Skip to main content
. 2022 Apr 11;10:824156. doi: 10.3389/fbioe.2022.824156

TABLE 3.

Comparison between inkjet, laser-assisted, and microextrusion bioprinting techniques.

Inkjet LAB Microextrusion Ref
Cell viability High (>85%) High (>95%) Low to moderate (40–80%) (Gao et al., 2014, 2015; Duarte Campos et al., 2016; Mandrycky et al., 2016)
Supported viscosity Low viscosities (3.5–12 mPa.s) Low to moderate viscosities (1–300 mPa.s) Wide range of viscosities (30 mPa.s to over 6 × 107 mPa.s) (Chang et al., 2011; Mandrycky et al., 2016)
Printing resolution High High Moderate (Mandrycky et al., 2016; Ashammakhi et al., 2019)
Strengths  • Low-cost operation
• High cell viability
• Fast printing
 • High resolution
• Fast printing
• High cell viability
• Precise fabrication
• Possibility of in-situ bioprinting
• Given that it is a nozzle-free technique, it can avoid cell clogging
 • Prints a wide spectrum of biomaterials
• Prints high cell densities
(Mandrycky et al., 2016; Keriquel et al., 2017; Chen, 2018)
Limitations  • Lack of precision regarding droplet size and shape
• Biomaterials that are not heat or mechanically resistant may be comprised
• Cell damage at 15–25 kHz frequencies
 • Time-consuming process of ribbon preparation
• Metallic residuals in the final scaffold
• High production cost
 • Shear stress during printing affects cell viability
• Low printing speed
• Moderate resolution
• Low to moderate cell viability
(Mandrycky et al., 2016; Fu et al., 2021; Li et al., 2021)