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Abstract

Individuals routinely differ in how they present with psychiatric illnesses and in how they 

respond to treatment. This heterogeneity, when overlooked in data analysis, can lead to 

misspecified models and distorted inferences. While several methods exist to handle various 

forms of heterogeneity in latent variable models, their implementation in applied research requires 

additional layers of model crafting, which might be a reason for their underutilization. In response, 

we present a robust estimation approach based on the expectation-maximization (EM) algorithm. 

Our method makes minor adjustments to EM to enable automatic detection of population 

heterogeneity and to recognize individuals who are inadequately explained by the assumed model. 

Each individual is associated with a probability that reflects how likely their data were to have 

been generated from the assumed model. The individual-level probabilities are simultaneously 

estimated and used to weight each individual’s contribution in parameter estimation. We examine 

the utility of our approach for Gaussian mixture models and linear factor models through several 

simulation studies, drawing contrasts with the EM algorithm. We demonstrate that our method 

yields inferences more robust to population heterogeneity or other model misspecifications than 

EM does. We hope that the proposed approach can be incorporated into the model-building 

process to improve population-level estimates and to shed light on subsets of the population that 

demand further attention.

Keywords

population heterogeneity; latent variable modeling; robust estimation

Population heterogeneity of psychiatric illness complicates the effort to understand disease 

mechanisms and to treat individuals. Individual differences in clinical presentations, 

backgrounds and experiences, underlying causes, and treatment responses contribute to 

the complexity (Allsopp et al., 2019; Lanius et al., 2006; LeGates et al., 2019; Sonuga-

Barke, 2002). As an example, with over 227 ways to meet the DSM-5 criteria for major 
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depressive disorder, two individuals can be diagnosed with major depressive disorder 

without sharing any common symptoms (Zimmerman et al., 2015). This calls into question 

what generalizations one might be able to make regarding this disorder. Clinical features 

of major depressive disorder might differ across the population with some individuals 

enduring loss of appetite and disrupted sleep, while others experience weight gain and 

hypersomnia. (Goldberg, 2011; Lux & Kendler, 2010). On top of this, we know that cultural 

context can shape how a person perceives and communicates their symptoms (James & 

Prilleltensky, 2002; Kleinman, 2004). Disentangling the variations of psychiatric disorders 

across the population could have substantive implications for our ability to understand 

causal risk factors and to personalize treatments (Ballard et al., 2018; Nandi et al., 2009). 

Yet, many analyses of psychological data are not designed to handle the numerous forms 

of heterogeneity in the sampled population, which can lead to erroneous inferences. In 

this paper, we introduce a straightforward modification of certain standard analyses that 

automatically detects and respects population heterogeneity in an effort to recover more 

robust inferences.

We focus on analyses based on latent variable models, a cornerstone of psychological 

data analysis (c.f., Bauer & Curran, 2004; Croon & van Veldhoven, 2007; B. O. Muthén 

& Curran, 1997; Russell et al., 1998). There are many different classes of models 

that are recognized as latent variable models. Latent profile analyses and finite mixture 

models reveal underlying subgroups within a sample that share similar characteristics. 

Factor analyses, in which a few latent factors explain how item responses covary, help 

explore and confirm conceptual models of how well target psychological domains are 

measured by a psychological assessment. Similarly, latent growth models, item response 

theory, and structural equation models use latent variables to explain complex patterns of 

multidimensional observations.

Even though methods and models are available, accounting for heterogeneity within 

psychological data sets has yet to become ingrained within the daily practice of 

psychological research. Perhaps this can be partially attributed to the uncertainty in 

what sources of heterogeneity should be included in the latent variable model and to 

the complexity of the methods required to analyze latent variables within heterogeneous 

populations. Despite efforts to account for heterogeneity, the final model can still be 

misspecified. Measurement error caused by careless responses might compromise the 

quality of the data (Meade & Craig, 2012). Furthermore, unobserved heterogeneity can 

be difficult to assess in latent variable settings. Model fit diagnostics might fail to reveal 

poor model fit (Kelderman & Molenaar, 2007; Lai & Green, 2016; Savalei, 2012), and 

structural equation mixture modeling might lead to the detection of spurious latent classes 

among other issues (Bauer & Curran, 2004). To address some model fitting concerns, model 

diagnostic techniques, such as the outlier detection technique for factor analysis presented in 

Mavridis and Moustaki (2008), have been put forward.

Robust estimation offers another path to addressing population heterogeneity and other 

model misspecifications in latent variable modeling. In general, robust estimation techniques 

seek to provide inferences that are less sensitive than standard estimation techniques to 

deviations from model assumptions (Hampel et al., 2011). These techniques might be used 
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on their own or, when combined with information about model misfit, these techniques can 

be incorporated into the model-building process. In latent variable settings, the expectation-

maximization (EM) algorithm is commonly used to perform maximum likelihood estimation 

(Dempster et al., 1977). Along with having certain mathematical properties, EM is often 

easy to implement and available in software packages such as MPlus (L. Muthén & Muthén, 

2016) and lavaan (Rosseel, 2012). Our proposed method, which we call REM (robust 

expectation-maximization), modifies EM in a way that addresses population heterogeneity.

REM incorporates iteratively re-estimated weighting into the EM algorithm to achieve 

estimates that are robust to model misspecifications. The estimated weights are probabilistic 

measures of model fitness and provide information on which data fit the model well and 

which data do not fit well. We recommend that this information be leveraged to assess 

heterogeneity within a data sample and inform future model-building efforts. In what 

follows, we set the stage with a formal background that provides necessary mathematical 

framing and motivates robust estimation. We present REM, its properties, and its relation 

to existing methods. Then, we apply REM to two commonly used latent variable models: 

Gaussian mixture models and linear factor models. We examine the robustness of our 

method relative to the EM algorithm through several simulation studies and conclude with a 

discussion of the benefits and limitations of REM.

Background

We start by considering multivariate data, x1, …, xN, collected from N individuals. We 

propose a parametric model with unknown parameters θ ∈ Θ to describe how these data were 

generated; our interest is to estimate the values of the parameters given the observed data. 

We focus on parametric models that describe each data point as an independent realization 

of a random variable X that depends on a latent random variable Z. Simulation studies in this 

paper focus on two classes of latent variable models, mixture models and common factor 

models, but the concepts could be extended to other classes of models as well.

Maximum likelihood estimation is frequently employed to estimate unknown parameters θ. 

This approach searches for an estimate, denoted by θ , that maximizes the likelihood—or 

equivalently the log-likelihood—of observing the data under the assumed model (Casella 

& Berger, 2002). The maximum likelihood estimate, for an independent and identically 

distributed sample x1, …, xN, can be expressed as

θ x1, …, xN = argmax
θ ∈ Θ

∑
n = 1

N
logfX ∣ θ xn ,

where fX ∣ θ( ⋅ ) is the marginal probability density function for X given parameters θ, under 

the assumed parametric model. For discrete X, a probability mass function is used instead. 

If the model is correct, and observed data x1, …, xN are indeed independent realizations of 

X, then the maximum likelihood estimator benefits from several statistical properties. Most 

importantly, there is no other estimator that has lower asymptotic mean squared error under 

the true model than the maximum likelihood estimator.
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For latent variable models, direct maximization can be computationally challenging or 

impossible. The EM algorithm was proposed as a procedure to perform maximum likelihood 

estimation for latent variable models using the complete-data likelihood, fX, Z ∣ θ( ⋅ , ⋅ ) rather 

than the incomplete-data likelihood, fX ∣ θ( ⋅ ) (Dempster et al., 1977). The key insight of EM 

is that any estimate that increases the function

Q(θ ∣ θ): = ∑
n = 1

N
EZ ∣ xn, θ logfX, Z ∣ θ xn, Z ,

over a current estimate θ , also increases the incomplete-data likelihood. Thus, one can 

improve upon an estimate θ  by maximizing the function Q( ⋅ ∣ θ). By repeatedly improving 

upon estimates until no more improvements can be made, EM can arrive at an estimate that 

(locally) maximizes the log-likelihood.

While maximum likelihood estimation, and hence EM, work well under ideal conditions, 

they are sensitive to departures in the data from model specifications (Moustaki & Victoria-

Feser, 2006). Consider a simple example of fitting a normal distribution to data, x1, …, xN, 

with unknown mean μ. The maximum likelihood estimate for μ is simply the empirical 

mean x1 + … + xN /N, which is equally sensitive to each data point. If we move one point 

from negative to positive infinity, the empirical mean also moves from negative to positive 

infinity. By contrast, the median, another measure of center, does not yield as easily: if we 

move one point from negative to positive infinity, the median stays within a bounded interval 

whenever N > 2. In other words, if we get the model wrong for one individual, then the 

maximum likelihood estimate for μ can deteriorate.

A single individual might be poorly described by the model, but more likely several 

individuals are not well represented by the model. For example, pregnant women might 

more readily endorse changes in appetite or sleep compared to non-pregnant women. 

Accordingly, factor model parameters could differ between the two groups. This discrepancy 

is a violation of measurement invariance (Mellenbergh, 1989). Measurement invariance can 

be expressed mathematically as

fX ∣ Z, C(x ∣ z, c) = fX ∣ Z(x ∣ z)

where X denotes the observed variables, Z denotes a latent variable underlying X, and 

C denotes a possible unobserved or observed source of heterogeneity, such as pregnancy 

status. Put another way, measurement invariance requires that the observed response X 
is independent of possible sources of heterogeneity conditional on the latent variable Z. 

Lack of measurement invariance—referred to as differential item functioning—can have 

implications for latent variable interpretation. If differential item functioning is present, 

biased estimates could ensue without proper incorporation of this variation in the model.
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Robust Expectation-Maximization

Robust estimation was developed to reduce the influence of violations in modeling 

assumptions on estimation. Considering numerous textbooks (Hampel et al., 2011; Huber, 

2004) and reviews (Dixon & Yuen, 1974; Wilcox & Keselman, 2003) are devoted to the 

subject, a comprehensive treatment of robust estimation is beyond the scope of this paper. 

We highlight a class of estimators, known as M-estimators, that search for a maximum of a 

function of the form:

∑
n = 1

N
ρ xn, θ ,

which for certain ρ amounts to solving an estimating equation:

∑
n = 1

N
ψ xn, θ = 0,

where ψ(x, θ) = ∇θρ(x, θ). The maximum likelihood estimator is an M-estimator with 

ρ(x, θ): = logfX ∣ θ(x) and ψ(x, θ) equal to the score function ∇θlogfX ∣ θ(x). To yield a robust 

M-estimator, transformations can be applied to the likelihood or score function; several 

approaches have been presented the literature (Basu et al., 1998; Eguchi & Kano, 2001; 

Fujisawa & Eguchi, 2006; Markatou, 2000; Neykov et al., 2007; Wang et al., 2017; 

Windham, 1995). One of the challenges is that the distribution of the noise process is 

generally unknown.

Building on these ideas, we propose an M-estimator that uses the likelihood, is robust 

to model misspecification, and lends itself to a modified EM procedure for estimation. 

Instead of assuming that all data were generated from the same probability model and are 

measured without error, we allow observed data to have been generated from our model 

fX ∣ θ(x) with probability γ and from some other distribution with probability (1 − γ). To allow 

for generality, we assume no knowledge of this other distribution—otherwise we could 

incorporate this information into our model fX ∣ θ(x)—and replace its likelihood with a fixed 

value ϵ that is independent of unknown parameters θ. This idea builds on Fraley and Raftery 

(1998), which suggests adding a component to a mixture model that captures a uniformly 

distributed noise process. Several concerns were raised about its robustness (Hennig et al., 

2004). The issue, in part, is that the volume V can go off to infinity in unbounded domains, 

and hence 1/V goes to zero—returning us right back to maximum likelihood estimation. We 

sought to leverage the benefits of adding a uniform distribution without these drawbacks. 

Critically, ϵ is not a proper likelihood, since we do not presume ϵ integrates to 1 over 

the domain. Alternatively, ϵ serves as a hyperparameter that is used to tune our estimation 

(discussed later). With this viewpoint, we alter the objective function that is maximized 

under maximum likelihood estimation as follows:
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∑
n = 1

N
log fX ∣ θ xn ∑

n = 1

N
log γfX ∣ θ xn + (1 − γ)ϵ .

The new expression is no longer a likelihood function itself but rather a transformation 

of the likelihood function of interest. The substitution allows for flexibility under model 

misspecification. We focus on maximizing this objective function to achieve REM estimates.

Maximizing the objective function leads to the estimating equations:

∑
n = 1

N
p xn; θ, γ ∇θlogfX ∣ θ xn = 0,

1
N ∑n p xn; θ, γ − γ

γ(1 − γ) = 0,

where

p(x; θ, γ) = γfX ∣ θ(x)
γfX ∣ θ(x) + (1 − γ)ϵ .

The first of the two estimating equations is similar, in form, to the weighted likelihood 

equations in Markatou et al. (1998). However, here, the weights p(x; θ, γ) afford an 

interpretation within the modified likelihood framework. Namely, the weights describe the 

probability that a data point was generated from the specified model fX ∣ θ.

With some manipulation, the objective function can be rewritten as a weighted sum 

containing the expression for the log-likelihood. From here, an estimation procedure can 

be derived from arguments similar to those used to justify the EM algorithm (detail in 

Appendix A). Conveniently, terms involving parameters θ and terms involving γ can be 

separated and maximization steps derived independently. The result is the following set of 

interconnected steps:

θ argmax
θ ∈ Θ

∑
n = 1

N
pnEZ ∣ xn, θ logfX, Z ∣ θ xn, Z (1)

γ 1
N ∑

n = 1

N
pn (2)

pn
γfX ∣ θ xn

γfX ∣ θ xn + (1 − γ)ϵ , for n = 1, …, N (3)
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We iteratively update estimates θ  and γ  and probabilistic weights pn until suitable 

convergence is achieved. Relative to the EM algorithm, we need to solve a weighted version 

of the maximization step, calculate a mean to get γ , and calculate new weights pn.

The benefit of our approach rests on two things: its computational facility and the 

information it provides regarding individual-level model fit. As we will show for Gaussian 

mixture models and linear factor analysis, only minor adjustments to the EM procedure are 

needed. In addition to model parameter estimates, the REM procedure produces an estimate 

of the overall probability that individuals are represented by the original parametric model 

(γ) and an estimate of the probability that a given individual is represented by the model pn . 

This information can reveal both the presence of sample heterogeneity and highlight who 

might be poorly represented by the model.

Robustness

As demonstrated above, the modification of the likelihood function leads to a robust M-

estimator. Compared to maximum likelihood estimation, the contribution of each data point 

to the estimating function for θ is weighted by p(x; θ, γ). Critically, these weights can down-

weight any data points that are unlikely under the model fX ∣ θ(x); weights approach zero 

as fX ∣ θ(x) goes to zero or as ϵ tends to positive infinity. Robustness is formally measured 

in terms of properties of the influence function, a functional derivative that measures how 

much an estimator changes when changing the distribution from the true model in the 

direction of a point mass at x (Huber, 2004). Since robustness has been well-characterized 

for M-estimation, we point out only that the influence function is proportional to the 

estimating function. Thus, the influence function benefits from the weights in the estimating 

function, ensuring our estimator is not strongly influenced by a single data point.

Tuning the hyperparameter

The REM procedure requires a pre-specified parameter ϵ, which we refer to as a 

hyperparameter. The hyperparameter ϵ acts as a tuning parameter for the sensitivity of 

parameter estimation to individual data points. Recall that the hyperparameter is standing 

in for a likelihood value, so it must take a non-negative value. When ϵ = 0, estimates of 

the weights pn are one, and estimates of model parameters, θ, from EM and REM coincide. 

As ϵ increases, estimated weights move away from unity toward zero. As weight estimates 

approach zero, effectively none of the data provides information to estimate the model 

parameters.

We propose a search for the largest ϵ that satisfies the following inequality

EX ∣ θ[p(X; θ, 0.9)] ≥ 1 − δ (4)

where δ is a hyperparameter that effectively replaces the role of ϵ. While ϵ is on a similar 

scale as the likelihood, the hyperparameter δ will always lie between 0 and 1. Recall that 

p(X; θ, 0.9) can be interpreted as the posterior probability that a data point X drawn from 

a heterogeneous sample was generated by the model fX ∣ θ(x) when, on average, 10% of 

the data were generated by another process. Naturally, we would like data drawn from 
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fX ∣ θ(x) to be considered likely to be drawn from this model. Assuming this with certainty, 

p(X; θ, 0.9) = 1, requires ϵ to be zero resulting in a lack of robustness. Alternatively, if we 

let p(X; θ, 0.9) deviate too much from one, then we down-weight data points that could help 

estimate θ resulting in a loss of efficiency. The inequality above attempts to strike a balance 

between these two competing goals by placing a lower bound on the expected value of this 

probability. In the end, the choice of δ should reflect how the researcher prefers to strike that 

balance.

The parameter δ can be thought of in a similar way as the significance level α in hypothesis 

testing, which specifies the probability of a Type 1 error. That is, δ captures the researcher’s 

tolerance of incorrectly down-weighting data from the model. Researchers with a low 

tolerance could choose lower values of δ compared to researchers with a higher tolerance for 

down-weighting data points. For example, small δ (≈ 0.001) could protect against extreme 

outliers without sacrificing too much efficiency. Large δ (≈ 0.05 as we use in all our 

simulations) could help identify and protect against sample heterogeneity and other model 

violations at the expense of a loss of efficiency. Empirical work will be needed to determine 

appropriate ranges for specifying δ.

While there may be other approaches to selecting ϵ, we draw attention to several challenges. 

Our modified likelihood increases monotonically with ϵ; setting ϵ to infinity would 

maximize the modified likelihood. Thus, the modified likelihood does not provide a suitable 

measure of model fit to guide selection of ϵ. More broadly, it is unclear whether ϵ should 

be chosen on the basis of model fit, given that we presume that not all data in our sample 

were generated from the same model. For example, if Akaike Information Criteria (AIC) 

(Akaike, 1974) or Bayesian Information Criteria (BIC) (Schwarz et al., 1978) were used, 

then ϵ should be zero in order to recover the maximum likelihood estimator. Further, REM 

does not indicate what model is appropriate for data that poorly fit the original likelihood; 

no model is ever investigated for these data with ϵ used instead. This hinders the use of 

cross-validation, which is often recommended when selecting hyperparameters but requires 

a measure of model fit or model prediction error upon which to evaluate generalizability. 

None of these challenges are unique to our method, as many robust estimation approaches 

include a hyperparameter and require various heuristics for selecting the hyperparameter. 

Similarly, we take a heuristic approach that makes use of our interpretation of the weights 

and leads to sensible results.

Model Selection

Researchers are often interested in selecting a model fX ∣ θ(x) among several choices. These 

choices might differ by the number of specified factors in a factor analysis or the number of 

groups in a mixture model. Our goal with robust estimation is to fit a model that captures the 

structure among the majority of the data in the sample, rather than all the data necessarily, so 

we recommend using a measure of model fit that reflects this goal. For the reasons described 

above, tuning ϵ based on standard measures of model fit (e.g., AIC or BIC) would not reflect 

our goal as they would tend to favor models with small values of ϵ. However, once ϵ is tuned 

for each candidate model fX ∣ θ(x), we suggest that one can utilize likelihood-based measures 

of model fit, such as AIC or BIC, to guide model selection. These measures would need to 
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be evaluated at parameters estimated by REM instead of the maximum likelihood parameter 

values. This adjustment and how we tune ϵ helps ensure that model selection will depend on 

how well the model fits the majority of the data rather than the full sample. We will use this 

approach to guide model selection in our simulations.

Connection to other M-estimators

In addition to the aforementioned approaches in Fraley and Raftery (1998) and Markatou 

et al. (1998), our approach bears similarities to other robust estimation approaches. For 

example, Eguchi and Kano (2001) works with a transformation Ψ of the log-likelihood 

function but unlike our approach, they include a term bΨ(θ) to correct for bias in the estimator 

under the true model:

ρ(x, θ): = Ψ logfX ∣ θ(x) − bΨ(θ) .

Proposed transformations Ψ(x) include log-logistic function log(x + η) (Eguchi & Kano, 

2001), which has a similar form to our transformation of the likelihood, and a power 

function 1
β fX ∣ θ(x)β (Basu et al., 1998; Fujisawa & Eguchi, 2006). A power function is also 

used in Ferrari, Yang, et al. (2010) but with the bias correction term dropped, as we do. 

Dropping this term simplifies estimation, since this term is usually expressed as an integral 

without a closed form solution. The associated estimating equation becomes

∑
n = 1

N
fX ∣ θ xn

β ∇θlogfX ∣ θ xn = 0.

By tuning β, data points can be down-weighted if they are poorly represented by the model. 

Robust estimates can be obtained, but estimation is not a simple extension of EM.

In the specific case of a mixture of regression models, Bai et al. (2012) proposed that one 

could directly replace the M-step in the EM algorithm with a robust criterion instead of 

modifying the likelihood function. The authors note connections to weighted least squares 

estimation with iterative reweighting; however, weights do not carry the interpretation as 

probabilities of being generated from the model.

While we focus on M-estimators for situations when a researcher wants to specify a 

probability model (i.e. likelihood), it is important to recognize M-estimators that are not 

based on a likelihood function. In latent variable settings, the mean and the covariance 

matrix might be the only objects of interest. One can formulate SEMs as regression 

models and propose structural models for the first and second moments of the data without 

specifying a probability model for the error (Yang et al., 2012; Yuan & Bentler, 1998, 

2007). Rather than minimizing the sum of squared errors, approaches like iteratively 

reweighted least squares with researcher-specified weighting functions can be used to 

estimate parameters while down-weighting outliers.

In light of these existing M-estimators, we view the contribution of our approach is its 

combined ability to:
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1. Recover likelihood-based estimates that are robust to sample heterogeneity and 

other violations of modeling assumptions.

2. Incorporate easily in latent variable settings due to its similarity to EM.

3. Return meaningful information about population heterogeneity in the form of an 

estimate of the overall probability that individuals are represented by the original 

parametric model (γ) and an estimate of the probability that a given individual is 

represented by the model pn .

Robust Mixture Modeling

Mixture modeling is a common approach for breaking down a sample into distinct groups 

based on observed variables such as individual behavior, symptoms, and/or physiology. 

After collecting self-ratings of depressive symptoms within a sample of individuals with 

major depressive disorder or bipolar disorder, we could use a mixture model to determine if 

the sample divides along diagnostic groups based on their depressive symptoms. Formally, 

we collect a vector of P observations from a sample of N individuals: x1, …, xN . Each 

individual in the sample is modeled as belonging to one of K underlying subgroups with 

their observations assumed to be drawn from a known distribution, typically multivariate 

normal, that depends on their group membership.

Applying EM to obtain estimates for parameters of a Gaussian mixture model would involve 

repeatedly updating estimates of covariance matrices Σk, means μk, and mixture proportions 

πk associated with each latent phenotype (List 1; derivations can be found in Appendix B). 

These estimates are simply weighted versions of empirical covariance matrices, means, and 

proportions with weights ωnk—which can be

List 1:

Comparison of the main updates for Gaussian mixture models using EM vs. REM.

EM REM

Σk
∑n ωnk xn − μk xn − μk

′

∑n ωnk
Σk

∑n pnωnk xn − μk xn − μk
′

∑n pnωnk

μk
∑n ωnkxn

∑n ωnk
μk

∑n pnωnkxn

∑n pnωnk

πk
1
N ∑

n = 1

N
ωnk πk

∑n pnωnk

∑n pn

interpreted as posterior probabilities of individual n belonging to latent phenotype k 
conditional on current estimates. Applying REM, we arrived at a slightly modified 

estimation procedure (List 1; derivations can be found in Appendix B). Other than the 

two additional REM updates (i.e. γ  in Eq. 2 and pn in Eq. 3), the only change was to replace 

weights ωnk with pnωnk which allowed for fitted parameters to be robust to outliers.
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In the following subsections, we draw contrasts between how EM and REM performed in 

simulated scenarios of data heterogeneity. For concreteness and to enable easy visualization, 

we analyzed samples of individuals each contributing two observations, which might 

correspond to two psychological domains A and B (e.g., subscores on a positive and 

negative affect scale). Simulations were performed in MATLAB; source code can be 

found at: https://github.com/knieser/REM. Short descriptions of simulations can be found 

in Appendix D.

Scattered Minority Group

For context, suppose that most individuals fall into one of two distinct groups based on 

measurements of Domains A and B. However, within the sample, there is a minority group 

of individuals who are not characterized well by either of these two groups. This minority 

group might have a different underlying illness or might have more poorly measured 

responses. For example, a sample of individuals with major depressive disorder or bipolar 

disorder might include a minority group of misdiagnosed borderline patients or a minority 

group of individuals who answer survey questions at random, yielding faulty measurements. 

In either case, the minority group is not well-described by either of the two majority 

subgroup models. We conducted two simulation studies of such data, each with a sample 

size of 1000. Data from the two predominant majority groups were simulated from skewed 

bivariate Normal distributions with probabilities 0.70 and 0.20 and skew parameter set to 

0.5. Minority group data were simulated with probability 0.10 from a bivariate Beta random 

vector scaled to cover the relevant domain. Further simulation specifications can be found 

in Appendix D. The REM hyperparameter was selected based on the heuristic method 

described with δ = 0.05.

In Example 1, EM resulted in visibly inaccurate models for the two majority groups, 

because it tried to fit the scattered minority group into one of the two majority groups 

(Figure 1). By contrast, REM resulted in more accurate models for the majority groups, 

because it used pn to down-weight the scattered minority group during model estimation. 

The REM estimated parameters for the smaller latent group align more closely with the true 

underlying sample estimates (Table E1). Comparing the estimated means and population 

means, the root mean square error (RMSE) was 0.44 based on the EM estimates and 0.03 

based on the REM estimates. We compared the Frobenius norm of the difference between 

the estimated and population covariance matrices. The norm difference was 1.69 for the EM 

estimated covariance matrix and 0.15 for the REM estimated covariance matrix. Estimated 

weights provided a mechanism for clearly differentiating individuals that fit the model well 

(majority groups) and those that were not well-described by the model (minority group) 

(Figure 2).

In Example 2, the two majority groups overlap (Figure 1). In one group, Domain A and 

B are positively correlated and in the other, Domain A and B are negatively correlated. 

Nonetheless, we found similar results to Example 1. REM yielded model estimates that 

more closely aligned with the two underlying groups compared to EM (Table E2); the REM 

estimated parameters were unperturbed by the minority group whereas the EM estimated 

parameters for one of the groups recovered was affected by the data from individuals in 
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the minority group. Comparing the estimated means and population means, the RMSE was 

0.39 based on the EM estimates and 0.06 based on the REM estimates. The norm difference 

between the estimated and population covariance matrices was 2.98 for the EM estimates 

and 0.22 for the REM estimates.

To further examine how EM and REM compare under other finite mixture scenarios, we 

include three additional examples in Appendix G. In short, when majority and minority 

groups both have large within-group variability, they can be more difficult to distinguish. In 

these situations, REM estimation will not necessarily outperform EM estimation in terms of 

the metrics we examined.

Determining the Number of Groups

Considering the previous two examples, if the minority individuals truly formed a separate, 

third group, a researcher might consider fitting three groups based on model fit criteria. 

On the other hand, if minority individuals are truly scattered or their observations poorly 

measured, their identification as a singular group might be spurious. However, various fit 

criteria might fail to suggest three groups or might disagree on the number of groups that 

would be appropriate. Model fit criteria, such as Akaike Information Criteria (AIC) (Akaike, 

1974) or Bayesian Information Criteria (BIC) (Schwarz et al., 1978), are generally used to 

select an appropriate number of groups. However, the AIC and BIC do not always agree 

and tend to perform well under different scenarios (Vrieze, 2012). Consequently, some 

judgement is needed to settle on the number of groups, which can influence what groups are 

identified.

For Examples 1 and 2, we computed AIC and BIC for models with K = 1, …, 9. In Example 

1, the minimum value of AIC was 7072.9 and the minimum value of BIC was 7303.5, 

both corresponding to K = 8. For comparison, values of the AIC were 8574.4, 7520.5, 

7253.2, 7198.1 and values of the BIC were 8598.9, 7574.5, 7336.7, 7311.0 for K = 1,2,3,4, 

respectively. In Example 2, the minimum value of AIC was 5946.4 corresponding to K = 8 

and the minimum value of BIC was 6133.9 corresponding to K = 6. Values of the AIC were 

7100.7, 6237.1, 6105.8, 6049.7, and values for BIC were 7125.3, 6291.1, 6189.2, 6162.6 for 

K = 1,2,3,4, respectively. The number of clusters K would be at least 6 in either example if 

we wanted to minimize AIC or BIC. There was not an indication, in either example, that K 
= 2 or K = 3 was the appropriate choice. Rather than attempting to force every individual 

toward a subgroup, REM allows for greater flexibility and recognizes that the designated 

model might not be appropriate for the entire sample.

As described above, we suggest using the AIC and BIC information criteria evaluated at the 

REM estimated parameter values, which we denote by AIC θREM  and BIC θREM , to select a 

model. For Example 1, we computed AIC θREM  values of 25958.2, 8896.3, 8888.6, 8985.0, 

9089.8 and BIC θREM  values of 25982.8, 8950.3, 8972.0, 9097.9, 9232.1 for K = 1,2,3,4,5, 

respectively. In Example 2, we computed AIC θREM  values of 12574.5, 7753.9, 8228.4, 

8134.6, 8375.6 and BIC θREM  values of 12599.0, 7807.9, 8311.9, 8247.4, 8517.9 for K = 

1,2,3,4,5, respectively. In Example 1, the K = 3 case provides the lowest AIC θREM  but the 
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K = 2 case provides the lowest BIC θREM . In Example 2, the K = 2 case provides the lowest 

AIC θREM  and lowest BIC θREM .

For further illustration, we simulated a sample of three distinct groups (Figure 3). Data 

were simulated from three different skewed bivariate Normal distributions with probability 

0.70, 0.20, and 0.10 and skew parameter set to 0.5 (further detail in Appendix D). Again, 

the REM hyperparameter was selected based on the heuristic method described with δ 
= 0.05. We obtained EM and REM parameter estimates for a varying number of groups 

K fit to the data. We found that the estimated means and covariances from EM moved 

around as the algorithm attempted to put every data point into one of the groups (Table E3). 

Estimated means were also unrepresentative of the observations if K was underspecified in 

that very few individuals were near the estimated means. By contrast, estimated means and 

covariances from REM were relatively more consistent when changing K in the following 

sense. Comparing the estimated means to the population means of the closest clusters, the 

RMSE was 1.05 based on the EM estimates and 0.07 based on the REM estimates when K = 

1. The norm difference between estimated and population covariance matrices of the closest 

clusters was 2.54 for the EM estimates and 0.08 for the REM estimates. In the case of K = 2, 

the RMSE was 0.60 based on the EM estimates and 0.07 based on the REM estimates. The 

norm difference between estimated and population covariance matrices was 1.60 for the EM 

estimates and 0.05 for the REM estimates. In the case of K = 3, the RMSE was 0.05 based 

on the EM estimates and 0.07 based on the REM estimates. The norm difference between 

estimated and population covariance matrices was 0.03 for the EM estimates and 0.05 for 

the REM estimates. In terms of these metrics, EM slightly outperformed REM when the 

number of latent groups was correctly specified, but REM provided estimates substantially 

closer to the underlying parameters when the number of latent groups was misspecified. 

While a suitable number of groups can easily be determined in this example by visually 

inspecting the data, we presented this example to give insight into how REM can provide 

estimates of underlying groups even if the number of latent groups is misspecified in the 

model.

Robust Factor Analysis

Factor analysis is a method for modeling correlations among observed variables as a result 

of underlying latent factors within individuals. For example, we might theorize that there is 

a latent psychological construct that explains observed correlations between symptoms of a 

psychiatric illness. Formally, in the linear factor model, we relate a P-dimensional vector of 

observations X to a K-dimensional latent variable Z, where P > K, in the following way

X = ΛZ + U

for some unknown P × K matrix Λ, referred to as the loading matrix or factor structure, and 

P-dimensional multivariate normal random variable U with mean 0 and unknown diagonal 

covariance Ψ. Typically, the factors in Z are referred to as common factors, while factors 

in U are referred to as unique factors. We can intuit U as an error term; U captures the 

additional variation in each observed variable in X that is not explained by one or more of 

the common factors represented in Z. We assume that U
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List 2:

Comparison of the main updates for factor analysis using EM vs. REM.

EM REM

Λ Cxxβ
′ I − βΛ + βCxxβ

′ −1
Λ Cxxβ

′ I − βΛ + βCxxβ
′ −1

Ψ diag (I − Λβ)Cxx Ψ diag (I − Λβ)Cxx

Cxx
1
N ∑n = 1

N xnxn
′ Cxx

∑n pnxnxn
′

∑n pn

β Λ′ Ψ + ΛΛ′ −1
β Λ′ Ψ + ΛΛ′ −1

and Z are independent and that Z follows a multivariate normal distribution with mean 0 and 

covariance matrix I—the identity matrix. Together, Λ and Ψ make up unknown parameters θ
that need to be estimated.

Various methods exist for estimating the unknown parameters. Among these, maximum 

likelihood estimation is one of the most common methods. Again, given that direct 

maximization of the likelihood function can be challenging, the EM algorithm is often 

applied (Rubin & Thayer, 1982). In this section, we demonstrate the application of REM 

to the linear factor model. Aside from the estimation of γ  in Eq. 2 and pn in Eq. 3, REM 

resulted in an estimation procedure very similar to the EM algorithm with the modification 

of estimating an iteratively re-weighted empirical correlation matrix Cxx (List 2; details can 

be found in Appendix C).

We studied how estimates recovered using REM differed from estimates recovered from the 

EM approach in several simulations of data samples taken from a population with a mixture 

of factor structures, which we describe in the following subsections. To simulate realistic 

factor structures with control over the level of sparsity and of communality, we used the 

simulation method described in Tucker et al. (1969) (details in Appendix F). Simulations 

were performed in MATLAB; source code can be found at: https://github.com/knieser/REM.

We focused on the loading matrix (Λ), which relates the observed variables to the 

common factors uniquely up to a rotation. The choice of rotation has an effect on the 

interpretation of the results, and various rotation approaches exist with different advantages 

and disadvantages (Fabrigar et al., 1999). To circumvent the dependency of the solution on 

factor rotation, we calculated the RV coefficient to obtain a measure of congruence between 

the estimated factor structure and the simulated factor structure of the majority group (Abdi, 

2007; Robert & Escoufier, 1976). The RV coefficient is invariant to rotations of the loading 

matrices. RV coefficients were calculated as

RV =
tr Λ0Λ0

′ × ΛΛ′

tr Λ0Λ0
′ × tr ΛΛ′ ,
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where tr is the matrix trace, Λ0 is the loading matrix for the majority group, and Λ is either 

the EM or REM estimated loading matrix.

Minority Group with Different Factor Structure

As discussed earlier, factor structures might differ across a data sample. Underlying 

psychopathology might vary across subtypes of a psychiatric illness. Moreover, expression 

of symptoms can differ across cultures and languages (Kleinman, 2004). Both of these 

situations can result in differing factor structures. That is, the relationships between observed 

symptoms and underlying psychological constructs are not consistent across the sample. 

Without proper accounting of this heterogeneity, these differences could lead to biased 

inferences.

To emulate this issue, we simulated samples from two populations with different factor 

structures. From each population, data samples were drawn from a multivariate Normal 

distribution with dimension P = 30, mean of zero, and covariance matrix Σ = ΛΛ′ + Ψ, where 

Λ and Ψ were generated according to the method described in Tucker et al. (1969). We 

combined samples from the two populations at varying rates to simulate varying percentages 

of majority and minority proportions, fixing the total sample size to N = 500. The percentage 

from the minority population varied from 0% to 40% in increments of 5%. In addition, we 

simulated Λ and Ψ at three different levels of communality: high (ℎp
2=0.6, 0.7 or 0.8); wide 

(ℎp
2=0.2, 0.3, 0.4, 0.5, 0.6, 0.7 or 0.8); and low (ℎp

2=0.2, 0.3 or 0.4), similar to MacCallum 

et al. (1999) and Hogarty et al. (2005). This led to 27 (9 mixture levels × 3 communality 

levels) total simulation scenarios. In each scenario, we computed a measure of congruence 

(RV coefficient) between the estimated factor structures from EM and REM to the true, 

simulated factor structure of the majority group (Figure 4). The REM hyperparameter was 

selected based on the heuristic method described with δ = 0.05. We conducted 400 Monte 

Carlo simulations for each scenario to recover estimated means and standard deviations of 

the RV coefficients.

In the heterogeneous samples, we found that the estimated loading matrix from the EM 

procedure became less congruent with the simulated majority factor structure as the sample 

proportion of the minority group increased (Figure 4). Conversely, the estimates from the 

REM procedure maintained a greater or equal (in the low communality case) degree of 

congruence to the majority structure compared to the EM procedure. As communality 

declined, the separation between REM and EM lessened. Simultaneously, the parameter γ
was estimated (Figure 4). While the estimated γ did vary with changing mixture percentages, 

there was some discrepancy between the true proportion of the majority group and the 

estimated value from γ. In the case of high communality, the estimated value of γ was near, 

but slightly lower, than the true proportion. The gap was approximately 0.05 when the true 

proportion was large (> 0.85) and narrowed for smaller proportions. This gap reflects how 

much data from the majority group were allowed to be down-weighted in our choice of 

hyperparameter δ. In the case of the wide communality, the estimated value of γ was slightly 

lower than the true proportion by about 0.05, but only for the large proportions (> 0.85). For 

the smaller proportions, the estimated γ was overestimated. In the case of low communality, 

the estimated value of γ remains relatively constant regardless of the true proportion of the 
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majority group. In general, overestimates of γ indicate that the REM estimates are fitting 

both the majority and minority group data, which leads to a loss of congruence between the 

estimated and majority structures.

Determining the Number of Factors

Choosing the appropriate number of factors to specify is a crucial step in factor analysis. 

There are many methods to inform the choice of number of factors and different methods 

might disagree (Fabrigar et al., 1999). For a fixed level of heterogeneity, we explored the 

effect of factor number misspecification on the degree of congruence to the true factor 

structure (Figure 5). Using the same approach, we fixed the minority group percentage to 

30%, the communality values to high, and varied the number of estimated factors from 1 to 

6. For each scenario, we conducted 400 Monte Carlo simulations to recover estimated means 

and standard deviations of the RV coefficients. The REM hyperparameter was selected based 

on the heuristic method described with δ = 0.05. Relative to the EM estimates, the REM 

estimates showed higher congruence to the true, underlying factor structure. Other than the 

extreme case of specifying just one factor, when in fact there are four, the misspecification 

of the number of factors had little influence on the estimated factor structures.

Discussion

Individuals differ in many substantive ways that are not always captured through the 

assumed data-generating model. In an effort to address this reality of modeling of 

psychological data, we have proposed a robust estimation method that offers several benefits 

for analysis of data from heterogeneous populations. This method builds off of the familiar 

EM algorithm, which performs maximum likelihood estimation for latent variable models. 

For two frequently used models—Gaussian mixture models and linear factor models—we 

have shown that REM leads to an estimation procedure not that different from the EM 

algorithm, yet provides robustness from and insight into heterogeneous populations.

One of the distinguishing features of REM is that we take into account that not all 

individuals in our sample are equally well-explained by the assumed model. We accomplish 

this by assigning probabilistic weights to each individual, which can be interpreted as 

individual-level measures of model fitness. Weighting data points according to the level 

of information they supply is not in itself a novel concept. Consider, for example, 

weighted least squares regression methods, where data are typically weighted inversely 

to their variance, leading to a down-weighting of noisy data points. Recently, Wang et 

al. (2017) presented a robust Bayesian re-weighting approach that involves modifying the 

likelihood function by raising each term to its own latent weight. REM takes a similar, but 

distinct, approach; we down-weight data, at the level of the likelihood function, with less 

likelihood of originating from the assumed data-generating model. Weights are estimated 

simultaneously with model parameters and can be analyzed a posteriori. Methods, such as 

regression analysis or machine learning algorithms, could be applied to build models of the 

assigned probabilistic weights and learn more about the nature of the heterogeneity within 

the sample. In some cases, these measures might bring to light sources of heterogeneity in 

the sample that warrant further investigation.
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When population heterogeneity is suspected, there are several approaches a researcher 

might currently take. If sources of heterogeneity are observed, a researcher could build 

their model to incorporate these sources of heterogeneity, such as through multiple-group 

models (Jöreskog, 1971), multiple-indicator multiple-cause (MIMIC) models (Jöreskog & 

Goldberger, 1975), or moderated non-linear factor analysis (Bauer & Hussong, 2009). If 

sources of heterogeneity are missing or unobserved, structural equation mixture models 

(SEMM) are a potential solution (Bauer & Curran, 2004). However, SEMM might become 

unwieldy considering that modeling all possible sources of heterogeneity that exist within a 

psychiatric population can prove to be a formidable task. Spurious latent groups might be 

identified. In addition, factor mixture models have yet to become widely adopted, potentially 

due to the complexity in their interpretation (Clark et al., 2013).

Despite direct modeling of possible sources of heterogeneity, modeling psychological data 

is never perfect, nor should it be. In statistical modeling, there is always a trade-off. When 

the sample size is small, we might not have ample data to adjust for all known sources 

of heterogeneity. While analyzing data from multiple sites can be one solution, which also 

helps to increase statistical power, heterogeneity between sites can threaten the validity and 

reliability of analyses. Curran et al. (2014) presented a carefully crafted approach to building 

a moderated non-linear factor analysis model within the context of integrative data analysis. 

As the authors noted, these models can be computationally demanding, sometimes requiring 

hours or days to fit to data. Moreover, like any model-building exercise, there are subjective 

decisions that need to be made, and each decision opens up opportunity for misspecification. 

For this reason, we propose that our approach can be used to supplement existing efforts for 

combating the issues that arise from heterogeneous populations.

Our approach uses ideas from an established area of statistics known as robust estimation 

(Huber, 2004). Robust estimation seeks to ensure estimation is more robust to inevitable 

violations in modeling assumptions and often works by ensuring that estimation is 

relatively insensitive to a single data point. In the case of mixture models, various robust 

estimation approaches have been presented in the literature. For example, a researcher 

estimating parameters of a finite normal mixture model could substitute t-distributions (Lo 

& Gottardo, 2012; Peel & McLachlan, 2000) or skew-normal distributions (Basso et al., 

2010) to increase the robustness of their estimates to outliers. The minimum covariance 

determinant (MCD) estimator is a robust covariance estimator which is resistant to outliers 

in multivariate data (Rousseeuw, 1984) and can be incorporated into robust factor analysis 

(Pison et al., 2003). A review of the MCD estimator and its extensions have been presented 

previously (Hubert et al., 2018). In general, psychological data analysis might benefit from 

more widespread testing of the usefulness of various robust methods with empirical data.

In contrast to some of the alternate robust approaches discussed above, REM is widely 

applicable and computationally manageable, especially for those already familiar with 

EM. REM enables a comprehensive approach to handling misspecification by considering 

heterogeneity in the assumed data-generating process. The approach to modifying the 

likelihood function could, in theory, be applied to many situations beyond those covered 

in this paper: latent class analysis, item response theory, and more complex structural 

equation models. Moreover, REM relies on a commonly used estimation procedure, the EM 
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algorithm. Although other methods have been suggested to improve upon the convergence 

speed of EM (Liu & Rubin, 1998; Zhao et al., 2008), the EM algorithm remains as the 

core concept within these alternative maximum likelihood estimation procedures. Thus, the 

adjustment of current estimation procedures to REM should be straightforward.

In the case of mixture models, REM estimators for the latent group means, covariances, 

and mixture proportions were probability-weighted versions of the estimators derived from 

the EM algorithm. In linear factor models, the EM estimators rely on the observed data 

only through the empirical covariance matrix. We showed that REM followed the same EM 

algorithm with the exception of a probability-weighted version of the covariance matrix in 

place of the empirical covariance matrix. Thus, the modifications to the estimators from the 

EM algorithm—for both mixture models and linear factor models—were minimal; the main 

difference was the incorporation of probabilistic weights that allow for flexibility in model 

fit.

An added benefit of REM was its ability to maintain robust inferences even in the presence 

of misspecified number of latent groups or latent factors. For both mixture models and factor 

models, several criteria are available for evaluating the number of appropriate latent groups 

or factors. In both cases, we have shown that even with misspecification, REM recovered 

model fits that correspond to true, underlying data structures. We have not been the first 

to consider estimators robust to this type of misspecification. Yang et al. (2012) present 

a robust EM estimator for finite mixture models that is designed to automatically select 

an optimal number of latent groups. The estimator adds a penalty term to the likelihood 

function to minimize the information-theoretic entropy. While this method could be useful 

for avoiding misspecification of the number of latent groups, the authors did not test 

robustness to outliers or other model misspecifications. In the case of factor analysis, there is 

not a clear consensus on the optimal process for selecting the appropriate number of factors. 

A discussion of various approaches for factor number selection can be found in Fabrigar 

et al. (1999); a model selection perspective is provided in Preacher et al. (2013). Despite 

previous discussion of the sensitivity of analyses to factor number specification, we found in 

our simulation studies that misspecification of the number of factors can still yield estimated 

factor structures that are largely congruent, in terms of the RV coefficient, to the true factor 

structures. This point does not appear to have received discussion in the current literature.

Limitations

There were several limitations to our approach that suggest future areas of improvement. 

In REM, we shifted the original parametric model to a semiparametric one in a somewhat 

unconventional way. We modified the likelihood function by adding an improper density

—specifically, a constant value ϵ. While simulation studies gave evidence for the utility 

of REM, more work will be needed to develop its theoretical grounds. We are unable to 

explicitly quantify the conditions under which REM outperforms EM and vice versa. From 

the examples we have studied, it does appear that EM can outperform REM in terms of 

RMSE of the mean and covariance matrix norm difference in a mixture model analysis when 

the model is correctly specified. This follows from choosing δ > 0, which allows some 

chance that data from the specified model are down-weighted.
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A consequential limitation, resulting from our modification of the likelihood function, was 

that REM relies on a user-specified hyperparameter. It was unclear on what metric the 

hyperparameter should have been optimized. For the simulations in this paper, our heuristic 

approach yielded reasonable results, but there were a few issues. First, this method required 

specification of another hyperparameter, denoted by δ. However, this hyperparameter does 

allow for flexibility of our algorithm; a researcher can select a hyperparameter that aligns 

with their degree of belief that there is potential model misspecification. A researcher might 

run the estimation algorithm multiple times with varying choices of the hyperparameter to 

examine sensitivity of the results. Second, while the parameter, γ, should capture an average 

measure of model fitness, we found that scenarios with large within-group variability or 

noise processes that closely resembled the specified model resulted in overestimates of γ.

Another limitation, of lesser concern, was that like the EM algorithm, REM was sensitive 

to the starting values. Neither EM nor REM can guarantee achieving a global maximum 

of the objective function. Consequently, we used a global optimization procedure which 

tested multiple starting points to increase the chances of reaching a global maximum. We 

recommend that a global optimization procedure should be implemented in practice.

Lastly, we recognize that simulations in this paper do not address all situations that might 

arise in empirical data. For the finite mixture model simulations, we studied simulations 

with only two dimensions so that we could visually illustrate the performance of REM and 

EM. For factor analysis simulations, we purposefully employed the method from Tucker et 

al. (1969) to simulate factor loadings with a limited number of cross-loadings. We felt this 

was representative of a more typical factor analysis of psychological data which seeks to 

provide a relatively sparse representation of the complex multivariate data.

Conclusion

Heterogeneous populations are, in some sense, unavoidable. Ideally, all known sources 

of individual variation—particularly those that threaten the validity and reliability of 

an analysis—would be properly accounted for in models; however this is not always 

feasible. Moreover, pertinent points of variation might be unknown at the outset. To 

contribute to addressing the population heterogeneity of psychological constructs and 

psychiatric disorders, we offer an estimation approach that aims to provide robust inferences 

under model misspecification and a mechanism for detecting individuals who might be 

inadequately explained by the model.
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Appendix A: Robust Expectation-Maximization

We are interested in building statistical models of an observed p-dimensional random vector 

X that depends on an unobserved k-dimensional random vector Z, which we refer to as 

a latent variable. Models belong to a parametric family P: = fX, Z ∣ θ( ⋅ ):θ ∈ Θ ⊂ ℝd  of 

probability density functions (pdf) for X and Z. If X and Z are discrete, then fX, Z ∣ θ( ⋅ )
denotes the joint probability mass function (pmf). Note we use the notation fV ( ⋅ ) to denote 

the probability density (mass) function of any continuous (discrete) random variable V.

Suppose we observe a random sample x1, …, xN. We assume observations are realizations of 

the random vector X and that the observations are independent and identically distributed. 

Our goal is to infer θ from the observations x1, …, xN. Maximum likelihood estimation is a 

common estimation approach, resulting in a variety of advantageous statistical properties. 

Notably, the maximum likelihood estimator (MLE) is consistent and asymptotically efficient 

under the squared error loss function.

Formally, the MLE can be defined as:

θMLE x1, …, xN = argmax
θ ∈ Θ

logL θ ∣ x1, …, xN ,

where logL θ ∣ x1, …, xN  is the log-likelihood function. In the case of observations that are 

independent and identically distributed, the MLE can be expressed as:

θMLE x1, …, xN = argmax
θ ∈ Θ

∑
n = 1

N
logL θ ∣ xn (independence)

= argmax
θ ∈ Θ

∑
n = 1

N
logfX ∣ θ xn (identical distributions) .

In practice, this optimization problem can be difficult in the case of latent variable models. 

For example, the MLE in latent variable models is often expressed in terms of expectation:

θMLE x1, …, xN = argmax
θ ∈ Θ

∑
n = 1

N
logEZ fX, Z ∣ θ xn, Z .

We can use the Expectation-Maximization (EM) algorithm to solve a sequence of easier 

optimization problems that converges to the MLE. The EM algorithm entails repeatedly 

solving the following optimization problem until convergence is achieved:

θ (t + 1) = argmax
θ ∈ Θ

∑
n = 1

N
EZ ∣ xn, θ(t) logfX, Z ∣ θ xn, Z .
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Derivation of this algorithm can be found elsewhere.

With robust expectation-maximization (REM), we maintain that observations are 

independent but address the possibility that observations are not all identical draws of the 

random vector X. In other words, our assumed parametric data-generating model might 

be incorrect for a subset of the observed data. In this case, we could use the law of total 

probability to write the likelihood of an observed data point as:

L θ ∣ xn = γfX ∣ θ xn + (1 − γ)gX xn ,

where γ ∈ [0, 1] is the probability that data are generated from the model fX ∣ θ( ⋅ ) and gX( ⋅ )
represents the alternate pdf of the data. Of course, if we knew (or assumed) what the 

alternate pdf was, we could proceed with the typical EM approach. However, in many 

cases, this alternate pdf would be unknown. Without a more informed guess, we replace the 

unknown pdf with a constant ϵ > 0, which will act as a hyperparameter that tunes parameter 

estimation:

L θ ∣ xn = γfX ∣ θ xn + (1 − γ)ϵ .

We can express our modified optimization problem as

θ = argmax
θ ∈ Θ

∑
n = 1

N
log γfX ∣ θ xn + (1 − γ)ϵ

With an argument similar to the justification for the EM estimator, we will show that this 

optimization problem can be solved with a sequence of easier optimization problems. To 

facilitate this, we introduce a quantity

p(x; γ, θ): = γfX ∣ θ(x)
γfX ∣ θ(x) + (1 − γ)ϵ ,

and the shortened notation: pn: = p xn; γ, θ , and pn: = p xn; γ , θ . This quantity is bounded by 

0 and 1 and will be interpreted as the probability that the data point is generated from the 

assumed parametric model fX ∣ θ( ⋅ ).

With some algebra, we can write each term in the sum as:

log γfX ∣ θ xn + (1 − γ)ϵ = pnlog γfX ∣ θ xn
γfX ∣ θ xn

γfX ∣ θ xn + (1 − γ)ϵ

+ 1 − pn log (1 − γ)ϵ
(1 − γ)ϵ γfX ∣ θ xn + (1 − γ)ϵ

= pnlog γfX ∣ θ xn
pn

+ 1 − pn log (1 − γ)ϵ
1 − pn

= pn logγ − logpn + logfX ∣ θ xn
+ 1 − pn log(1 − γ) − log 1 − pn + logϵ . 

For latent variable models, we can rewrite the term logfX ∣ θ xn  as
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EZ ∣ xn, θ logfX ∣ θ xn = EZ ∣ xn, θ logfX, Z ∣ θ xn, Z − logfZ ∣ xn, θ(Z) .

Now we can decompose our objective function into two components:

∑
n = 1

N
log γfX ∣ θ xn + (1 − γ)ϵ = Q(θ, γ) + H(θ, γ),

where

Q(θ, γ) = ∑
n = 1

N
pn logγ + EZ ∣ xn, θ logfX, Z ∣ θ xn, Z + 1 − pn [log(1 − γ) + logϵ]

= Nlog[1 − γ] + Nlogϵ + ∑
n = 1

N
pn EZ ∣ xn, θ logfX, Z ∣ θ xn, Z + logitγ − logϵ

and

H(θ, γ) = − ∑
n = 1

N
pnlogpn + 1 − pn log 1 − pn + pnEZ ∣ xn, θ logfZ ∣ X, θ(Z) .

By Gibb’s inequality, any θ and γ will increase the term H over θ  and γ :

H(θ, γ) ≥ H(θ, γ) .

So, choosing values of θ and γ that increase the value of Q(θ, γ) over Q(θ, γ) will also increase 

in our objective function Q(θ, γ) + H(θ, γ) over Q(θ, γ) + H(θ, γ).

Lastly, we note that Q(θ, γ) decomposes into terms that depend on θ, terms that depend on γ, 

and terms that depend on neither. This decomposition allows Q(θ, γ) to be maximized over 

Θ ⊗ (0, 1) by separately maximizing over Θ and (0,1):

max
(θ, γ) ∈ Θ ⊗ (0, 1)

Q(θ, γ) = Nlogϵ − ∑
n = 1

N
pnlogϵ +

max
γ ∈ (0, 1)

Nlog[1 − γ] + ∑
n = 1

N
pnlogitγ +

max
θ ∈ Θ

∑
n = 1

N
pnEZ ∣ xn, θ logfX, Z ∣ θ xn, Z .

In particular, maximization over γ ∈ (0, 1) can be performed directly:

argmax
γ ∈ (0, 1)

Nlog[1 − γ] + ∑
n = 1

N
pnlogitγ = 1

N ∑
n = 1

N
pn .
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These observations tell us how to improve upon an estimator (θ , γ ). Applying this 

improvement iteratively yields the following estimation procedure:

θ (t + 1) = argmax
θ ∈ Θ

∑
n = 1

N
pn

(t)EZ ∣ xn, θ(t) logfX, Z ∣ θ xn, Z

γ (t + 1) = 1
N ∑

n = 1

N
pn

(t)

pn
(t + 1) = γ (t)fX ∣ θ(t) xn

γ (t)fX ∣ θ(t) xn + 1 − γ (t) ϵ

In addition to the estimation of γ and pn, the estimation step for the substantive model 

parameters, θ, is simply a weighted version of the EM estimator, where weights are the 

estimated probabilities of model fitness.

Appendix B: Robust Mixture Modeling

Suppose we draw mutually independent samples x1, …, xN of a random vector X ∈ ℝp. We 

model the distribution of X as a mixture of K multivariate normal distributions, where the 

kth distribution follows Np μk, Σk . We assume that X is drawn from the kth distribution with 

probability πk and introduce a latent variable Z ∈ [1, 2, …, K] to specify the distribution from 

which X was drawn. The likelihood for x1, …, xN given the parameters of this distribution,

θ = θk:θk = πk, μk, Σk , k = 1, …, K ,

can be expressed as:

∏
n = 1

N
∑

k = 1

K
πkϕk xn ,

where ϕk xn  is the density for a Np μk, Σk  random variable.

To use the EM algorithm, we need the joint density of the observed data and the latent 

variables:

fX, Z ∣ θ xn, Z = πZϕZ xn .

Recall that the EM estimate results from iterating the following:
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θ (t + 1) = argmax
θ ∈ Θ

∑
n = 1

N
EZ ∣ xn, θ(t) logfX, Z ∣ θ xn, Z .

So we have

θ (t + 1) = argmax
θ ∈ Θ

∑
n = 1

N
EZ ∣ xn, θ(t) logπZ + logϕZ xn

= argmax
θ ∈ Θ

∑
n = 1

N
∑

k = 1

K
ωnk

(t) logπk + logϕk xn

where ωnk
(t) = ℙ Z = k ∣ xn, θ (t)

.

After maximizing the objective function, under the constraint that ∑k = 1
K πk = 1, we obtain the 

estimation procedure:

Σk
(t + 1) =

∑n = 1
N ωnk

(t) xn − μk
(t) xn − μk

(t) ′

∑n = 1
N ωnk

(t)

μk
(t + 1) = ∑n = 1

N ωnk
(t)xn

∑n = 1
N ωnk

(t)

πk
(t + 1) = 1

N ∑
n = 1

N
ωnk

(t) .

To compute estimates, ωnk
(t), we can use the definition of conditional probability to re-express 

this probability in terms of the data:

ωnk
(t) = ℙ Zn = k ∣ xn, θ (t) =

πk
(t)fX xn ∣ θk

(t)

∑l = 1
K πl

(t)fX xn ∣ θ l
(t) .

Meanwhile, the REM estimate for θ is given by

θ (t + 1) = argmax
θ ∈ Θ

∑
n = 1

N
pnEZ ∣ xn, θ(t) logfX, Z ∣ θ xn, Z

= argmax
θ ∈ Θ

∑
n = 1

N
pn ∑

k = 1

K
ωnk

(t) logπk + logϕk xn ,

with ωnk
(t) defined as before in the EM algorithm.
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Maximizing this objective function in the same manner as above, we obtain the estimation 

procedure

Σk
(t + 1) =

∑n = 1
N pn

(t)ωnk
(t) xn − μk

(t) xn − μk
(t) ′

∑n = 1
N pn

(t)ωnk
(t)

μk
(t + 1) = ∑n = 1

N pn
(t)ωnk

(t)xn

∑n = 1
N pn

(t)ωnk
(t)

πk
(t + 1) = 1

N ∑
n = 1

N
pn

(t)ωnk
(t) .

Appendix C: Robust Factor Analysis

Suppose we draw mutually independent samples x1, …, xN from a random vector X ∈ ℝp. We 

theorize that correlations of items in X are driven by an underlying latent variable Z ∈ ℝk. 

For n = 1, …, N, we build a common factor model for X as

X = ΛZ + U,

where Λ is a p × k loading matrix and U is an error term capturing unique variance 

attributable to individual items. We assume Z ∼ Nk(0, I), U ∼ Np(0, Ψ) where Ψ is a diagonal 

matrix, and Z is independent of U. With these assumptions and the properties of normal 

distributions, we have that X ∼ Np 0, ΛΛ′ + Ψ . To simplify notation, we let θ = (Λ, Ψ)).

To use the EM algorithm, we need the joint density of the observed data and the latent 

variables. For n = 1, …, N, we have

fX, Z ∣ θ xn, Z ∣ θ = fX ∣ Z, θ xn ∣ Z, θ fZ(Z)
= (2π)−(p + k)/2(detΨ)−1/2exp − 1

2 xn − ΛZ ′Ψ−1 xn − ΛZ − 1
2Z′Z

We can express the log of this joint density as as

logfX, Z ∣ θ xn, Z ∣ θ = − 1
2detΨ − 1

2 xn − ΛZ ′Ψ−1 xn − ΛZ + C

where C is a constant that does not depend on Λ or Ψ.

Recall that the EM estimate results from iterating the following:

θ (t + 1) = argmax
θ ∈ Θ

∑
n = 1

N
EZ ∣ xn, θ(t) logfX, Z ∣ θ xn, Z ∣ θ
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To solve the maximization problem, we need to simultaneously solve the following set of 

equations

∂
∂Λ ∑

n = 1

N
EZ ∣ xn, θ(t) logfX, Z ∣ θ xn, Z ∣ θ = 0

∂
∂Ψ−1 ∑

n = 1

N
EZ ∣ xn, θ(t) logfX, Z ∣ θ xn, Z ∣ θ = 0

Assuming we can exchange the order of the sum and conditional expectation with the partial 

derivative, we can focus on the following set of equations:

− 1
2 ∑

n = 1

N
EZ ∣ xn, θ(t) ∂

∂Λ xn − ΛZ ′Ψ−1 xn − ΛZ = 0

− 1
2 ∑

n = 1

N
EZ ∣ xn, θ(t) ∂

∂Ψ−1 log(detΨ) + xn − ΛZ ′Ψ−1 xn − ΛZ = 0

The partial derivative with respect to Λ is:

∂
∂Λ xn − ΛZ ′Ψ−1 xn − ΛZ = ∂

∂Λ tr Ψ−1 xn − ΛZ xn − ΛZ ′

= − 2Ψ−1 xnZ′ − ΛZZ′

The partial derivative with respect to Ψ−1 is:

∂
∂Ψ−1 log(detΨ) + xn − ΛZ ′Ψ−1 xn − ΛZ = Ψ + xn − ΛZ xn − ΛZ ′

We can use these expressions to simplify the set of optimization equations:

∑
n = 1

N
Ψ−1xnEZ ∣ xn, θ(t) Z′ + Ψ−1EZ ∣ xn, θ(t) ZZ′ = 0

∑
n = 1

N
Ψ + xnxn

′ − xnEZ ∣ xn, θ(t) Z′ Λ′ − ΛEZ ∣ xn, θ(t)[Z]xn
′ + ΛEZ ∣ xn, θ(t) ZZ′ Λ′ = 0

From properties of multivariate normal distributions, we have that

EZ ∣ xn, θ[Z] = βxn
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EZ ∣ xn, θ ZZ′ = I − βΛ + βxnxn
′β′

where β = Λ′ ΛΛ′ + Ψ −1. Plugging these expressions into the optimization equations and 

solving for Λ and Ψ, we arrive at the following estimation procedure:

Λ(t + 1) = Cxxβ
′(t) I − β ′(t)Λ(t) + β (t)Cxxβ

′(t) −1

Ψ(t + 1) = diag I − Λ(t)β (t) Cxx

β (t + 1) = Λ′(t) Λ(t)Λ′(t) + Ψ(t) −1

where Cxx = 1
N ∑n = 1

N xnxn
′.

The REM estimate for θ is given by

θ (t + 1) = argmax
θ ∈ Θ

∑n = 1
N pnEZ ∣ xn, θ(t) logfX, Z ∣ θ xn, Z

Again, we need to simultaneously solve a set of equations:

∂
∂Λ ∑

n = 1

N
pnEZ ∣ xn, θ(t) logfX, Z ∣ θ xn, Z ∣ θ = 0

∂
∂Ψ−1 ∑

n = 1

N
pnEZ ∣ xn, θ(t) logfX, Z ∣ θ xn, Z ∣ θ = 0

We note that the weights pn do not depend on Λ and Ψ, so once again we can move the 

partial derivative inside the sum and conditional expectation.

− 1
2 ∑

n = 1

N
pnEZ ∣ xn, θ(t) ∂

∂Λ xn − ΛZ ′Ψ−1 xn − ΛZ = 0

− 1
2 ∑

n = 1

N
pnEZ ∣ xn, θ(t) ∂

∂Ψ−1 log(detΨ) + xn − ΛZ ′Ψ−1 xn − ΛZ = 0
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We can then proceed with the same steps presented above to arrive at the following 

estimation procedure:

Λ(t + 1) = Cxx
(t)β ′(t) I − β ′(t)Λ(t) + β (t)Cxx

(t)β ′(t) −1

Ψ(t + 1) = diag I − Λ(t)β (t) Cxx
(t)

β (t + 1) = Λ′(t) Λ(t)Λ′(t) + Ψ(t) −1

Cxx
(t) = ∑

n = 1

N
pn

(t)xnxn
′ / ∑

n = 1

N
pn

(t)

For REM, the estimation steps are almost identical to those from EM with the addition of 

estimating a weighted covariance matrix.

Appendix D: Simulations for Mixture Modeling

We used MATLAB’s pearsrnd() function to simulate data from finite mixtures of skewed 

normal distributions. The skew parameter was set to 0.5. Data were scaled and shifted to 

specify mean and covariance parameters.

For simulations of the two majority groups with a scattered minority group in Examples 1 

& 2, we sampled data from two different skewed bivariate normal distributions to represent 

the two majority groups with proportion 0.70 and 0.20. Population mean and covariance 

parameters of the skewed bivariate normal distributions are given in Tables E1 & E2. 

We sampled data from a bivariate random vector U ~ 10×Beta(1/2, 1/3) to represent the 

scattered minority group with proportion 0.10. Sample data were combined into the final 

mixture sample (N=1000) with probabilities: 0.70, 0.20, 0.10.

For the simulations of three distinct groups, we sampled data from three different skewed 

bivariate normal distributions (N=1000). Population parameters were:

Latent group μA μB σAA
2 σBB

2 σAB
2

π

Group 1 2.00 7.00 0.25 0.25 −0.125 0.70

Group 2 7.00 7.00 0.25 0.25 0.125 0.20

Group 3 6.00 3.00 0.50 0.50 0.00 0.10

Sample data were combined into the final mixture sample with probabilities: 0.70, 0.20, 

0.10.
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Appendix E: Parameter Estimates for Mixture Models

Table E1

Example 1 Parameter Values and Estimates By Latent Group

Estimation method μA μB σAA
2 σBB

2 σAB
2 π

Population values
2.50 7.00 1.00 1.00 −0.50 0.78

7.00 2.50 1.00 1.00 0.50 0.22

Sample estimates
2.51 7.00 0.99 1.06 −0.54 0.75

7.02 2.59 1.00 0.94 0.45 0.25

EM
2.42 7.06 0.87 1.08 −0.48 0.68

6.82 3.35 3.47 5.07 0.69 0.32

REM
2.46 7.00 0.89 1.03 −0.52 0.77

6.95 2.52 0.82 0.75 0.32 0.23

Note: This table contains the simulated values and estimates for the simulation in Example 1 in Figure 1. The REM 

estimated γ  = 0.86.

Table E2

Example 2 Parameter Values and Estimates by Latent Group

Estimation method μA μB σAA
2 σBB

2 σAB
2 π

Population values
5.00 5.00 1.00 1.00 −0.80 0.78

5.00 5.00 1.00 1.00 0.80 0.22

Sample estimates
5.00 4.99 0.99 1.05 −0.83 0.75

5.02 5.07 1.00 0.94 0.76 0.25

EM
4.93 5.01 0.77 0.85 −0.52 0.80

5.71 5.29 7.00 6.90 0.54 0.20

REM
4.91 5.02 0.78 0.90 −0.66 0.78

5.08 4.99 0.76 0.64 0.57 0.22

Note: This table contains the simulated values and parameter estimates for Example 2 in Figure 1. The REM estimated γ  = 

0.82.

Table E3

Varying Specified Number of Latent Groups

Estimation method μA μB σAA
2 σBB

2 σAB
2 π

K = 1

Sample estimates 1.99 7.00 0.25 0.25 −0.12 1.00

EM 3.44 6.64 5.02 1.53 −0.98 1.00

REM 1.90 6.99 0.14 0.15 −0.07 1.00

K = 2
Sample estimates

1.99 7.00 0.25 0.25 −0.12 0.75

6.94 6.94 0.22 0.21 0.10 0.25
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Estimation method μA μB σAA
2 σBB

2 σAB
2 π

EM
1.99 7.00 0.25 0.25 −0.12 0.69

6.67 5.85 0.48 3.47 0.86 0.31

REM
1.96 7.00 0.22 0.22 −0.10 0.77

6.92 6.90 0.18 0.17 0.09 0.23

K = 3

Sample estimates

1.99 7.00 0.25 0.25 −0.12 0.69

6.94 6.94 0.22 0.21 0.10 0.23

5.97 2.92 0.49 0.45 0.03 0.08

EM

1.99 7.00 0.25 0.25 −0.12 0.69

6.94 6.94 0.22 0.22 0.10 0.23

5.96 2.92 0.48 0.44 0.03 0.08

REM

1.98 7.00 0.25 0.25 −0.12 0.69

6.94 6.94 0.22 0.21 0.10 0.23

5.92 2.88 0.43 0.37 0.00 0.08

Note: This table contains parameter estimates for simulations shown in Figure 3. The REM estimated values of γ were 
0.43,0.82,0.99.

Appendix F: Simulations for Factor Analysis

To simulate realistic factor structures, we follow previous work by Tucker et al. (1969). 

Briefly, their method decomposes common factors into major and minor, but we ignore 

minor factors following Hogarty et al. (2005). Major factors are generated by controlling 

communality, denoted by ℎp
2, for each of the p observed variables. Communality describes 

the proportion of variance in an observed variable that can be explained by common factors 

and influences the ability to estimate the loading matrix (MacCallum et al., 1999). Similar 

to other studies, a value for communality is selected for each variable uniformly at random 

from some set. By varying this set, we tested three different levels of communality: high 

(ℎp
2=0.6, 0.7 or 0.8); wide (ℎp

2=0.2, 0.3, 0.4, 0.5, 0.6, 0.7 or 0.8); and low (ℎp
2=0.2, 0.3 or 0.4) 

(Hogarty et al., 2005; MacCallum et al., 1999). After selecting values for communality, the 

procedure detailed in Tucker et al. (1969) was applied to generate a loading matrix Λ and 

diagonal covariance matrix Ψ with the specified values of communality. Based on the factor 

model, these matrices defined population correlation matrices Σ = ΛΛ′ + Ψ.

To create heterogeneous data samples, we sampled observations from two separate 

multivariate normal distributions with mean 0 and covariance matrices Σ1,Σ2, respectively. 

For all simulations, we fixed the sample size N = 600 and the number of items P = 30 and 

number of factors K = 4.

Appendix G: Additional Finite Mixture Scenarios

In Examples 1 & 2, majority groups were simulated with relatively small within-group 

variability. In Examples 3 & 4, included here, we investigated scenarios in which one of the 
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majority groups had large within-group variability. Like Examples 1 & 2 in the subsection, 

Scattered Minority Group, data were sampled from two different skewed bivariate Normal 

distributions to represent the two majority groups with probability 0.70 and 0.20 and skew 

parameter set to 0.5; corresponding population mean and covariance parameters are given 

in Table G1. The scattered minority group was simulated by data sampled, with probability 

0.10, from a bivariate random vector U ~ 10×Beta(1/2, 1/3). In Example 3, EM and REM 

resulted in the same estimates (Figure 6). With δ = 0.05, we estimated γ∧ = 1.00. For 

both EM and REM, the RMSE for the mean was 0.58 and the Frobenius norm of the 

difference between estimated and population covariance matrices was 1.61. In Example 4, 

we decreased the within-group variability slightly and kept all other parameters the same 

as Example 3. In this situation, we found that the REM estimates improved upon the EM 

estimates (Figure 6). REM resulted in γ∧ = 0.91 with RMSE of the mean of 0.05 and 

covariance norm difference of 0.13. On the other hand, EM resulted in a RMSE of the mean 

of 0.59 and covariance norm difference of 1.80. These examples demonstrate that large 

within-group variability can make it more challenging for the REM algorithm to separate 

the noise process from the underlying data-generating process. If δ is set too high, REM 

is more likely to down-weight data from the substantive data-generating process. However, 

as in Example 4, REM can improve upon EM when groups are, in some sense, sufficiently 

distinguishable. We are currently unable to quantify these limits of REM.

Lastly, we examined a scenario in which the minority group was located within one of 

the two majority groups (Example 6). Again, majority group data were sampled from two 

different skewed bivariate Normal distributions to represent the two majority groups with 

proportion 0.70 and 0.20 and skew parameter set to 0.5; corresponding population mean 

and covariance parameters are given in Table G1. In this scenario, the minority group had 

small variance and was centered near the mean of the one of the two majority groups. 

The minority group was simulated by a skewed bivariate Normal distribution with mean, 

μA= 5.00 and μB = 2.00, and variance-covariance, σAA
2 = σBB

2 = 0.10 and σAB
2  = 0.00. With 

δ = 0.05, we estimated γ  = 1.00, indicating that the REM algorithm did not recognize 

and down-weight this anomalous process (Figure 7). At this value ofγ, the EM and REM 

estimates coincide. The RMSE of the mean was 0.40 and the covariance norm difference 

was 0.30. This is another scenario in which the REM estimates do not improve upon the EM 

estimates.

Table G1

Example 3–5 Parameter Values for Majority Groups

Estimation method μA μB σAA
2 σBB

2 σAB
2

π

Example 3
3.00 7.00 1.00 1.00 0.50 0.78

6.00 3.00 3.00 5.00 0.50 0.22

Example 4
3.00 7.00 1.00 1.00 0.50 0.78

6.00 3.00 3.00 3.00 0.50 0.22

Example 5 3.00 7.00 2.00 2.00 0.50 0.78
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Estimation method μA μB σAA
2 σBB

2 σAB
2

π

7.00 3.00 2.00 2.00 0.50 0.22

Note: This table contains the majority group population parameter values in Examples 3 & 4 in Figure 6 and Example 5 in 
Figure 7.
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Figure 1. Simulations of Scattered Minority Group
Note: This figure shows scatter plots of simulated data and approximate 95% confidence 

ellipses for ground truth parameter values, EM estimates, and REM estimates.
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Figure 2. REM Estimated Weight Distributions
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Figure 3. Model Fits with Varying Number of Latent Groups
Note: This figure shows scatter plots of simulated data and approximate 95% confidence 

ellipses for ground truth parameter values, EM estimates, and REM estimates.
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Figure 4. Simulations of Minority Group with Different Factor Structure
Note: Congruence was measured between estimated factor structure and simulated 

majority factor structure with the RV coefficient. Error bars represent standard deviations. 

Communality values were set to high (0.6–0.8), wide (0.2–0.8), or low (0.2–0.4).
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Figure 5. Varying Number of Factors
Note: Congruence was measured between estimated factor structure and simulated majority 

factor structure with RV coefficient. Error bars represent standard deviations. Communality 

values were selected from the high range (0.6–0.8).
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Figure 6. Additional Simulations of Finite Mixtures: Examples 3 & 4
Note: This figure shows scatter plots of simulated data and approximate 95% confidence 

ellipses for ground truth parameter values, EM estimates, and REM estimates from 

Examples 3 and 4.
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Figure 7. Additional Simulations of Finite Mixtures: Example 5
Note: This figure shows scatter plots of simulated data and approximate 95% confidence 

ellipses for ground truth parameter values, EM estimates, and REM estimates from Example 

5.
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