% B; and 16.1–20 min, 5% B. Polyphenols were identified using 
multiple reaction monitoring, and the basic structure of peaks were 
deduced by parent ions, fragment ions, and comparisons with published 
mass spectra (MS) data [37–51]. Furthermore, polyphenols were 
assigned by comparing the respective standards using UHPLC-MS, and 
their quantification was achieved by comparing the calibration curve of 
respective standards expressed as μg per g of dry weight of plant powder 
(μg/g DW). MS was measured between m/z 50–1000 with the following 
constant parameters: cone voltage, 30 V; capillary voltage, 2.0 kV; 
drying gas (N2) flow, 1000 L/h; and drying gas temperature, 500 ◦C. 

2.8. Statistical analysis 

All data derived from experiments performed in triplicate were 
expressed as mean ± standard deviation. Statistical analysis was per
formed with IBM SPSS 24.0 using one-way ANOVA, followed by Dun
can’s post hoc test, and p-value of < 0.05, was regarded as statistically 
significant. 

3. Results and discussion 

3.1. Selection of DES for the extraction of polyphenols from P. Scandens 

DESs are effective for cell wall dissolution due to their high 
hydrogen-bond basicity, allowing efficient intermolecular interactions 
between the DES and cellulose strands [24,25]. Extraction efficiency is 
primarily related to DES polarity and viscosity, which are largely 
dependent on their constituents, the molar ratios of hydrogen-bond 
acceptors to hydrogen-bond donors and water content in DES [24,27]. 
DESs are commonly based on sugars, alcohols, amines, amino acids, and 
organic acids [26]. Several studies have shown that the compositions of 
DES used to efficiently extract polyphenolic compounds are based on 
choline chloride as the hydrogen-bond acceptors and polyalcohols, 
organic acids, sugar, or amides as the hydrogen-bond donors [26,27]. 
Therefore, in the present study, four types of hydrogen-bond acceptors 
(choline chloride, citric acid, betaine, and L-proline) and four types of 
hydrogen-bond donors (amide, acid, alcohol and glucose) were selected 

Table 2 
Factors and levels of two-level factorial experiment.  

Independent variable Units Experimental value 
Low (− 1) High (+1) 

A: Water contents in DES % 20 50 
B: Liquid-solid ratio mL/g 10 40 
C: The actual ultrasonic power W 57.7 86.6 
D: Ultrasonic time min 10 40 
E: Ultrasonic temperature ℃ 30 60  
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to prepare DESs. There was a significant difference among the TFC of 
P. scandens extracts obtained by the 16 DESs coupled with UAE (p <
0.05) (Fig. 1). The highest TFC of P. scandens extracts was obtained by 
ChCl-EG coupled with UAE (19.43 ± 0.53 mg CE/g DW), followed by 
ChCl-TrG coupled with UAE (17.65 ± 0.48 mg CE/g DW). Notably, CA- 
Gly and Bet-Gly coupled with UAE afforded the lowest TFC, which were 
18.69% and 24.98% of the TFC obtained by ChCl-EG coupled with UAE. 
Different types of DESs were used to extract polyphenolic compounds 
and showed significantly different extraction efficiency [52]. Khezeli 
et al. [53] found that ChCl-EG (1:2) showed higher efficiency than ChCl- 
Gly (1:2), pure ethylene glycol and glycerol solvents in the extraction of 
ferulic, caffeic and cinnamic acids from seed oils. Cui et al. [54] found 
that 1,6-hexanediol-ChCl showed the highest efficiency in extracting 

genistin, genistein and apigenin from pigeon pea roots among 18 kinds 
of DESs. García et al. [20] found that there was an obvious difference in 
polyphenolic compounds extracted by different DESs from virgin olive 
oil. DES polarity and its approximation to the polarity of extracts are 
very critical for the extraction efficiency, due to the principle of “com
pounds are more likely to dissolve in solvents with similar polar
ity”[24,27]. High viscosity of DESs results in low mass transfer and low 
compound diffusion [26]. For these reasons, in the present study, the 
highest TFC obtained by ChCl-EG coupled with UAE may be attributed 
to the high similarity between the polarities of ChCl-EG and polyphenols 
from P. scandens, along with suitable viscosity. Therefore, ChCl-EG was 
selected as the best green solvent for subsequent experiments. 

Table 3 
Experimental design and results of two-level factorial experiment.  

Run A: Water contents in DES 
(%) 

B: Liquid-solid ratio (mL/ 
g) 

C: The actual ultrasonic power 
(W) 

D: Ultrasonic time 
(min) 

E: Ultrasonic temperature 
(℃) 

TFC 
(mg CE/g 
DW) 

1 20 40  57.7 10 60 18.52 ± 1.27 
2 50 10  57.7 10 60 19.21 ± 0.39 
3 50 40  57.7 40 60 19.90 ± 1.73 
4 20 10  57.7 40 60 17.82 ± 1.23 
5 20 40  57.7 40 30 13.99 ± 1.14 
6 50 10  57.7 40 30 19.63 ± 0.75 
7 20 40  86.6 40 60 14.75 ± 0.10 
8 50 10  86.6 40 60 20.09 ± 0.83 
9 50 40  86.6 10 60 24.90 ± 1.08 
10 20 10  86.6 10 60 21.41 ± 0.79 
11 20 40  86.6 10 30 21.17 ± 0.26 
12 50 10  86.6 10 30 21.42 ± 0.94 
13 50 40  57.7 10 30 20.08 ± 1.39 
14 20 10  57.7 10 30 17.69 ± 0.60 
15 50 40  86.6 40 30 19.38 ± 0.52 
16 20 10  86.6 40 30 18.36 ± 0.66  

Table 4 
Box-Behnken design and resultant responses.  

Run A: 
Water contentin 
DES  
(%) 

B: 
The actual ultrasonic 
power 
(W) 

C: 
Ultrasonic 
time 
(min) 

TFC (mg CE/g DW) FRAP (μmol Fe(II)E/g DW) ABTS+ (μmol TE/g DW) 
Actual 
value 

Predicted 
value 

Actual value Predicted 
value 

Actual 
value 

Predicted 
value 

1 70  72.2 18 19.42 ±
0.19  

19.66 285.94 ±
9.40  

290.96 47.56 ±
0.07  

47.43 

2 50  86.6 2 23.09 ±
0.11  

23.02 339.04 ±
48.41  

339.56 47.48 ±
0.04  

47.40 

3 50  57.7 18 22.16 ±
0.12  

22.23 332.68 ±
4.96  

332.16 47.36 ±
0.11  

47.45 

4 50  86.6 18 23.01 ±
0.12  

22.77 365.85 ±
4.48  

354.41 47.00 ±
0.02  

46.98 

5 70  57.7 10 22.97 ±
0.12  

22.67 292.08 ±
6.66  

287.58 48.00 ±
0.01  

48.05 

6 30  86.6 10 22.18 ±
0.21  

22.48 353.87 ±
9.99  

358.37 47.00 ±
0.11  

46.95 

7 50  57.7 2 22.08 ±
0.16  

22.32 319.90 ±
3.35  

331.34 47.83 ±
0.02  

47.86 

8 70  72.2 2 20.98 ±
0.33  

21.04 286.06 ±
12.76  

279.12 47.90 ±
0.10  

47.83 

9 50  72.2 10 27.59 ±
0.08  

27.06 380.07 ±
18.24  

372.33 48.60 ±
0.10  

48.65 

10 30  72.2 18 20.13 ±
0.04  

20.06 335.58 ±
13.34  

342.51 46.70 ±
0.16  

46.77 

11 30  57.7 10 21.11 ±
0.10  

21.11 351.88 ±
21.03  

345.46 46.97 ±
0.03  

46.81 

12 50  72.2 10 27.01 ±
0.08  

27.06 363.64 ±
18.24  

372.33 48.71 ±
0.10  

48.65 

13 30  72.2 2 19.26 ±
0.16  

19.02 343.70 ±
34.56  

338.68 47.08 ±
0.05  

47.21 

14 50  72.2 10 26.56 ±
0.08  

27.06 373.29 ±
18.24  

372.33 48.63 ±
0.10  

48.65 

15 70  86.6 10 22.53 ±
0.12  

22.53 298.72 ±
10.26  

305.14 46.82 ±
0.04  

46.98  
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3.2. A two-level factorial experiment for selection of factors significantly 
affecting TFC 

Water content in DES plays an important role in enhancing the 
extraction of bioactive substances from plants by altering DES polarity 
and lowing the viscosity [26,27]. Moreover, liquid–solid ratio, ultra
sonic time, the actual ultrasonic power, and ultrasonic temperature can 
largely influence extraction efficiency [22,29]. In this study, the 
experimental model provided by a two-level factorial experiment 
(Table 2, Table 3) was used to generate the normal plot and pareto chart 
(Fig. 2) for highlighting the primary and interaction effects on TFC. 

As shown in Fig. 2a, significant effects presented as single factors 
(water content in DES [A], the actual ultrasonic power [C], ultrasonic 

time [D], and ultrasonic temperature [E]), and interactive factors (AB, 
AD, CD, and BD). Moreover, the magnitudes of A, C, D, E, AB, AD, CD, 
and BD were all larger than the significant marker line, among which the 
top three significant factors were A, D and C in sequence (Fig. 2b). 
Consequently, water content in DES, the actual ultrasonic power, and 
ultrasonic time were chosen for the subsequent response surface 
experiment. 

3.3. Response surface experiment 

3.3.1. Model fitting 
As shown in Table 4, TFC, FRAP values, and ABTS+ values ranged 

from 19.26 − 27.59 mg CE/g DW, 285.9–380.1 μmol Fe(II)E/g DW, and 
46.7–48.7 μmol TE/g DW, respectively. As shown in Table 5, F-value and 
p-value revealed that the model was significant (p < 0.01), whereas the 
loss of fit of each model was insignificant (p > 0.05). For all responses, 
the R2 was higher than 0.95 and adjusted determination coefficients 
(adj. R2) were close to 0.9, revealing good model accuracy and a higher 
correlation between experimental and predicted values, which was 
confirmed by the low coefficient of variation (CV). Interaction among 
variables was presented using three-dimensional (3D) surface plots in 
Fig. 3. 

3.3.2. Effect of variables on TFC 
As shown in Table 5, the linear effect of water content in DES (A) and 

secondary effect of A2, B2 and C2 illustrated significant effects on TFC. 
The significant interaction between water content in DES (A) and ul
trasonic time (C) on TFC was presented. The addition of water in DES 
varied DES polarity and viscosity [52], resulting in a change in extrac
tion efficiency. Numerous studies found water content in DES was the 
main factor for DESs’ high extraction efficiency for various bioactive 
compounds including polyphenols [22,23,26,27,29,52]. The relation
ship between TFC and these variables was expressed by the following 
equation (1): 

YTFC = 27.06 + (0.40 × A) + (0.31 × B) – (0.087 × C) – (0.38 × AB) – 
(0.61 × AC) – (0.04 × BC) – (3.75 × A2) – (1.11 × B2) – (3.36 × C2) (1). 

To clarify the interaction of the three variables on the TFC, 3D 
response surfaces (Fig. 3A1–A3) were applied. Fig. 3B showed the sig
nificant interaction between water content in DES (A) and ultrasonic 
time (C) on ABTS+, which raised with increasing water content in DES 
(A) up to approximately 49%, followed by a sharp reduction. DES po
larity raised with increasing water content in DES. Extraction solvents 
with polarity close to polyphenolic compounds showed high extract
ability [24,27,52]. Moreover, an increase in water content in DES 
reduced the viscosity of DESs, increasing mass transfer and compound 
diffusion [25,26]. Furthermore, ultrasonic treatment increased the 
extraction rate by disrupting the cell wall and facilitating solvent 
penetration through the plant tissue [24,27]. However, ultrasonic 
treatment for longer time may result in polyphenol degradation [27,28]. 
These results indicated high extraction efficiency of ChCl-EG coupled 
with UAE for polyphenols was mainly attributed to the similar polarity 
of ChCl-EG with polyphenols, the low viscosity of ChCl-EG that facili
tated compound diffusion, and the suitable ultrasonic parameters that 
facilitated the solvent penetration. 

3.3.3. Effect of variables on antioxidant capacity 
FRAP value was significantly affected by A (p < 0.01), A2 (p < 0.05) 

and C2 (p < 0.05), among which water content in DES (A) showed a 
more significant effect on FRAP value. ABTS+ value was significantly 
affected by A, B, A2, B2, and C2 (p < 0.01), followed by C and AB (p <
0.05). However, the interaction of AC and BC had no significant effect on 
ABTS+ value (p > 0.05). The antioxidant capacity (FRAP and ABTS+) of 
P. scandens extracts was largely affected by water content in DES, which 
markedly changed DES polarity. DES polarity was primarily responsible 
for the composition and content of polyphenols in the extracts [20–23]. 
Polyphenols are a large class of plant secondary metabolites with diverse 

Table 5 
ANOVA for response surface quadratic model.  

Source df Sum of squares   
TFC FRAP ABTS+

Model 9  92.49** 13527.79 **  6.35** 
A- Water content 1  1.30* 6172.99**  0.81** 
B- The actual ultrasonic power 1  0.77 ns 464.15 ns  0.43** 
C- Ultrasonic time 1  0.06 ns 122.84 ns  0.34* 
AB 1  0.57 ns 5.42 ns  0.37* 
AC 1  1.47* 16.03 ns  0.00 ns 
BC 1  0.01 ns 49.20 ns  0.00 ns 
A2 1  51.89*** 5157.44*  2.24** 
B2 1  4.56* 432.56 ns  1.65** 
C2 1  41.70*** 1809.79*  1.15** 
Residual 5  0.96 667.80  0.13 
R2   0.9897 0.9530  0.9807 
Adj R2 –  0.97 0.8683  0.9459 
Pre R2 –  0.91 0.3793  0.7056 
CV –  1.93 3.45  0.33 
Model (F-value) –  53.42 11.25  28.21 
Model (p-value) –  0.0002 0.0079  0.0009 
Lack of fit (F-value) –  0.54 2.60  11.44 
Lack of fit (p-value) –  0.7007 0.2898  0.0815 

ns, not significant (p > 0.1); 
*, difference is significant at 0.05 level (p < 0.05); 
**, difference is significant at 0.01 level (p < 0.01); 
***, difference is significant at 0.001 level (p < 0.001). 

Fig. 1. Total flavonoid content (TFC) of P. scandens extracts obtained by 16 
DESs coupled with UAE. Different letters indicate significant differences (p <
0.05). ChCl-MA, Choline chloride-Malic acid; ChCl-Gly; Choline chloride- 
Glycerol; ChCl-OA, Choline chloride-Oxalic acid; ChCl-Xyl, Choline chloride- 
Xylitol; Pro-Gly-1, L-Proline-Glycerol (2:5); ChCl-Lev, Choline chloride- 
Levulinic acid; ChCl-EG, Choline chloride-Ethylene glycol; ChCl-Glu, Choline 
chloride-Glucose; ChCl-TrG, Choline chloride-Triglycol; Bet-Lev, Betaine- 
Levulinic acid; Bet-Gly, Betaine-Glycerol; Pro-EG, L-Proline-Ethylene glycol; 
Pro-Lev, L-Proline-Levulinic acid; Pro-Gly-2, L-Proline-Glycerol (1:2); Pro-LA, L- 
Proline-Lactic acid; CA-Gly, Citric acid-Glycerol. 
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structure and varying polarity [1]. Antioxidant capacity of extracts was 
closely associated with composition and content of polyphenols in the 
extracts [30,22,29]. 

Antioxidant capacity (FRAP and ABTS+) models were demonstrated 
by equations (2) and (3), and the 3D surface plots (Fig. 3B1-B3, C1-C3) 
were established according to equations (2) and (3). 

YFRAP = 372.33 – (27.78 × A) + (7.62 × B) + (3.92 × C) + (1.16 ×
AB) + (2.00 × AC) + (3.51 × BC) – (37.37 × A2) – (10.82 × B2) – (22.24 
× C2) (2). 

YABTS+ = 48.65 + (0.32 × A) – (0.23 × B) – (0.21 × C) – (0.30 × AB) 
+ (9.65 × 10− 3 × AC) – (3.5 × 10− 3 × BC) – (0.78 × A2) − (0.67 × B2) – 
(0.56 × C2) (3). 

3.3.4. Verification of optimally predicted DES-UAE parameters 
To substantiate the reliability of the response surface model design, 

experiments under the optimal parameters of DES-UAE predicted by the 
model were performed. Based on regression analysis of 3D surface plots 
and independent variables, the optimal extraction parameters for TFC 
were listed as follows: 49.2% of water content in DES, 72.4 W of the 
actual ultrasonic power (the set ultrasonic power 301.3 W), and 9.7 min 

of ultrasonic time. In order to adjust ultrasonic power easily, the veri
fication experiments were performed under 72.2 W of the actual ultra
sonic power (the set ultrasonic power 300 W), 49.2% of water content in 
DES, and 9.7 min of ultrasonic time. The experimental values deter
mined were 27.09 ± 0.48 mg CE/g DW for TFC, 335.17 ± 4.32 μmol Fe 
(II)E/g DW for FRAP, and 48.91 ± 1.99 μmol TE/g DW for ABTS+, which 
accurately matched our predicted values with a low error (Table 6). 

3.4. Comparisons among DES-UAE and other methods 

3.4.1. TFC and antioxidant capacity 
A comparative study was conducted among DES-UAE and UAE 

coupled with traditional solvents to verify the high extractability of DES- 
UAE for polyphenols from P. scandens. As shown in Table 6, DES-UAE 
displayed significantly higher TFC and FRAP value than other 
methods (p < 0.05). The TFC and FRAP value obtained by DES-UAE 
were 1.51–2.02-fold and 1.37–1.79-fold of those obtained by other 
methods, respectively. Moreover, there was no significant difference 
between ABTS+ value obtained by DES-UAE and W-UAE (p > 0.05), 
whereas DES-UAE displayed significantly higher ABTS+ value than 

Fig. 2. The normal plot (a) and the pareto chart (b) obtained from two-level factorial experiment showing the significance of the primary and interaction effects. 
Factor A, water content in DES; Factor B, liquid–solid ratio; Factor C, the actual ultrasonic power; Factor D, ultrasonic time; Factor E, ultrasonic temperature. 
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other methods (p < 0.05). These results indicated that DES-UAE was a 
high efficiency method compared with UAE coupled with traditional 
solvents (ultrapure water, 80% ethanol, and 70% methanol), which 
were usually used in the previous studies and showed a high efficiency 
for extracting polyphenols [27,32–35,30,36]. DES-UAE reportedly 
improved TFC and antioxidant capacity of Moringa oleifera L. leave 

extracts, compared with UAE coupled with traditional solvents [29,22]. 
DES-UAE was a novel and high efficiency method for extracting poly
phenols from P. scandens. 

3.4.2. Identification of polyphenolic compounds by UHPLC-MS 
Thirty-six polyphenols comprising of 5 benzoic acids, 5 hydrox

ycinnamic acids, 15 flavonols, 4 flavones, 1 isoflavone, 3 flavanones, 1 
anthocyanidin, 1 procyanidin, and 1 stilbene were identified in 
P. scandens extracts, all of which were further confirmed with reference 
standards using UHPLC-MS. Besides these, many compounds still remain 
unknown (Table 7). 

Peaks 1, 3, 4, and 5 at m/z 169.0, 137.0, 136.96, and 196.9 with their 
product ions 125.0 [M + H − CO2]+, 93.0 [M − H − CO2]− , 108.0 [M −
H − CHO]− , and 168.9 [gallic acid − H]− were tentatively identified as 
vanillic acid, 2-hydroxybenzoic acid, protocatechualdehyde and ethyl 
gallate, respectively [37–39]. Vanillin (peak 2) was identified by its 
protonated ion [M + H]+ m/z 153.0, and product ions m/z 138.0 [M +
H − CH3]+, m/z 125.0 [M + H − CO]+, and m/z 93.0 [M + H − CO −
CH3OH]+, which was consistent with MS data from Flamini et al. [40]. 
Peaks 6–10, identified as p-coumaric acid, ferulic acid, caffeic acid, 
trans-cinnamic acid, and rosmarinic acid, showed precursor ions [M −
H]− at m/z 163.1, 193.0, 179.0, 146.95, and 358.96 and their product 
ions at m/z 119.0 [M − H − CO2]− , 91.0 [M − H − CO2 − C2H4]− (peak 
6), 149.0 [M − H − CO2]− , 178.0 [M − H − CH3]− (peak 7), 135.0 [M −
H − CO2]− (peak 8), 118.9 [M − H − CO]− (peak 9), and 196.96 
[dihydroxyphenyl-lactic acid − H]− , 161.0 [caffeic acid − H − H2O]−

Fig. 3. 3D response surface curve showing the effects of independent variables on the TFC (A1-A3), ABTS+ (B1-B3) and FRAP (C1-C3). Mutual effects of water 
content in DES and the actual ultrasonic power on TFC (A1); Mutual effects of water content in DES and ultrasonic time on TFC (A2); Mutual effects of the actual 
ultrasonic power and ultrasonic time on TFC (A3); Mutual effects of water content in DES and the actual ultrasonic power on ABTS+ (B1); Mutual effects of water 
content in DES and ultrasonic time on ABTS+ (B2); Mutual effects of the actual ultrasonic power and ultrasonic time on ABTS+ (B3); Mutual effects of water content 
in DES and the actual ultrasonic power on FRAP (C1); Mutual effects of water content in DES and ultrasonic time on FRAP (C2); Mutual effects of the actual ultrasonic 
power and ultrasonic time on FRAP (C3). 

Table 6 
Comparative TFC and antioxidant capacities of P. scandens extracts obtained by 
DES-UAE and other methods.  

Extraction methods TFC 
(mg CE/g 
DW) 

FRAP(μmol Fe 
(II) 
E/g DW) 

ABTS+

(μmol TE/g 
DW) 

DES-UAE (Predicted value) 27.04 373.27 48.64 
DES-UAE (Experimental 

value) 
27.09 ±
0.48c 

335.17 ±
14.32c 

48.91 ± 1.99c 

W-UAE 17.95 ±
0.49b 

222.76 ±
11.99b 

46.30 ±
3.01bc 

EtOH-UAE 17.88 ±
0.41b 

186.89 ±
11.41a 

44.25 ±
0.16ab 

MetOH-UAE 13.54 ±
0.08a 

195.49 ± 2.42a 43.83 ±
0.45ab 

Different letters in same column indicate significant differences (p < 0.05). UAE, 
ultrasonic-assisted extraction; DES-UAE, W-UAE, EtOH-UAE, MetOH-UAE: 
ultrasonic-assisted extraction coupled with deep eutectic solvent (DES-UAE), 
ultrapure water, 80% ethanol and 70% methanol, respectively. 
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(peak 10), respectively [37,41,42,38,43]. Peaks 11 and 12 were 
observed as the same precursor ion [M − H]− at m/z 289.07, and the 
same product ions m/z 244.9 [M − H − CO2]− and 137.1 [M − H −
152]− (typical retro Diel-Alder fragmentation) with different retention 
time, and were distinguished as catechin and epicatechin [38,44]. Peaks 
13–14 produced the same precursor ion [M − H]− at m/z 304.98 and 
product ions at m/z 179.0 [M − H − C6H6O3]− and 124.98 [M − H −
152]− with different retention times, and were identified as (-)-epi
gallocatechin and (-)-gallocatechin [44]. Gallic, chlorogenic, vanillic, 
ferulic, p-coumaric, and caffeic acids have previously been identified by 
HPLC-DAD from the ethanolic extract of P. scandens by Bordoloi et al. 
[8], whereas 3-hydroxy-4-methoxybenzaldehyde, 2-hydroxybenzoic 
acid, 2,5-dihydroxybenzoic acid methyl ester, as well as 12 iridoid 
glycosides, were isolated and identified from 70% ethanol extract of 
P. scandens by MS [16]. 

Quercetin (peak 16) with deprotonated ions [M − H]– at m/z 301.0 
and retro Diel-Alder fragments of flavon-3-ols (m/z 179.0, 151.0) were 
identified as quercetin, which was consistent with MS data from previ
ous studies [38,42,43]. Flavonoid glycosides containing O-glycoside 
usually showed a loss of glycoside as the initial breakdown [55]. Myr
icitrin (peak 15), was authenticated by deprotonated molecule [M − H]– 

ion at m/z 462.9 and product ion m/z 316.99 (aglycone myricetin) for 
the loss of rhamnoside (− 146 Th) [45]. Peaks 17–25 were respectively 
identified as hyperoside, rutin, quercitrin, isoquercitrin, guaiaverin, 

kaempferol 3-O-rutinoside, astragaline, isorhamnetin-3-O-glucoside, 
and narcissin by the loss of galactoside (− 162 Th), rutinoside (− 308 
Th), rhamnoside (− 146 Th), glucoside (− 162 Th), or arabinoside (− 132 
Th) group [38,41,42,43,46]. Similarly, cynaroside (peak 29), hesperidin 
(peak 31), and cosemetin (peak 33) were distinguished by the loss of 
glycoside [46,41,47]. Quercetin and kaempferol were found in the fruits 
of Paederia chinensis Hance [18]. A previous study identified 13 flavonol- 
O-glycosides, including astragaline (kaempferol-3-O-glucoside), 
kaempferol-3-O-rutinoside, kaempferol-7-O-glucoside, isoquercitrin 
(quercetin-3-O-glucoside), kaempferol-3-O-rutinoside-7-O-glucoside, 
quercimeritrin (quercetin-7-O-glucoside), rutin (quercetin-3-O-rutino
side), quercetin-3-O-rutinoside-7-O-glucoside, paederinin (quercetin-3- 
O-rutinoside-7-O- xylosylglucoside), three unknown quercetin-O- 
glycosides and one unknown kaempferol-O-glycoside using 1H and 13C 
NMR from P. scandens var. Mairei. leaves and stems [17]. Flavonol-3-O- 
glycoside may be the characteristic compounds of Rubiaceae, including 
Paederia plants, as the 3-O-glycoside of quercetin and kaempferol found 
in the present study have also previously been reported in many plants 
of Rubiaceae [7,56], including P. scandens. However, rutin and quer
cetin were not found in the ethanol maceration extract of P. scandens 
from India determined by HPLC-DAD [8]. 

Isovitexin (apigenin-6-C-glucoside) (peak 32) was characterized by 
the deprotonated ion [M − H]− at m/z 430.9 and product ions at m/z 
280.9 corresponding to the fragment [M − H − 150]− and m/z 253.0 [M 

Table 7 
Identification of polyphenolic compositions in P. scandens by UHPLC-MS.  

Polyphenol sub-classes Peak no. λmax (nm) Tentative assignment Model Parents 
ions 

Fragment ions Reference 

Benzoic acid 
and drivatives 

1 259,291 vanillic acid + 169.0 125.0, 93.0 [37] 
2 275 vanillin + 153.0 138.0, 125.0, 93.0 [40] 
3 260,294 2-hydroxybenzoic acid –  137.0 93.0 [38] 
4 274,308 protocatechualdehyde –  136.96 108.0, 81.0 [39] 
5 272 ethyl gallate –  196.9 168.9, 124.1 [37] 

Hydroxycinnamic acid and derivatives 6 270,307 p-coumaric acid –  163.1 119.0, 91.0 [41,37] 
7 299,323 ferulic acid –  193.0 178.0, 149.0, 134.0 [42,41,37] 
8 299,323 caffeic acid –  179.0 135.0, 79.0 [42,41,37] 
9 278,306 trans-cinnamic acid –  146.95 118.9, 77.0, 40.1 [38] 
10 290,328 rosmarinic acid –  358.96 196.96, 161.0 [43] 

Flavonol 11 280 catechin –  289.07 244.9, 204.9, 137.1 [38,44] 
12 280 epicatechin –  289.07 244.9, 204.9, 137.1 [44] 
13 270 (-)-epigallocatechin –  304.98 179.0, 124.98 [44] 
14 270 (-)-gallocatechin –  304.98 179.0, 124.98 [44] 
15 254,352 myricitrin –  462.9 316.99 [45] 
16 255,347 quercetin –  301.0 179.0, 151.0 [43,42,38] 
17 250,354 hyperoside –  463.0 300.9, 270.9, 254.9 [38] 
18 255,355 rutin –  609.0 301.1, 270.9, 178.7 [41] 
19 257,356 quercitrin –  447.0 301.0, 179.0, 151.0 [42,41] 
20 257,356 isoquercitrin –  447.0 301.0, 179.0, 151.0 [43,41] 
21 256,354 guaiaverin –  432.9 270.9, 300.9 [46] 
22 266,348 kaempferol 3-O-rutinoside –  592.9 254.9, 284.8 [46] 
23 264,346 astragaline –  446.9 226.98, 254.9, 285.1 [46] 
24 254,343 isorhamnetin-3-O- 

glucoside 
–  476.9 313.96, 242.8 [46] 

25 254,354 narcissin + 624.9 85.1, 316.9, 478.9 [46] 
Flavone 26 268,338 apigenin + 271.0 227.0, 151.0 [42] 

27 270,335 acacetin + 285.0 153.0 [49] 
28 267,345 diosmetin + 301.0 153.0, 111.0, 255.0, 

257.0 
[50] 

29 252,348 cynaroside –  446.9 107.0, 133.0, 284.8 [46] 
Isoflavone 30 260,327 genistein –  268.9 108.7, 132.9, 159.0 [41] 
Flavanone  31 283,327 hesperidin –  609.0 301.0 [41] 

32 270,350 isovitexin –  430.9 280.9, 253.0 [48] 
33 270,334 cosemetin –  430.9 268.9 [47] 

Anthocyanidin 34 276,530 cyanidin + 286.9 109.1, 137.0 [51] 
Procyanidin 35 280 procyanidin B2 –  576.9 288.99, 406.9 [46] 
Stilbene 36 282,308 trans-piceid + 391.1 229.1, 135.0 [37]  

37 – unknown –  469.3 417.3, 371.2, 315.3, 
217.1   

38 – unknown –  747.4 471.2, 419.3, 373.4   
39 – unknown –  952.9 872.3, 619.1, 277.4   
40 – unknown –  944.9 625.1, 485.3, 355.1, 299.4, 281.0   
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− H − 150 − CO]− as reported by Pereira et al. [48], which has a 
different fragmentation pathway with its isomer apigenin-7-O-glucoside 
(cosemetin). Apigenin (peak 26) was characterized by the protonated 
ion [M + H]+ at m/z 271.0 and product ions m/z 227.0 and 151.0 [42]. 
Acacetin (peak 27) and diosmetin (peak 28) were respectively observed 
as protonated ions [M + H]+ at m/z 285.0 and 301.0, with the same 
product ion at m/z 153.0 corresponding to the retro Diel-Alder cleavage 
of C-ring [49,50]. Genistein (peak 30) was characterized by the parent 
ion [M − H]− at m/z 268.9 and product ion at m/z 132.9, consistent with 
MS data from Mattonai et al. [41]. Cyanidin (peak 34), a typical 
anthocyanidin, was identified by the deprotonated ion [M − H]− at m/z 
286.9 and product ions corresponding to fragments [M − H − 150]− and 
[M − H − 150 − CO]− [51]. Cai et al. [19] found that leaves and stems of 
P. scandens were rich in anthocyanin. Procyanidin B2 (peak 35) was 
identified by the deprotonated ion [M − H]− at m/z 576.9 and product 
ion at m/z 288.99 corresponding to loss of the (epi)catechin entity [46]. 
Trans-piceid (peak 36) was identified by its loss of glucoside to form 
resveratrol and further assigned by comparison with retention time of 
trans-piceid standard [37]. 

3.4.3. Quantification of individual polypenolic compounds by UHPLC-MS 
As shown in Table 8, the number and contents of individual poly

phenolic compounds obtained by DES-UAE and other methods varied 
considerably. There were 30 individual polyphenolic compounds in the 
extracts obtained by DES-UAE and MetOH-UAE, followed by EtOH-UAE 
(29 compounds) and W-UAE (25 compounds). 

Moreover, the highest sum of individual flavonoid content and sum 
of individual polyphenolic compound content were obtained by DES- 
UAE, which were 1.16-fold and 1.13-fold higher than those obtained 
by W-UAE, respectively (p < 0.05). However, the highest sum of indi
vidual phenolic acid content was obtained by W-UAE, followed by DES- 
UAE, MetOH-UAE, and EtOH-UAE in sequence (p < 0.05). 

Among phenolic acid compounds, 2-hydroxybenzoic acid, proto
catechualdehyde, p-coumaric acid, ferulic acid, caffeic acid and trans- 
cinnamic acid were extracted by all methods. The first five were the 
main components of phenolic acids, and the sum of their contents 
ranged from 94.54% to 96.96% of the sum of individual phenolic acid 
content. The 2-hydroxybenzoic acid content differed among the extracts 
obtained by different extraction methods and ranged from 38.88 ± 0.79 
to 44.26 ± 1.26 μg/g DW. Compared with DES-UAE, W-UAE showed an 
insignificant 2-hydroxybenzoic acid content (p > 0.05), but the others 
showed significantly lower 2-hydroxybenzoic acid contents (p < 0.05). 
2-hydroxybenzoic acid accounted for 66.28%–72.19% of the sum of 
individual phenolic acid content and 4.66%–5.52% of the sum of indi
vidual polyphenolic compound content. Bordoloi et al. [8] reported that 
phenolic acid compounds identified by HPLC-DAD from the ethanolic 
extract of P. scandens accounted for 100% of the sum of individual 
polyphenolic compound content, whereas the flavonoid compounds 
accounted for 0%. 

Among flavonoid compounds, hyperoside, rutin, quercitrin, iso
quercitrin, guaiaverin, kaempferol-3-O-rutinoside, astragaline, narcis
sin, apigenin, diosmetin, and cyanidin were extracted by all methods. 
Rutin, guaiaverin, kaempferol-3-O-rutinoside, narcissin were the main 
components of flavonoid compounds and the sum of their contents 
accounted for 88.17%–94.67% of the sum of individual flavonoid con
tent and 79.95%–88.40% of the sum of individual polyphenolic com
pound content. These results revealed that rutin, guaiaverin, 
kaempferol-3-O-rutinoside, and narcissin were the main polyphenolic 
compounds of P. scandens. The highest rutin content was found in the 
extracts obtained by DES-UAE, followed by W-UAE, EtOH-UAE, and 
MetOH-UAE (p < 0.05). While the highest guaiaverin content was found 
in the extracts obtained by DES-UAE, EtOH-UAE, and MetOH-UAE (p >
0.05). There was no significant difference in kaempferol-3-O-rutinoside 
content among the extracts obtained by all extraction methods (p >
0.05). The highest narcissin content was found in the extracts obtained 
by DES-UAE and W-UAE (p > 0.05). 

Table 8 
Quantitation of individual polyphenolic compounds in P. scandens by UHPLC- 
MS.  

Compounds Content (μg/g DW) 
DES-UAE W-UAE EtOH- 

UAE 
MetOH- 
UAE 

vanillic acid 1.64 ±
0.11a 

2.01 ±
0.13b 

ND 1.80 ±
0.10ab 

vanillin 0.36 ±
0.02a 

0.42 ±
0.02b 

0.40 ±
0.02ab 

0.42 ±
0.01b 

2-hydroxybenzoic acid 42.20 ±
1.58b 

44.26 ±
1.26b 

38.88 ±
0.79a 

39.58 ±
0.26a 

protocatechualdehyde 1.92 ±
0.18b 

2.98 ±
0.12c 

1.42 ±
0.05a 

2.10 ±
0.08b 

ethyl gallate ND ND 0.12 ±
0.01 

ND 

p-coumaric acid 4.78 ±
0.19a 

9.80 ±
0.23c 

5.46 ±
0.26b 

5.82 ±
0.22b 

ferulic acid 5.28 ±
0.28b 

0.86 ±
0.04a 

4.76 ±
0.37b 

7.40 ±
0.25c 

caffeic acid 2.56 ±
0.20b 

5.64 ±
0.21c 

1.70 ±
0.10a 

1.56 ±
0.08a 

trans-cinnamic acid 0.70 ±
0.04ab 

0.62 ±
0.04a 

0.72 ±
0.02b 

0.64 ±
0.02a 

rosmarinic acid 0.40 ±
0.02a 

ND 0.40 ±
0.02a 

0.40 ±
0.02a 

Number of phenolic acids 9 8 9 9 
Sum of individual phenolic 

acid content 
59.84 ±
1.50b 

66.58 ±
1.45c 

53.86 ±
1.25a 

59.72 ±
0.83b 

catechin 0.16 ±
0.01b 

ND 0.10 ±
0.01a 

0.16 ±
0.01b 

epicatechin 0.38 ±
0.01a 

ND 0.48 ±
0.02b 

0.50 ±
0.02b 

(-)-epigallocatechin ND ND ND 0.36 ±
0.02 

(-)-gallocatechin 0.10 ±
0.003c 

0.06 ±
0.002a 

0.08 ±
0.002b 

0.06 ±
0.002a 

myricitrin 0.70 ±
0.03a 

ND 0.88 ±
0.04b 

0.86 ±
0.04b 

quercetin 0.88 ±
0.03b 

0.06 ±
0.003a 

1.88 ±
0.16d 

1.04 ±
0.06c 

hyperoside 12.98 ±
0.55b 

10.96 ±
0.46a 

13.42 ±
0.52b 

13.38 ±
0.39b 

rutin 582.76 ±
13.69c 

472.66 ±
9.89b 

438.08 ±
11.23a 

427.68 ±
14.68a 

quercitrin 9.34 ±
0.34b 

3.62 ±
0.16a 

10.54 ±
0.42c 

10.22 ±
0.41c 

isoquercitrin 10.84 ±
0.35b 

8.90 ±
0.35a 

10.90 ±
0.41b 

11.04 ±
0.46b 

guaiaverin 56.48 ±
3.02b 

9.32 ±
0.41a 

54.62 ±
1.56b 

55.5 ±
2.59b 

kaempferol 3-O-rutinoside 108.00 ±
6.25a 

109.96 ±
5.65a 

101.82 ±
3.65a 

100.08 ±
5.26a 

astragaline 2.64 ±
0.12a 

2.48 ±
0.13a 

2.66 ±
0.15a 

2.58 ±
0.10a 

isorhamnetin-3-O-glucoside 0.22 ±
0.01b 

0.68 ±
0.03c 

ND 0.16 ±
0.01a 

narcissin 53.36 ±
1.58b 

49.46 ±
1.99a 

47.88 ±
1.56a 

49.34 ±
1.85a 

apigenin 0.34 ±
0.02c 

5.84 ±
0.20d 

0.26 ±
0.01b 

0.18 ±
0.01a 

acacetin 0.04 ±
0.002 

ND ND ND 

diosmetin 4.40 ±
0.14b 

41.00 ±
1.36c 

4.40 ±
0.16b 

3.34 ±
0.12a 

cynaroside 0.18 ±
0.01a 

ND 0.34 ±
0.02b 

0.72 ±
0.02c 

genistein ND 0.24 ±
0.01 

ND ND 

hesperidin ND 0.90 ±
0.02 

ND ND 

isovitexin ND ND 0.06 ±
0.002 

ND 

cosemetin 0.38 ±
0.01b 

ND 0.46 ±
0.01c 

0.16 ±
0.01a 

cyanidin 1.48 ±
0.07a 

11.30 ±
0.21d 

5.94 ±
0.15c 

1.92 ±
0.10b 

(continued on next page) 
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Typically, the polyphenol profiles depend on extraction methods, 
including extraction solvents, assisted extraction technology, and 
extraction parameters used. Traditional and eco-friendly solvents 
coupled with/without UAE gave significant different polyphenolic 
compositions of Morinda citrifolia L. leaves [24,27]. Su et al. [30] found 
that different extraction solvents and different extraction methods 
contributed to the variations of free and bound polyphenol profiles of 
litchi pulp, respectively. The present study found that polyphenol pro
files of P. scandens among all extraction methods were greatly different, 
which was consistent with the previous studies [23,29,30]. The differ
ence in polarity of extraction solvents mainly contributed to variations 
of polyphenol profiles, as well as TFC and antioxidant capacity of the 
extracts [23,27,29,30]. In the present study, with the same assisted 
extraction technology UAE and the identical extraction parameters, four 
extraction solvents (ChCl-EG, ultrapure water, 80% ethanol and 70% 
methanol) showed different polyphenol profiles of P. scandens, along 
with varying TFC and antioxidant activities, demonstrating the impor
tant effect of extraction solvents on extraction efficiency for poly
phenols. Compared to ultrapure water, 80% ethanol and 70% methanol, 
ChCl-EG had a different polarity, and a strong hydrogen-bond basicity, 
effectively facilitating intermolecular interactions between DESs and 
cellulose strands of plants [25,26,27]. Among all extraction methods, 
DES-UAE exhibited the highest sum of individual flavonoid content and 
sum of individual polyphenolic compound content, as well as highest 
TFC and FRAP value, indicating that DES-UAE was more efficient than 
other methods. Moreover, UAE, considered as a green extraction tech
nology, played a pertinent role in improving extraction rates of phyto
chemicals by disrupting the cell-wall structure of plants using acoustic 
cavitation [28,27,22]. Therefore, the ChCl-EG coupled with UAE was 
efficient in extracting polyphenols from P. scandens. 

4. Conclusions 

The present study revealed significant differences in the TFC and 
antioxidant activities among the 16 DESs coupled with UAE, and 
wherein choline chloride chloride and ethylene glycol at a 1:2 M ratio 
showed the highest extractability. DES-UAE optimization using a two- 
level factorial experiment followed by response surface methodology 
revealed the optimum parameters (water content in DES of 49.2%, the 
actual ultrasonic power of 72.4 W, and ultrasonic time of 9.7 min). The 
experimental TFC and antioxidant capacity closely matched the pre
dicted results. Furthermore, there were significant differences in TFC, 
antioxidant capacity, and ployphenol profiles among DES-UAE and 
other extraction methods. 30 individual polyphenolic compounds were 
found in the extracts obtained by DES-UAE. Additionally, DES-UAE 
showed the highest sum of individual polyphenolic compound 

content, as well as the highest TFC and FRAP value. These results 
revealed the high extractability of DES-UAE. 
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